Oracle® Database
Using Oracle Sharding

18c
E87087-01
February 2018

ORACLE"

Oracle Database Using Oracle Sharding, 18c

E87087-01

Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Primary Author: Virginia Beecher

Contributors: Nagesh Battula, Mark Dilman, Joseph Meeks, Nick Wagner

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

1 Overview of Oracle Sharding
1.1 About Sharding 1-1
1.2 Benefits of Sharding 1-2
1.3 Components of the Oracle Sharding Architecture 1-3
1.4 Application Suitability for Sharding 1-7
2 Sharded Database Schema Design
2.1 Sharded Tables 2-1
2.2 Sharded Table Family 2-3
2.3 Duplicated Tables 2-7
2.4 Non-Table Objects Created on All Shards 2-9
2.5 DDL Execution in a Sharded Database 2-10
2.6 DDL Syntax Extensions for the Sharded Database 2-15
2.7 Using Transparent Data Encryption with Oracle Sharding 2-19
2.7.1 Creating a Single Encryption Key on All Shards 2-20
3 Physical Organization of a Sharded Database
3.1 Sharding as Distributed Partitioning 3-1
3.2 Partitions, Tablespaces, and Chunks 3-2
4 Sharding Methods
4.1 System-Managed Sharding 4-1
4.2 User-Defined Sharding 4-4
4.3 Composite Sharding 4-6
4.4 Using Subpartitions with Sharding 4-8
5 Design Considerations for Sharded Database Applications
5.1 Considerations for Sharded Database Schema Design 5-1

ORACLE"

5.2 Developing Applications for Oracle Sharding 5-1

6 Routing in an SDB Environment

6.1 Direct Routing to a Shard 6-1
6.1.1 About Direct Routing to a Shard 6-1
6.1.2 Sharding APIs 6-2

6.2 Queries and DMLs with Proxy Routing in an SDB 6-6
6.2.1 About Proxy Routing in a Sharded Database 6-7
6.2.2 Oracle Sharding Coordinator 6-8
6.2.2.1 Resiliency of Proxy Routing 6-8

6.2.3 Querying and DMLs Using Proxy Routing 6-9
6.2.4 Proxy Routing for Single-Shard Queries 6-10
6.2.5 Proxy Routing for Multi-Shard Queries 6-10
6.2.5.1 Specifying Consistency Levels in a Multi-Shard Query 6-11

6.2.6 Supported Query Shapes in Proxy Routing 6-11
6.2.7 Execution Plans for Proxy Routing 6-14

7 Shard-Level High Availability

7.1 About Sharding and Replication 7-1

7.1.1 When To Choose Oracle GoldenGate for Shard High Availability 7-2
7.2 Using Oracle Data Guard with an SDB 7-2
7.3 Using Oracle GoldenGate with a Sharded Database 7-7

8 Sharded Database Deployment

8.1 Introduction to SDB Deployment 8-1
8.1.1 Choosing a Deployment Method 8-2
8.1.2 Using Oracle Multitenant with Oracle Sharding 8-3

8.2 Oracle Sharding Prerequisites 8-5

8.3 Installing Oracle Database Software 8-5

8.4 Installing the Shard Director Software 8-7

8.5 Creating the Shard Catalog Database 8-7

8.6 Setting Up the Oracle Sharding Management and Routing Tier 8-8

8.7 Creating and Deploying a System-Managed SDB 8-12
8.7.1 Deploying a System-Managed SDB 8-12
8.7.2 Creating a Schema for a System-Managed SDB 8-19
8.7.3 System-Managed SDB Demo Application 8-26

8.8 Creating and Deploying a User-Defined SDB 8-26
8.8.1 Deploying a User-Defined SDB 8-26
8.8.2 Creating a Schema for a User-Defined SDB 8-32

ORACLE iv

8.9 Creating and Deploying a Composite SDB 8-38
8.9.1 Deploying a Composite SDB 8-38
8.9.2 Creating a Schema for a Composite SDB 8-43

O Sharded Database Lifecycle Management

9.1 Managing the Sharding-Enabled Stack 9-1
9.1.1 Starting Up the Sharding-Enabled Stack 9-2
9.1.2 Shutting Down the Sharding-Enabled Stack 9-2

9.2 Monitoring a Sharded Database 9-2
9.2.1 Monitoring a Sharded Database with GDSCTL 9-2
9.2.2 Monitoring a Sharded Database with Enterprise Manager Cloud Control 9-3

9.2.2.1 Discovering Sharded Database Components 9-8
9.2.3 Querying System Objects Across Shards 9-9

9.3 Backing Up and Recovering a Sharded Database 9-10

9.4 Modifying a Sharded Database Schema 9-10

9.5 Managing Sharded Database Software Versions 9-11
9.5.1 Patching and Upgrading a Sharded Database 9-11
9.5.2 Upgrading Sharded Database Components 9-12
9.5.3 Downgrading a Sharded Database 9-13

9.6 Shard Management 9-13
9.6.1 About Adding Shards 9-14
9.6.2 Resharding and Hot Spot Elimination 9-14
9.6.3 Removing a Shard From the Pool 9-16
9.6.4 Adding Standby Shards 9-16
9.6.5 Managing Shards with Oracle Enterprise Manager Cloud Control 9-17

9.6.5.1 Validating a Shard 9-17
9.6.5.2 Adding Primary Shards 9-18
9.6.5.3 Adding Standby Shards 9-19
9.6.5.4 Deploying Shards 9-20
9.6.6 Managing Shards with GDSCTL 9-20
9.6.6.1 Validating a Shard 9-20
9.6.6.2 Adding Shards to a System-Managed SDB 9-21
9.6.6.3 Replacing a Shard 9-25

9.7 Chunk Management 9-28
9.7.1 About Moving Chunks 9-28
9.7.2 Moving Chunks 9-29
9.7.3 About Splitting Chunks 9-29
9.7.4 Splitting Chunks 9-30

9.8 Shard Director Management 9-30
9.8.1 Creating a Shard Director 9-31

ORACLE

9.8.2 Editing a Shard Director Configuration 9-32

9.8.3 Removing a Shard Director 9-32
9.9 Region Management 9-32
9.9.1 Creating a Region 9-33
9.9.2 Editing a Region Configuration 9-33
9.9.3 Removing a Region 9-34
9.10 Shardspace Management 9-34
9.10.1 Creating a Shardspace 9-34
9.11 Shardgroup Management 9-35
9.11.1 Creating a Shardgroup 9-35
9.12 Services Management 9-35
9.12.1 Creating a Service 9-36

10 Troubleshooting Oracle Sharding

10.1 Oracle Sharding Tracing and Debug Information 10-1
10.1.1 Enabling Tracing for Oracle Sharding 10-1
10.1.2 Where to Find Oracle Sharding Alert Logs and Trace Files 10-1

10.2 Troubleshooting Common Errors in Oracle Sharding 10-3
10.2.1 Errors During Deployment 10-3

10.2.1.1 Issues Starting Remote Scheduler Agent 10-3
10.2.1.2 Shard Director Fails to Start 10-3
10.2.1.3 Errors From Shards Created with CREATE SHARD 10-4
10.2.1.4 Issues Using Create Shard 10-4
10.2.1.5 Issues Using Deploy Command 10-5

Index

ORACLE vi

Preface

Audience

This book provides information about using Oracle Sharding to create and maintain
sharded databases. It also provides information about designing applications for a
sharded database.

e Audience
* Documentation Accessibility
e Related Documents

e Conventions

This book is intended for database administrators and application developers who
work with sharded databases.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents

For more information, see the Oracle database documentation set. These books may
be of particular interest:

* Oracle Database Administrator's Guide

e Oracle Data Guard Concepts and Administration

Conventions

ORACLE

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Conventions

Convention Meaning

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

ORACLE 8

Changes in This Release for Oracle
Sharding

This preface contains:

* Changes in Oracle Database 18c

Changes in Oracle Database 18c

The following are changes in Using Oracle Sharding for Oracle Database 18c.

* New Features

e Other Changes

New Features

The following features are new in this release:

e User-Defined Sharding Method

e Support for PDBs as Shards

e Support for Oracle GoldenGate Replication

e Centralized Diagnostics

e Multi-Shard Query Consistency Level

e Sharding Support for JSON, LOBs and Spatial Objects
e Optimizer Enhancements for Multi-Shard Queries

e Shard Replacement

e Oracle RAC Sharding

User-Defined Sharding Method

User-defined sharding allows you to explicitly specify mapping of data to individual
shards. It is used when, because of performance, regulatory, or other reasons, certain
data needs to be stored on a particular shard and you must have full control moving
data between shards. This method allows you to define LIST or RANGE based
sharding.

See

» User-Defined Sharding for a conceptual overview of user-defined sharding

e Using Oracle Data Guard with an SDB for information about replicating a user-
defined sharded database Oracle Data Guard

e Creating and Deploying a User-Defined SDB for tasks related to configuring,
creating and deploying a user-defined sharded database

ORACLE 9

Changes in Oracle Database 18c

Support for PDBs as Shards

Use a PDB in a CDB for shards or a shard catalog database. In this release Oracle
Sharding supports a shard or shard catalog as a single PDB in a CDB. The GDSCTL
command ADD SHARD is extended and new commands ADD CDB, MODIFY CDB,
CONFIG CDB, and REMOVE CDB are implemented so that Oracle Sharding can
support a multitenant architecture.

See

e Using Oracle Multitenant with Oracle Sharding for information about how to use
PDBs as shards

e Oracle Database Global Data Services Concepts and Administration Guide for
information about the new commands

Support for Oracle GoldenGate Replication

Oracle GoldenGate is used for fine-grained multi-master replication where all shards
are writable, and each shard can be partially replicated to other shards within a
shardgroup.

See Shard-Level High Availability

Centralized Diagnostics

The SQL SHARDS() clause lets you query Oracle supplied objects, such as V$, DBA/
USER/ALL views, dictionary tables, and so on, across all shards.

See Querying System Objects Across Shards

Multi-Shard Query Consistency Level

You can use the initialization parameter MILTI SHARD QUERY_DATA CONSI STENCY to set
different consistency levels when executing multi-shard queries.

See Specifying Consistency Levels in a Multi-Shard Query

Sharding Support for JSON, LOBs and Spatial Objects

This release enables JSON operators that generate temporary LOBSs, large JSON
documents (those that require LOB Storage), Spatial Objects, Index and Operators
and Persistent LOBs to be used in a sharded environment.

The following interfaces are new or changed as part of this feature.

¢ Query and DML statements
Cross shard queries involving LOBs are supported.

DMLs involving more than one shard are not supported. This behavior is similar to
scalar columns.

DMLs involving a single shard are supported from coordinator.
Locator selected from a shard can be passed as bind value to the same shard.
* OClLob

ORACLE 10

Changes in Oracle Database 18¢

All non-BFILE related OCILob APIs in a sharding environment are supported. with
some restrictions.

On the coordinator, the OCI_ATTR_LOB_REMOTE attribute of a LOB descriptor
returns TRUE if the LOB was obtained from a sharded table.

Restrictions: For APIs that take two locators as input, OCILobAppend,
OClLobCompare for example, both of the locators should be obtained from the
same shard. If locators are from different shards an error is given.

- DBMS_LOB

All non-BFILE related DBMS_LOB APIs in a sharding environment are supported,
with some restrictions. On the coordinator, DBMS_LOB.isremote returns TRUE if
the LOB was obtained from a sharded table.

Restrictions: For APIs that take two locators as input, DBMS_LOB.append and
DBMS_LOB.compare for example, both of the locators should be obtained from
the same shard. If the locators are from different shards an error given.

See Creating a Schema for a System-Managed SDB, Creating a Schema for a User-
Defined SDB, and Creating a Schema for a Composite SDB for examples of using
LOBs in sharded database deployment.

Optimizer Enhancements for Multi-Shard Queries

Various enhancements were made to improve the robustness and fault tolerance of
shard queries. The query explain plan is enhanced to display information for all shards
participating in the query.

See Supported Query Shapes in Proxy Routing and Execution Plans for Proxy Routing
for updated information about these topics.

Shard Replacement

If a shard fails and is unrecoverable, you can replace it using the ADD SHARD - REPLACE
command in GDSCTL. You can also use the -replace command option to move a
shard to new equipment for any reason.

See Replacing a Shard

Oracle RAC Sharding

Oracle RAC Sharding creates an affinity for table partitions to particular Oracle RAC
instances, and routes database requests that specify a partitioning key to the instance
that logically holds the corresponding partition. This provides better cache utilization
and dramatically reduces block pings across instances. The partitioning key can only
be added to the most performance critical requests. Requests that don't specify the
key still work transparently and can be routed to any instance. No changes to the
database schema are required to enable this feature.

See Oracle Real Application Clusters Administration and Deployment Guide

Other Changes

ORACLE

The following are additional changes in the release:

* Sharding Content Moved to New Book

11

ORACLE

Changes in Oracle Database 18c

In Oracle Database 12c Release 2 (12.2.0.2) the Oracle Sharding content was
part of the Oracle Database Administrator’s Guide. Starting in Oracle Database
18c the Oracle Sharding content is contained in its own book, Oracle Sharding

Guide.

12

Overview of Oracle Sharding

Become familiar with the concepts related to managing a sharded database with
Oracle Sharding.

Oracle Sharding terminology, concepts, and benefits are described in the following
topics:

e About Sharding
Sharding is a data tier architecture in which data is horizontally partitioned across
independent databases.

* Benefits of Sharding
Sharding provides linear scalability and complete fault isolation for the most
demanding OLTP applications.

e Components of the Oracle Sharding Architecture
Oracle Sharding is a scalability and availability feature for suitable OLTP
applications. It enables distribution and replication of data across a pool of Oracle
databases that share no hardware or software.

* Application Suitability for Sharding
Oracle Sharding is for OLTP applications that are suitable for a sharded database.

1.1 About Sharding

ORACLE

Sharding is a data tier architecture in which data is horizontally partitioned across
independent databases.

Each database is hosted on dedicated server with its own local resources - CPU,
memory, flash, or disk. Each database in such configuration is called a shard. All of
the shards together make up a single logical database, which is referred to as a
sharded database (SDB).

Horizontal partitioning involves splitting a database table across shards so that each
shard contains the table with the same columns but a different subset of rows. A table
split up in this manner is also known as a sharded table.

The following figure shows a table horizontally partitioned across three shards.

1-1

Chapter 1
Benefits of Sharding

Figure 1-1 Horizontal Partitioning of a Table Across Shards

Unsharded Table in Sharded Table in Three Databases
One Database

Server

Server A Server B Server C

Sharding is based on shared-nothing hardware infrastructure and it eliminates single
points of failure because shards do not share physical resources such as CPU,
memory, or storage devices. Shards are also loosely coupled in terms of software;
they do not run clusterware.

Shards are typically hosted on dedicated servers. These servers can be commodity
hardware or engineered systems. The shards can run on single instance or Oracle
RAC databases. They can be placed on-premises, in a cloud, or in a hybrid on-
premises and cloud configuration.

From the perspective of a database administrator, an SDB consists of multiple
databases that can be managed either collectively or individually. However, from the
perspective of the application, an SDB looks like a single database: the number of
shards and distribution of data across those shards are completely transparent to
database applications.

Sharding is intended for custom OLTP applications that are suitable for a sharded
database architecture. Applications that use sharding must have a well-defined data
model and data distribution strategy (consistent hash, range, list, or composite) that
primarily accesses data using a sharding key. Examples of a sharding key include
custoner_id, account _no, Or country_id.

1.2 Benefits of Sharding

ORACLE

Sharding provides linear scalability and complete fault isolation for the most
demanding OLTP applications.

Key benefits of sharding include:

* Linear Scalability. Sharding eliminates performance bottlenecks and makes it
possible to linearly scale performance and capacity by adding shards.

* Fault Containment. Sharding is a shared nothing hardware infrastructure that
eliminates single points of failure, such as shared disk, SAN, and clusterware, and
provides strong fault isolation—the failure or slow-down of one shard does not
affect the performance or availability of other shards.

* Geographical Distribution of Data. Sharding makes it possible to store particular
data close to its consumers and satisfy regulatory requirements when data must
be located in a particular jurisdiction.

1-2

Chapter 1
Components of the Oracle Sharding Architecture

* Rolling Upgrades. Applying configuration changes on one shard at a time does
not affect other shards, and allows administrators to first test the changes on a
small subset of data.

» Simplicity of Cloud Deployment. Sharding is well suited to deployment in the
cloud. Shards may be sized as required to accommodate whatever cloud
infrastructure is available and still achieve required service levels. Oracle Sharding
supports on-premises, cloud, and hybrid deployment models.

Unlike NoSQL data stores that implement sharding, Oracle Sharding provides the
benefits of sharding without sacrificing the capabilities of an enterprise RDBMS. For
example, Oracle Sharding supports:

* Relational schemas

o Database partitioning

* ACID properties and read consistency
* SQL and other programmatic interfaces
e Complex data types

e Online schema changes

e Multi-core scalability

» Advanced security

e Compression

* High Availability features

» Enterprise-scale backup and recovery

1.3 Components of the Oracle Sharding Architecture

ORACLE

Oracle Sharding is a scalability and availability feature for suitable OLTP applications.
It enables distribution and replication of data across a pool of Oracle databases that
share no hardware or software.

Applications perceive the pool of databases as a single logical database. Applications
can elastically scale data, transactions, and users to any level, on any platform, by
adding databases (shards) to the pool. Oracle Database supports scaling up to 1000
shards.

The following figure illustrates the major architectural components of Oracle Sharding:

» Sharded database (SDB) — a single logical Oracle Database that is horizontally
partitioned across a pool of physical Oracle Databases (shards) that share no
hardware or software

» Shards - independent physical Oracle databases that host a subset of the sharded
database

* Global service - database services that provide access to data in an SDB

» Shard catalog — an Oracle Database that supports automated shard deployment,
centralized management of a sharded database, and multi-shard queries

* Shard directors — network listeners that enable high performance connection
routing based on a sharding key

1-3

ORACLE

Chapter 1
Components of the Oracle Sharding Architecture

» Connection pools - at runtime, act as shard directors by routing database requests
across pooled connections

* Management interfaces - GDSCTL (command-line utility) and Oracle Enterprise
Manager (GUI)

Figure 1-2 Oracle Sharding Architecture

Sharding Key
CustomerlD=28459361

Connection
Pools

Shard ‘ Shard

Directors Catalog

2 Sharded
Database

Sharded Database and Shards

Shards are independent Oracle databases that are hosted on database servers which
have their own local resources: CPU, memory, and disk. No shared storage is required
across the shards.

A sharded database is a collection of shards. Shards can all be placed in one region or
can be placed in different regions. A region in the context of Oracle Sharding
represents a data center or multiple data centers that are in close network proximity.

Shards are replicated for High Availability (HA) and Disaster Recovery (DR) with
Oracle replication technologies such as Data Guard. For HA, the standby shards can
be placed in the same region where the primary shards are placed. For DR, the
standby shards are located in another region.

Global Service

A global service is an extension to the notion of the traditional database service. All of
the properties of traditional database services are supported for global services. For
sharded databases additional properties are set for global services — for example,
database role, replication lag tolerance, region affinity between clients and shards, and
so on. For a read-write transactional workload, a single global service is created

1-4

ORACLE

Chapter 1
Components of the Oracle Sharding Architecture

to access data from any primary shard in an SDB. For highly available shards using
Active Data Guard, a separate read-only global service can be created.

Shard Catalog

The shard catalog is a special-purpose Oracle Database that is a persistent store for
SDB configuration data and plays a key role in centralized management of a sharded
database. All configuration changes, such as adding and removing shards and global
services, are initiated on the shard catalog. All DDLs in an SDB are executed by
connecting to the shard catalog.

The shard catalog also contains the master copy of all duplicated tables in an

SDB. The shard catalog uses materialized views to automatically replicate changes to
duplicated tables in all shards. The shard catalog database also acts as a query
coordinator used to process multi-shard queries and queries that do not specify a
sharding key.

Using Oracle Data Guard for shard catalog high availability is a recommended best
practice. The availability of the shard catalog has no impact on the availability of the
SDB. An outage of the shard catalog only affects the ability to perform maintenance
operations or multi-shard queries during the brief period required to complete an
automatic failover to a standby shard catalog. OLTP transactions continue to be routed
and executed by the SDB and are unaffected by a catalog outage.

Shard Director

Oracle Database 12c introduced the global service manager to route connections
based on database role, load, replication lag, and locality. In support of Oracle
Sharding, global service managers support routing of connections based on data
location. A global service manager, in the context of Oracle Sharding, is known as a
shard director.

A shard director is a specific implementation of a global service manager that acts as a
regional listener for clients that connect to an SDB. The director maintains a current
topology map of the SDB. Based on the sharding key passed during a connection
request, the director routes the connections to the appropriate shard.

For a typical SDB, a set of shard directors are installed on dedicated low-end
commodity servers in each region. To achieve high availability, deploy multiple shard
directors. In Oracle Database 12¢ Release 2, you can deploy up to 5 shard directors in
a given region.

The following are the key capabilities of shard directors:

* Maintain runtime data about SDB configuration and availability of shards
* Measure network latency between its own and other regions

* Act as aregional listener for clients to connect to an SDB

* Manage global services

» Perform connection load balancing

Connection Pools

Oracle Database supports connection-pooling in data access drivers such as OCI,
JDBC, and ODP.NET. In Oracle 12c Release 2, these drivers can recognize sharding
keys specified as part of a connection request. Similarly, the Oracle Universal
Connection Pool (UCP) for JDBC clients can recognize sharding keys specified in a

1-5

Chapter 1
Components of the Oracle Sharding Architecture

connection URL. Oracle UCP also enables non-Oracle application clients such as
Apache Tomcat and WebSphere to work with Oracle Sharding.

Oracle clients use UCP cache routing information to directly route a database request
to the appropriate shard, based on the sharding keys provided by the

application. Such data-dependent routing of database requests eliminates an extra
network hop, decreasing the transactional latency for high volume OLTP applications.

Routing information is cached during an initial connection to a shard, which is
established using a shard director. Subsequent database requests for sharding keys
within the cached range are routed directly to the shard, bypassing the shard director.

Like UCP, a shard director can process a sharding key specified in a connect string
and cache routing information. However, UCP routes database requests using an
already established connection, while a shard director routes connection requests to a
shard. The routing cache automatically refreshes when a shard becomes unavailable
or changes occur to the sharding topology. For high-performance, data-dependent
routing, Oracle recommends using a connection pool when accessing data in the SDB.

Management Interfaces for an SDB

You can deploy, manage, and monitor Oracle Sharded databases with two interfaces:
Oracle Enterprise Manager Cloud Control and GDSCTL.

Cloud Control enables life cycle management of a sharded database with a graphical
user interface. You can manage and monitor an SDB for availability and performance,
and you can do tasks such as add and deploy shards, services, shard directors, and
other sharding components.

GDSCTL is a command-line interface that provides a simple declarative way of
specifying the configuration of an SDB and automating its deployment. Only a few
GDSCTL commands are required to create an SDB, for example:

* CREATE SHARDCATALOG

e ADD GSMand START GSM(create and start shard directors)
e CREATE SHARD (for each shard)

e DEPLOY

The GDSCTL DEPLOY command automatically creates the shards and their respective
listeners. In addition, this command automatically deploys the replication configuration
used for shard-level high availability specified by the administrator.

¢ See Also:

e Oracle Database Global Data Services Concepts and Administration Guide
for information about global service managers, global services, and the
GDSCTL commands used with Oracle Sharding

e Oracle Sharding best practices white papers in the Oracle Database
section of the Oracle MAA web page

ORACLE 1-6

http://www.oracle.com/goto/maa

Chapter 1
Application Suitability for Sharding

1.4 Application Suitability for Sharding

ORACLE

Oracle Sharding is for OLTP applications that are suitable for a sharded database.

Existing applications that were never intended to be sharded will require some level of
redesign to achieve the benefits of a sharded architecture. In some cases it may be as
simple as providing the sharding key, in other cases it may be impossible to
horizontally partition data and workload as required by a sharded database.

Many customer-facing web applications, such as e-commerce, mobile, and social
media are well suited to sharding. Such applications have a well defined data model
and data distribution strategy (hash, range, list, or composite) and primarily access
data using a sharding key. Examples of sharding keys include customer ID, account
number, and country_id. Applications will also usually require partial de-normalization
of data to perform well with sharding.

OLTP transactions that access data associated with a single value of the sharding key
are the primary use-case for a sharded database. For example, lookup and update of
a customer’s records, subscriber documents, financial transactions, e-commerce
transactions, and the like. Because all of the rows that have the same value of the
sharding key are guaranteed to be on the same shard, such transactions are always
single-shard and executed with the highest performance and provide the highest level
of consistency. Multi-shard operations are supported, but with a reduced level of
performance and consistency. Such transactions include simple aggregations,
reporting, and the like, and play a minor role in a sharded application relative to
workloads dominated by single-shard OLTP transactions.

" See Also:

Design Considerations for Sharded Database Applications

1-7

Sharded Database Schema Design

To obtain the benefits of sharding, the schema of a sharded database should be
designed in a way that maximizes the number of database requests executed on a
single shard.

The following topics describe the objects used for this purpose:

* Sharded Tables
A sharded table is a table that is partitioned into smaller and more manageable
pieces among multiple databases, called shards.

e Sharded Table Family
A sharded table family is a set of tables that are sharded in the same way.

e Duplicated Tables
In addition to sharded tables, an SDB can contain tables that are duplicated on all
shards.

* Non-Table Objects Created on All Shards
In addition to duplicated tables, other schema objects, such as users, roles, views,
indexes, synonyms, functions, procedures, and packages, and non-schema
database objects, such as tablespaces, tablespace sets, directories, and contexts,
can be created on all shards.

e« DDL Execution in a Sharded Database

» DDL Syntax Extensions for the Sharded Database
Oracle Sharding introduces changes to the SQL DDL statements. DDL statements
with this syntax can only be executed against a sharded database.

e Using Transparent Data Encryption with Oracle Sharding
Oracle Sharding supports Transparent Data Encryption (TDE), but in order to
successfully move chunks in a sharded database with TDE enabled, all of the
shards must share and use the same encryption key for the encrypted
tablespaces.

2.1 Sharded Tables

A sharded table is a table that is partitioned into smaller and more manageable
pieces among multiple databases, called shards.

Oracle Sharding is implemented based on the Oracle Database partitioning feature.
Oracle Sharding is essentially distributed partitioning because it extends partitioning by
supporting the distribution of table partitions across shards.

Partitions are distributed across shards at the tablespace level, based on a sharding
key. Examples of keys include customer ID, account number, and country ID. The
following data types are supported for the sharding key:

* NUMBER
* INTEGER

ORACLE 2-1

Chapter 2
Sharded Tables

« SMALLINT
« RAW

« (N) VARCHAR
°* (NCHAR

« DATE

« TIMESTAVP

Each partition of a sharded table resides in a separate tablespace, and each
tablespace is associated with a specific shard. Depending on the sharding method, the
association can be established automatically or defined by the administrator.

Even though the partitions of a sharded table reside in multiple shards, to the
application the table looks and behaves exactly the same as a partitioned table in a
single database. SQL statements issued by an application never have to refer to
shards or depend on the number of shards and their configuration.

Example 2-1 Sharded Table

The familiar SQL syntax for table partitioning specifies how rows should be partitioned
across shards. For example, the following SQL statement creates a sharded table,
horizontally partitioning the table across shards based on sharding key cust _i d:

CREATE SHARDED TABLE cust oner s
(cust_id NUMBER NOT NULL

, hane VARCHAR2(50)
, address VARCHAR2(250)
, region VARCHAR2(20)
, class VARCHAR2(3)
, signup DATE

CONSTRAI NT cust _pk PRI MARY KEY(cust i d)

)
PARTI TI ON BY CONSI STENT HASH (cust i d)

PARTI TI ONS AUTO
TABLESPACE SET tsl

The preceding table is partitioned by consistent hash, a special type of hash
partitioning commonly used in scalable distributed systems. This technique
automatically spreads tablespaces across shards to provide an even distribution of
data and workload. Note that global indexes on sharded tables are not supported, but
local indexes are supported.

Tablespace Sets

Oracle Sharding creates and manages tablespaces as a unit called a tablespace set.
The PARTI TI ONS AUTO clause specifies that the number of partitions should be
automatically determined. This type of hashing provides more flexibility and efficiency
in migrating data between shards, which is important for elastic scalability.

A tablespace is a logical unit of data distribution in an SDB. The distribution of
partitions across shards is achieved by automatically creating partitions in tablespaces
that reside on different shards. To minimize the number of multi-shard joins, the
corresponding partitions of related tables are always stored in the same shard. Each
partition of a sharded table is stored in a separate tablespace.

ORACLE 2-2

Chapter 2
Sharded Table Family

Note:
Only Oracle Managed Files are supported by tablespace sets.

Individual chunk tablespaces cannot be dropped or altered independently of the
entire tablespace set.

TABLESPACE SET cannot be used with the user-defined sharding method.

Chunks

The unit of data migration between shards is a chunk. A chunk is a set of tablespaces
that store corresponding partitions of all tables in a table family. A chunk contains a
single partition from each table of a set of related tables. This guarantees that related
data from different sharded tables can be moved together. The number of chunks
within each shard is specified when the SDB is created.

2.2 Sharded Table Family

ORACLE

A sharded table family is a set of tables that are sharded in the same way.

Often there is a parent-child relationship between database tables with a referential
constraint in a child table (foreign key) referring to the primary key of the parent table.
Multiple tables linked by such relationships typically form a tree-like structure where
every child has a single parent. A set of such tables is referred to as a table family. A
table in a table family that has no parent is called the root table. There can be only one
root table in a table family.

Note:

In Oracle Database 12c¢ Release 2, only a single table family is supported in an
SDB.

How a Table Family Is Sharded

To illustrate sharding of a table family, consider the example of the Customers—
Orders—Lineltems schema. The tables in this schema may look as shown in the
examples below. The three tables have a parent-child relationship, with cust onmer s
being the root table.

Cust oner s table:

Cust No Nane Addr ess Location d ass
123 Br own 100 Main St us3 Col d
456 Jones 300 Pine Ave usl Silver
999 Snith 453 Cherry St us2 Bronze
O der s table:

OderNo CustNo OrderDate

4001 123 14- FEB- 2013

2-3

ORACLE

4002 456
4003 456
4004 123
4005 999

Li nel t ens table:

LineNo OrderNo

40011 4001
40012 4001
40013 4001
40021 4002
40022 4002
40022 4003
40041 4004
40042 4004
40051 4005

09- MAR- 2013
05- APR- 2013
27- MAY- 2013
01- SEP- 2013

CustNo St ockNo

123 05683022
123 45423609
123 68584904
456 05683022
456 45423509
456 80345330
123 45423509
123 68584904
999 80345330

Chapter 2
Sharded Table Family

Quantity

P NNRP R WRE PP AP

2

The tables can be sharded by the customer number, Cust No, in the Cust oner s table,
which is the root. The shard containing data pertaining to customer 123 is shown in the
following example tables.

Cust oner s table:

Addr ess

Cust No Nane
123 Br own
O ders table:

OrderNo Cust No

4001
4004

123
123

Li nel t ens table:

LineNo OrderNo
40011 4001
40012 4001
40013 4001
40041 4004
40042 4004

100 Main St

OrderDate

14- FEB- 2013
27- MAY- 2013

CustNo St ockNo

123 05683022
123 45423609
123 68584904
123 45423509
123 68584904

Location dass
us3 CGol d
Quantity

1

4

1

1

2

Creating a Sharded Table Family Using CREATE TABLE

The recommended way to create a sharded table family is to specify parent-child
relationships between tables using reference partitioning.

The appropriate CREATE TABLE statements for Customers—Orders—Lineltems schema
are shown below. The first statement creates the root table of the table family —

Customers.

CREATE SHARDED TABLE Cust oners

(CustNo NUMBER NOT NULL
, Nane VARCHAR2(50)
, Address VARCHAR2(250)

, CONSTRAINT Root PK PRI MARY KEY(Cust No)

)
PARTI TI ON BY CONSI STENT HASH (Cust No)

2-4

ORACLE

Chapter 2
Sharded Table Family

PARTI TI ONS AUTO
TABLESPACE SET tsl

The following two statements create Orders and Li nel t ens tables which are a child and
grandchild of Cust omers.

CREATE SHARDED TABLE Orders

(OrderNo NUMBER NOT NULL

, CustNo NUMBER NOT NULL

, OrderDate DATE

, CONSTRAINT Order PK PRI MARY KEY (Cust No, OrderNo)

, CONSTRAINT CustFK FOREI GN KEY (Cust No) REFERENCES Cust omer s(Cust No)

)
PARTI TI ON BY REFERENCE (Cust FK)

CREATE SHARDED TABLE Li nel t ens
(CustNo NUMBER NOT NULL

, LineNo NUMBER(2) NOT NULL
, OrderNo NUMBER(5) NOT NULL
, StockNo NUMBER(4)

, Quantity NUMBER(2)
, CONSTRAINT LinePK PRIMARY KEY (CustNo, OrderNo, LineNo)

, CONSTRAINT LineFK FOREIGN KEY (CustNo, OrderNo) REFERENCES Orders(CustNo, OrderNo)

)
PARTI TI ON BY REFERENCE (Li neFK)

In the example statements above, corresponding partitions of all tables in the family
are stored in the same tablespace set — TS1. However, it is possible to specify
separate tablespace sets for each table.

Partitioning by reference simplifies the syntax since the partitioning scheme is only
specified for the root table. Also, partition management operations that are performed
on the root table are automatically propagated to its descendents. For example, when
adding a partition to the root table, a new partition is created on all its descendents.

Note that in the example statements above, the partitioning column CustNo used as
the sharding key is present in all three tables. This is despite the fact that reference
partitioning, in general, allows a child table to be equi-partitioned with the parent table
without having to duplicate the key columns in the child table. The reason for this is
that reference partitioning requires a primary key in a parent table because the primary
key must be specified in the foreign key constraint of a child table used to link the child
to its parent. However, a primary key on a sharded table must either be the same as
the sharding key, or contain the sharding key as the leading column. This makes it
possible to enforce global uniqueness of a primary key without coordination with other
shards — a critical requirement for linear scalability.

To summarize, the use of reference-partitioned tables in a sharded database requires
adhering to the following rules:

e A primary key on a sharded table must either be the same as the sharding key, or
another column(s) prefixed by the sharding key. This is required to enforce global
unigueness of a primary key without coordination with other shards.

» Reference partitioning requires a primary key in a parent table, because the
primary key must be specified in the foreign key constraint of a child table to link
the child to its parent. For example, to link the Lineltems (child) table to the Orders
(parent) table, you need a primary key in Orders. The second rule implies that the

2-5

ORACLE

primary key in Orders is prefixed by the CustNo value. (This is an existing
partitioning rule not specific to Oracle Sharding.)

In some cases it is impossible or undesirable to create primary and foreign key
constraints that are required for reference partitioning. For such cases, specifying
parent-child relationships in a table family requires that all tables are explicitly equi-
partitioned and each child table is created with the PARENT clause in CREATE SHARDED

Chapter 2
Sharded Table Family

TABLE that contains the name of its parent. An example of the syntax is shown below.

CREATE SHARDED TABLE Cust oners

(CustNo NUMBER NOT NULL
, Nane VARCHAR2(50)

, Address VARCHAR2(250)

, region VARCHAR2(20)

, class VARCHAR2(3)

, Signup DATE

PARTI TI ON BY CONSI STENT HASH (Cust No)
PARTI TI ONS AUTO
TABLESPACE SET tsl1

CREATE SHARDED TABLE Orders

(OrderNo NUMBER

, CustNo NUMBER NOT NULL

, OrderDate DATE

)

PARENT Customers

PARTI TI ON BY CONSI STENT HASH (Cust No)
PARTI TI ONS AUTO

TABLESPACE SET tsl1

CREATE SHARDED TABLE Linel t ems
(LineNo NUMBER

, OrderNo NUMBER

, CustNo NUMBER NOT NULL

, StockNo NUMBER

, Quantity NUMBER

)

)
PARENT Customers

PARTI TI ON BY CONSI STENT HASH (Cust No)
PARTI TI ONS AUTO
TABLESPACE SET tsl

Because the partitioning scheme is fully specified in all of the CREATE SHARDED TABLE

statements, any table can be independently subpartitioned. This is not permitted with
reference partitioning where subpartitions can only be specified for the root table and

the subpartitioning scheme is the same for all tables in a table family.

Note that this method only supports two-level table families, that is, all children must
have the same parent and grandchildren cannot exist. This is not a limitation as long

as the partitioning column from the parent table exists in all of the child tables.

2-6

Chapter 2
Duplicated Tables

Note:

In Oracle Database 12c¢ Release 2, only a single table family is supported in an
SDB.

¢ See Also:

Oracle Database VLDB and Partitioning Guide

2.3 Duplicated Tables

ORACLE

In addition to sharded tables, an SDB can contain tables that are duplicated on all
shards.

For many applications, the number of database requests handled by a single shard
can be maximized by duplicating read-only or read-mostly tables across all shards.
This strategy is a good choice for relatively small tables that are often accessed
together with sharded tables. A table with the same contents in each shard is called a
duplicated table.

An SDB includes both sharded tables that are horizontally partitioned across shards,
and duplicated tables that are replicated to all shards. Duplicated tables contain
reference information, for example, a Stock Items table that is common to each shard.
The combination of sharded and duplicated tables enables all transactions associated
with a sharding key to be processed by a single shard. This technique enables linear
scalability and fault isolation.

As an example of the need for a duplicated table, consider the table family that is
described in Sharded Table Family. The database schema might also include a
Product s table which contains data that is shared by all the customers in the shards
that were created for this table family, and it cannot be sharded by the customer
number. To prevent multi-shard queries during order processing, the entire table must
be duplicated on all shards.

The difference between sharded tables (Customers, Orders, and Lineltems) and a
duplicated table (Products) is shown in the following figure.

2-7

Chapter 2
Duplicated Tables

Figure 2-1 Sharded Tables and a Duplicated Table in an SDB

Customers Orders Line ltems Products
Customer Name Customer Order Customer Order Line SKU Product
123 Mary 123 4001 123 4001 40011 100RSECol
456 John 456 4002 999 4003 40012 }8; g‘;‘f"
1999 Peter 999 4003 123 4001 40013 .

456 4004 456 4004 40014

456 4005 999 4003 40015

== 999 4003 40016

—

Sharded by Customer

! 1 1

Duplicated

Creating a Duplicated Table Using CREATE TABLE

The duplicated Products table can be created using the following statement.

CREATE DUPLI CATED TABLE Products
(StockNo NUMBER PRI MARY KEY
, Description VARCHAR2(20)

, Price NUVBER(6, 2))

)

Updating Duplicated Table and Synchronizing Their Contents

Oracle Sharding synchronizes the contents of duplicated tables using Materialized
View Replication. A duplicated table on each shard is represented by a materialized
view. The master table for the materialized views is located in the shard catalog. The
CREATE DUPLI CATED TABLE statement automatically creates the master table,
materialized views, and other objects required for materialized view replication.

ORACLE 2-8

Chapter 2
Non-Table Objects Created on All Shards

Note:

In Oracle Database 12c Release 2, the client must connect to the shard catalog
database to update a duplicated table. In Oracle Database 18c, an update to a
duplicated table can be executed on a shard or the shard catalog. An update is
first propagated to the master table on the shard catalog and then to all of the
shards.

The materialized views on all of the shards are automatically refreshed at a
configurable frequency. The refresh frequency of all duplicated tables is controlled by
the database initialization parameter SHRD DUPL_TABLE REFRESH RATE. The default value
for the parameter is 60 seconds.

¢ See Also:

Oracle Database Administrator’s Guide

2.4 Non-Table Objects Created on All Shards

ORACLE

In addition to duplicated tables, other schema objects, such as users, roles, views,
indexes, synonyms, functions, procedures, and packages, and non-schema database
objects, such as tablespaces, tablespace sets, directories, and contexts, can be
created on all shards.

Unlike tables, which require an extra keyword in the CREATE statement—SHARDED or
DUPLI CATED—other objects are created on all shards using existing syntax. The only
requirement is that the SHARD DDL session property must be enabled.

Note that automatic creation on all shards of the following objects is not supported in
this release. These objects can be created by connecting to individual shards.

e Cluster

* Control file

* Database link

» Disk group

» Edition

* Flashback archive

* Materialized zone map

e Qutline
« Pfile
* Profile

* Restore point
* Rollback segment

e Summary

2-9

Chapter 2
DDL Execution in a Sharded Database

Materialized views and view logs are supported starting in Oracle Database 18c¢, with
the following restrictions:

* Materialized views created on sharded tables remain empty on the catalog
database, while the corresponding materialized views on shards contain data from
each of the individual shards.

e Only the REFRESH COVPLETE ON DEMAND USI NG TRUSTED CONSTRAI NTS option is
supported for materialized views on sharded tables.

2.5 DDL Execution in a Sharded Database

ORACLE

To create a schema in an SDB, you must issue DDL commands on the shard catalog
database, which validates the DDLs and executes them locally first. Therefore, the
shard catalog database contains local copies of all of the objects that exist in the
sharded database, and serves as the master copy of the SDB schema. If the catalog
validation and execution of DDLs are successful, the DDLs are automatically
propagated to all of the shards and applied in the order in which they were issued on
the shard catalog.

If a shard is down or not accessible during DDL propagation, the catalog keeps track
of DDLs that could not be applied to the shard, and then applies them when the shard
is back up. When a new shard is added to an SDB, all of the DDLs that have been
executed in the SDB are applied in the same order to the shard before it becomes
accessible to clients.

There are two ways you can issue DDLs in an SDB:

e Use the GDSCTL sql command.

When you issue a DDL this way, GDSCTL waits until all of the shards have
finished executing the DDL and returns the status of the execution. For example

GDSCTL> sql “create tabl espace set thsset”

» Connect to the shard catalog database using SQL*Plus using the
GDS$CATALOG. sdbnane service. For example

SQ.> create tabl espace set tbhsset;

When you issue a DDL command on the shard catalog database, it returns the
status when it finishes executing locally, but the propagation of the DDL to all of
the shards happens in the background asynchronously.

Verifying DDL Propagation

You can check the status of the DDL propagation to the shards by using the GDSCTL
show ddl and config shard commands. This check is mandatory when a DDL is
executed using SQL*Plus on the shard catalog, because SQL*Plus does not return the
execution status on all of the shards. When a DDL fails on a shard, all further DDLs on
that shard are blocked until the failure is resolved and the GDSCTL recover shard
command is executed. Note that the user must have GSM_ADMIN privileges to
execute these GDSCTL commands.

Creating Objects Locally and Globally

When a DDL to create an object is issued using the GDSCTL sql command, the object
is created on all of the shards. A master copy of the object is also created in the shard
catalog database. An object that exists on all shards, and the catalog database, is
called an SDB object.

2-10

ORACLE

Chapter 2
DDL Execution in a Sharded Database

When connecting to the shard catalog using SQL*Plus, two types of objects can be
created: SDB objects and local objects. Local objects are traditional objects that exist
only in the shard catalog. Local objects can be used for administrative purposes, or
they can be used by multi-shard queries originated from the catalog database, to
generate and store a report, for example.

The type of object (SDB or local) that is created in a SQL*Plus session depends on
whether the SHARD DDL mode is enabled in the session. This mode is enabled by default
on the shard catalog database for the SDB user — a user that exists on all of the
shards and the shard catalog database. All of the objects created while SHARD DDL is
enabled in a session are SDB objects. To create a local object, the SDB user must first
run alter session disable shard ddl . All of the objects created while SHARD DDL is
disabled are local objects. To enable SHARD DDL in the session, the SDB user must run
alter session enable shard ddl.

See ALTER SESSION for more information about the SHARD DDL session parameter.

Creating the SDB User to Create Schema Objects

Local users that only exist in the shard catalog database do not have the privileges to
create schema objects in the SDB. Therefore, the first step of creating the SDB
schema is to create the SDB user, by connecting to the shard catalog database as
SYSDBA, enabling SHARD DDL, and executing the CREATE USER command. When the
SDB user connects to the catalog database, the SHARD DDL mode is enabled by default.

Note:

Local users can create non-schema SDB objects, such as tablespaces,
directories, and contexts, if they enable SHARD DDL mode; however, they cannot
create schema SDB objects, such as tables, views, indexes, functions,
procedures, and so on.

Sharded objects cannot have any dependency on local objects. For example,
you cannot create an all shard view on a local table.

DDL Execution Examples

The following examples demonstrate the steps to issue a DDL, check its execution
status, and what to do when errors are encountered. The examples are given for the
case when a DDL is issued using SQL*Plus, but the same status checking and
corrective actions apply when using the GDSCTL sql command.

Example 2-2 A DDL execution error on the shard catalog
In this example the user makes a typo in the CREATE USER command.

SQ.> alter session enable shard ddl;
Session al tered.

SQL> CREATE USER exanpl e_user | DENTRI FI ED BY out _standi ngl;
CREATE USER exanpl e_user | DENTRI FI ED BY out _Standi ngl
*

ERROR at line 1:
ORA-00922: nissing or invalid option

2-11

ORACLE

Chapter 2
DDL Execution in a Sharded Database

The DDL fails to execute on the shard catalog and, as expected, the GDSCTL show
ddl command shows that no DDL was executed on any of the shards:

GDSCTL> show ddl
id DDL Text Fai |l ed shards

Then the user repeats the command with the correct spelling. Note that there is no
need to run alter session enabl e shard ddl again because the same session is used.

SQL> CREATE USER exanpl e_user | DENTIFI ED BY out _Standi ngl;
User created.

Now show ddl shows that the DDL has been successfully executed on the shard
catalog database and it did not fail on any shards that are online.

@DSCTL> show ddl

id DDL Text Fail ed shards
1 create user exanple_user identified by *****
" Note:

For any shard that is down at the time of the DDL execution, the DDL is
automatically applied when the shard is back up.

Example 2-3 Recovery from an error on a shard by executing a corrective
action on that shard

In this example, the user attempts to create a tablespace set for system-managed
sharded tables. But the datafile directory on one of the shards is not writable, so the
DDL is successfully executed on the catalog, but fails on the shard.

SQ.> connect exanpl e_user/ out_Standi ngl
Connect ed

SQ.> create tabl espace set thsset;
Tabl espace creat ed.

Note that there is no need to run al ter session enable shard ddl because the user
example_user was created as the SDB user and shard ddl is enabled by default.

Check status using GDSCTL show ddl :

GDSCTL> show ddl

id DDL Text Fai | ed shards
1 create user exanple_user identified by *****
2 create tabl espace set tbhsset shard01

The command output shows that the DDL failed on the shard shard01. Run the
GDSCTL config shard command to get detailed information:

@DSCTL> config shard -shard shard0l

Conversion = ':'Nane: shard0l
Shard G oup: dbsl
Status: Gk

2-12

ORACLE

Chapter 2
DDL Execution in a Sharded Database

State: Depl oyed

Regi on: east

Connection string: (DESCRI PTI ON=(ADDRESS=(HOST=shar d01- host) (PORT=1521)
(PROTOCOL=t cp))

(CONNECT_DATA=(S| D=shar d01)))

SCAN addr ess:

ONS renote port: 0

Di sk Threshold, ns: 20

CPU Threshold, % 75

Version: 18.0.0.0

Failed DDL: create tablespace set thsset

DDL Error: ORA-02585: create tablepsace set failure, one of its tablespaces not
created

ORA-01119: error in creating database file \"/ade/b/3667445372/oracle/rdbms/dbs/
SHARDO1/datafile/ol_mf_thsset %u_.dbf*

ORA-27040: file create error, unable to create file

Linux-x86_64 Error: 13: Permission denied

Additional information: 1 \(ngsmoci_execute\)

Failed DDL id: 2

Avai l ability: ONLINE

The text beginning with “Failed DDL:” indicates the problem. To resolve it, the user
must log in to the shard database host and make the directory writable.

Display the permissions on the directory:

cd $ORACLE_HOWE/ r dbns/ dbs
Is -l ../ | grep dbs
dr-xr-xr-x 4 oracle dba 102400 Jul 20 15:41 dbs/

Change the directory to writable:

chmod +w .
Is -l ../ | grep dbs
drwxrwxr-x 4 oracle dba 102400 Jul 20 15:41 dbs/

Go back to the GDSCTL console and issue the recover shard command:

GDSCTL> recover shard -shard shard01

Check the status again:

GDSCTL> show ddl

id DDL Text Fail ed shards
1 create user exanple_user identified by *****
2 create tabl espace set tbhsset

GDSCTL> config shard -shard shard0l

Conversion = ":'Nanme: shard0l1
Shard G oup: dbsl

Status:

State: Depl oyed

Regi on: east

Connection string: (DESCRI PTI ON=(ADDRESS=(HOST=shar d01- host) (PORT=1521)
(PROTOCOL=t cp))

(CONNECT_DATA=(Sl D=shar d01)))
SCAN addr ess:

ONS rempte port: O

Di sk Threshold, ns: 20

CPU Threshold, % 75

2-13

ORACLE

Chapter 2
DDL Execution in a Sharded Database

Version: 18.0.0.0
Last Failed DDL:

DDL Error: ---

DDL id:

Avail ability: ONLINE

As shown above, the failed DDL error no longer appears.

Example 2-4 Recovery from an error on a shard by executing a corrective
action on all other shards

In this example, the user attempts to create another tablespace set, ths_set, but the
DDL fails on a shard because there is already an existing local tablespace with the
same name.

On the shard catalog:

SQL> create tabl espace set ths_set;
Tabl espace creat ed.

Check status using the GDSCTL show ddl command:
GDSCTL> show ddl

id DDL Text Fai |l ed shards
1 create user exanple_user identified by *****

2 create tabl espace set tbhsset

3 create tabl espace set ths_set shard01

GDSCTL> config shard -shard shard0l
Conversion = ":'Nanme: shard0l

Failed DDL: create tablespace set ths_set

DDL Error: ORA-02585: create tablespace set failure, one of its tablespaces not
created

ORA-01543: tablespace \"TBS_SET\" already exists \(ngsmoci_execute\)

A solution to this problem is to login to shard01 as a local database administrator, drop
the tablespace TBS_SET, and then run GDSCTL recover shard -shard shard0l. But
suppose you want to keep this tablespace, and instead choose to drop the newly
created tablespace set that has the name conflict and create another tablespace set
with a different name, such as thsset2. The following example shows how to do that on
the shard catalog:

SQ.> drop tabl espace set ths_set;
SQL> create tabl espace set tbs_set?2;

Check status using GDSCTL.:
GDSCTL> show ddl

id DDL Text Fail ed shards
1 create user exanple_user identified by *****

2 create tabl espace set thsset

3 create tabl espace set ths_set shard01

4 drop tabl espace set ths_set

5 create tabl espace set thsset2

You can see that DDLs 4 and 5 are not attempted on shard01 because DDL 3 failed
there. To make this shard consistent with the shard catalog, you must run the
GDSCTL recover shard command. However, it does not make sense to execute DDL 3

2-14

Chapter 2
DDL Syntax Extensions for the Sharded Database

on this shard because it will fail again and you actually do not want to create
tablespace set ths_set anymore. To skip DDL 3 run recover shard with the -
i gnore_first option:

GDSCTL> recover shard -shard shard0l —ignore_first
GSM Errors: dbsl shard01:0RA-00959: tablespace \"TBS_SET\" does not exist
(ngsmoci_execute)

GDSCTL> show ddl

id DDL Text Fail ed shards
create user sidney identified by *****

create tabl espace set tbhsset

create tabl espace set ths_set

drop tabl espace set tbs_set shard01
create tabl espace set thsset2

g wWwN -

There is no failure with DDL 3 this time because it was skipped. However, the next
DDL (4 - drop tablespace set tbs_set) was applied and resulted in the error because
the tablespace set to be dropped does not exist on the shard.

Because the -i gnore_first option only skips the first DDL, you need to execute
recover shard again to skip the drop statement as well:

@DSCTL> recover shard -shard shard0l —ignore_first

GDSCTL> show ddl

id DDL Text Fail ed shards
create user sidney identified by *****

create tabl espace set thsset

create tabl espace set ths_set

drop tabl espace set ths_set

create tabl espace set thsset2

g~ wwN -

Note that there are no longer any failures shown, and all of the DDLs were applied
successfully on the shards.

When recover shard is run with the —i gnore_first option, the failed DDL is marked to
be ignored during incremental deployment. Therefore, DDL numbers 3 and 4 are
skipped when a new shard is added to the SDB, and only DDL numbers 1 and 5 are
applied.

2.6 DDL Syntax Extensions for the Sharded Database

ORACLE

Oracle Sharding introduces changes to the SQL DDL statements. DDL statements
with this syntax can only be executed against a sharded database.

Note that no changes to query and DML statements are required to support Oracle
Sharding, and the changes to the DDL statement are very limited. Most existing DDL
statements will work the same way on a sharded database with the same syntax and
semantics as they do on a regular Oracle Database.

CREATE TABLESPACE SET

This is a new statement introduced for Oracle Sharding. Its syntax is similar to CREATE
TABLESPACE.

2-15

ORACLE

Chapter 2
DDL Syntax Extensions for the Sharded Database

CREATE TABLESPACE SET tabl espace_set

[I'N SHARDSPACE shar dspace]

[USI NG TEMPLATE (

M NI MUM EXTENT si ze_cl ause

BLOCKSI ZE integer [K]

| oggi ng_cl ause

FORCE LOGE NG

ENCRYPTI ON t abl espace_encryption_spec
DEFAULT [table_conpression | storage_clause
{ ONLINE | OFFLINE }
ext ent _managenent _cl ause
segment _managenent _cl ause
fl ashback_node_cl ause

{
I
|
|
|
|
|
|
|
}
]

I

The statement creates a tablespace set that can be used as a logical storage unit for
one or more sharded tables and indexes. A tablespace set consists of multiple Oracle
tablespaces distributed across shards in a shardspace.

Note that in system-managed sharding there is only one default shardspace in the
sharded database. The number of tablespaces in a tablespace set is determined
automatically and is equal to the number of chunks in the corresponding shardspace.

All tablespaces in a tablespace set are bigfile and have the same properties. The
properties are specified in the USI NG TEMPLATE clause. This clause is the same as

per manent _t abl espace_cl ause for a typical tablespace, with the exception that a datafile
name cannot be specified in the datafil e_tenpfile_spec clause. The datafile name for
each tablespace in a tablespace set is generated automatically.

Note that a tablespace set can only consist of permanent tablespaces, there is no
system, undo, or temporary tablespace set.

Example

CREATE TABLESPACE SET TSP_SET_1 I N SHARDSPACE sgrl
USI NG TEMPLATE

(DATAFILE SI ZE 100m

EXTEND MANAGEMENT LOCAL

SEGVENT SPACE MANAGEMENT AUTO

)
ALTER TABLESPACE SET

The shardspace property of a tablespace set cannot be modified. All other attributes of
a tablespace set can be altered just as for a regular permanent tablespace. Because
tablespaces in a tablespace set are bigfile, the ADD DATAFI LE and DROP DATAFI LE clauses
are not supported.

DROP TABLESPACE SET and PURGE TABLESPACE SET

The syntax and semantics for these statements are similar to DROP and PURGE
TABLESPACE statements.

CREATE TABLE

This statement has been extended to allow for creation of sharded and duplicated
tables and specification of a table family.

Syntax

2-16

ORACLE

Chapter 2
DDL Syntax Extensions for the Sharded Database

CREATE [{ GLOBAL TEMPORARY | SHARDED | DUPLI CATED}]

TABLE [schenma.] table
{ relational _table | object_table | XM.Type_table }
[PARENT [schema.] table]

The following parts of the CREATE TABLE statement are intended to support Oracle
Sharding:

The SHARDED and DUPLI CATED keywords indicate that the table content is either
partitioned across shards or duplicated on all shards respectively. The DUPLI CATED
keyword is the only syntax change to create duplicated tables. All other changes
described below apply only to sharded tables.

The PARENT clause links a sharded table to the root table of its table family.

To create a sharded table, TABLESPACE SET is used instead of TABLESPACE. All
clauses that contain TABLESPACE are extended to contain TABLESPACE SET.

Three clauses: consi stent _hash_partitions, consistent_hash with_subpartitions,
and partition_set _clause inthe table partitioning_clauses.

tabl e_partitioning_clauses ::=
{range_partitions

| hash_partitions

| list_partitions

| conposite_range_partitions

| conposite_hash_partitions

| conposite_ list_partitions

| reference_partitioning

| systempartitioning

| consistent_hash_partitions

| consistent_hash_with_subpartitions
| partition_set_clause

}

Limitations for sharded tables in the current release:

There is no default tablespace set for sharded tables.

A temporary table cannot be sharded or duplicated.

Index-organized sharded tables are not supported.

A sharded table cannot contain a nested table column or an identity column.

A primary key constraint defined on a sharded table must contain the sharding
column(s). A foreign key constraint on a column of a sharded table referencing a
duplicated table column is not supported.

System partitioning and interval range partitioning are not supported for sharded
tables. Specification of individual hash partitions is not supported for partitioning by
consistent hash.

A column in a sharded table used in PARTI TI ON BY or PARTI TI ONSET BY clauses
cannot be a virtual column.

Duplicated tables in the current release are not supported with the following:

System and reference partitioned tables
LONG, abstract (MDSYS datatypes are supported), REF data types
Maximum number of columns without primary key is 999

The nol oggi ng, paral | el , i nmenory options

2-17

ORACLE

Chapter 2
DDL Syntax Extensions for the Sharded Database

e XMLType column in a duplicated table cannot be used in non-ASSM tablespace
Example

CREATE SHARDED TABLE cust oners
(cust_id NUVBER NOT NULL
, name VARCHAR2(50)
, address VARCHAR2(250)
, 0)

(
| ocation_id VARCHAR(
(3)

cl ass VARCHAR2
si gnup_dat e DATE

2
3

CONSTRAINT cust _pk PRI MARY KEY(cust_id, class)

)

PARTI TI ONSET BY LI ST (cl ass)

PARTI TI ON BY CONSI STENT HASH (cust i d)

PARTI TI ONS AUTO

(PARTI TIONSET gold VALUES (‘gld’) TABLESPACE SET ts2,
PARTI TI ONSET si | ver VALUES (‘slv’') TABLESPACE SET tsl)

ALTER TABLE

The following options are not supported for a sharded table in a system-managed or
composite sharded database:

* Rename
e Add foreign key constraint
e All operations on individual partitions and subpartitions

e All partition-related operations on the shard, except TRUNCATE partition,
UNUSABLE LOCAL INDEXES, and REBUILD UNUSABLE LOCAL INDEXES

The following are not supported for duplicated tables:

» Data types: long, abstract (MDSYS datatypes are supported), REF
* Column options: vector encode, invisible column, nested tables
* Object types

e Clustered table

* External table

e ILM policy

* PARENT clause

* Flashback table operation

* System and Reference partitioning

* Enable nol oggi ng option

* Truncate table

e Drop duplicated table materialized view log

e Drop duplicated table materialized views on shards

« Alter materialized views (of duplicated tables) on shards

2-18

2.7 Using
Sharding

ORACLE

Chapter 2
Using Transparent Data Encryption with Oracle Sharding

ALTER SESSION

The session-level SHARD DDL parameter sets the scope for DDLs issued against the
shard catalog database.

ALTER SESSI ON { ENABLE | DI SABLE } SHARD DDL

When SHARD DDL is enabled, all DDLs issued in the session are executed on the shard
catalog and all shards. When SHARD DDL is disabled, a DDL is executed only against the
shard catalog database. SHARD DDL is enabled by default for an SDB user (the user that

exists on all shards and the catalog). To create an SDB user, the SHARD DDL parameter
must be enabled before running CREATE USER.

Transparent Data Encryption with Oracle

Oracle Sharding supports Transparent Data Encryption (TDE), but in order to
successfully move chunks in a sharded database with TDE enabled, all of the shards
must share and use the same encryption key for the encrypted tablespaces.

A sharded database consists of multiple independent databases and a catalog
database. For TDE to work properly, especially when data is moved between shards,
certain restrictions apply. In order for chunk movement between shards to work when
data is encrypted, you must ensure that all of the shards use the same encryption key.

There are two ways to accomplish this:

e Create and export an encryption key from the shard catalog, and then import and
activate the key on all of the shards individually.

e Store the wallet in a shared location and have the shard catalog and all of the
shards use the same wallet.

The following TDE statements are automatically propagated to shards when executed
on the shard catalog with shard DDL enabled:

» alter system set encryption wallet open/close identified by password

» alter system set encryption key

* administer key management set keystore [open|close] identified by password
* administer key management set key identified by password

* administer key management use key identified by password

* administer key management create key store identified by password
Limitations

The following limitations apply to using TDE with Oracle Sharding.

* For MOVE CHUNK to work, all shard database hosts must be on the same platform.

* MOWVE CHUNK cannot use compression during data transfer, which may impact
performance.

» Only encryption on the tablespace level is supported. Encryption on specific
columns is not supported.

2-19

Chapter 2
Using Transparent Data Encryption with Oracle Sharding

» Creating a Single Encryption Key on All Shards
To propagate a single encryption key to all of the databases in the sharded
database configuration, you must create a master encryption key on the shard
catalog, then use wallet export, followed by wallet import onto the shards, and
activate the keys.

2 See Also:

Oracle Database Advanced Security Guide for more information about TDE

2.7.1 Creating a Single Encryption Key on All Shards

To propagate a single encryption key to all of the databases in the sharded database
configuration, you must create a master encryption key on the shard catalog, then use
wallet export, followed by wallet import onto the shards, and activate the keys.

Note:

This procedure assumes that the keystore password and wallet directory path
are the same for the shard catalog and all of the shards. If you require different
passwords and directory paths, all of the commands should be issued
individually on each shard and the shard catalog with shard DDL disabled using
the shard’s own password and path.

These steps should be done before any data encryption is performed.

1. Create an encryption key on the shard catalog.
With shard DDL enabled, issue the following statements.

ADM NI STER KEY MANAGEMENT CREATE KEYSTORE wal | et _directory_path | DENTI FI ED BY
keyst ore_passwor d;
ADM NI STER KEY MANAGEMENT SET KEYSTORE OPEN | DENTI FI ED BY keyst ore_password;

The keystore_password should be the same if you prefer to issue wallet open and
close commands centrally from the catalog.

Note:

The wallet directory path should match the ENCRYPTI ON_WALLET _LOCATI ONin
the corresponding sqlnet.ora.

With shard DDL disabled, issue the following statement.
ADM NI STER KEY MANAGEMENT SET KEY | DENTI FI ED BY keyst ore_password W TH BACKUP,

An encryption key is created and activated in the shard catalog database’s wallet.

ORACLE 2-20

Chapter 2
Using Transparent Data Encryption with Oracle Sharding

If you issue this statement with DDL enabled, it will also create encryption keys in
each of the shards’ wallets, which are different keys from that of the catalog. In
order for data movement to work, you cannot use different encryption keys on
each shard.

2. Get the master key ID from the shard catalog keystore.

SELECT KEY_ID FROM VSENCRYPTI ON_KEYS

WHERE ACTI VATI ON_TI ME =

(SELECT MAX(ACTI VATI ON_TI ME) FROM VSENCRYPTI ON_KEYS
WHERE ACTI VATI NG DBI D = (SELECT DBI D FROM V$DATABASE)) ;

3. With shard DDL disabled, export the catalog wallet containing the encryption key.

ADM NI STER KEY MANAGEMENT EXPORT ENCRYPTI ON KEYS W TH SECRET secret_phrase TO
wal | et _export _file | DENTIFI ED BY keystore_password;

(Optional) Enter the result of the step here.

4. Physically copy the wallet file to each of the shard hosts, into their corresponding
wallet export file location, or put the wallet file on a shared disk to which all of the
shards have access.

5. With shard DDL disabled, log on to each shard and import the wallet containing
the key.

ADM NI STER KEY MANAGEMENT SET KEYSTORE OPEN | DENTI FI ED BY keyst ore_password;
ADM NI STER KEY MANAGEMENT | MPORT ENCRYPTI ON KEYS W TH SECRET secret _phrase FROM
wal | et _export _file | DENTIFIED BY keystore_password WTH BACKUP;

6. Restart the shard databases.
7. Activate the key on all of the shards.
On the catalog with shard DDL enabled

ADM NI STER KEY MANAGEMENT SET KEYSTORE OPEN | DENTI FI ED BY keyst ore_password;
ADM NI STER KEY MANAGEMENT USE KEY master_key_id | DENTI FI ED BY keyst ore_password
W TH BACKUP;

All of the shards and the shard catalog database now have the same encryption key
activated and ready to use for data encryption. On the shard catalog, you can issue
TDE DDLs (with shard DDL enabled) such as:

e Create encrypted tablespaces and tablespace sets.

e Create sharded tables using encrypted tablespaces.

e Create sharded tables containing encrypted columns (with limitations).
Validate that the key IDs on all of the shards match the ID on the shard catalog.

SELECT KEY_ID FROM VSENCRYPTI ON_KEYS
WHERE ACTI VATI ON_TI ME =
(SELECT MAX(ACTI VATI ON_TI ME) FROM VSENCRYPTI ON_KEYS
WHERE ACTI VATI NG DBI D = (SELECT DBI D FROM V$DATABASE)) ;

ORACLE 2-21

Physical Organization of a Sharded
Database

Learn about the physical organization of a sharded database.
The following topics describe the physical organization of a sharded database:

e Sharding as Distributed Partitioning
Sharding is a database scaling technique based on horizontal partitioning of data
across multiple independent physical databases. Each physical database in such
a configuration is called a shard.

» Partitions, Tablespaces, and Chunks
Distribution of partitions across shards is achieved by creating partitions in
tablespaces that reside on different shards.

3.1 Sharding as Distributed Partitioning

Sharding is a database scaling technique based on horizontal partitioning of data
across multiple independent physical databases. Each physical database in such a
configuration is called a shard.

Even though a sharded database (SDB) looks like a single database to applications
and application developers, from the perspective of a database administrator, it is a
set of discrete Oracle databases, each of which is called a shard. A sharded table is
partitioned across all shards of the SDB. Table partitions on each shard are not
different from partitions that could be used in an Oracle database that is not sharded.

The following figure shows the difference between partitioning on a single logical
database and partitions distributed across multiple shards.

Figure 3-1 Sharding as Distributed Partitioning

Single Logical Database Multiple Physical Shards
Partitions Partitions Partitions

1 2 5 6

1 2 3 4 5 3 4 7 8

111012 1314 | 15 Partitions Partitions Partitions
16 || 17 | 18 | 19 | 20 9 10 13 | 14 17 18
11 12 15 || 16 19 20

ORACLE 3-1

Chapter 3
Partitions, Tablespaces, and Chunks

Oracle Sharding automatically distributes the partitions across shards when you
execute the CREATE SHARDED TABLE statement, and the distribution of partitions is
transparent to applications. The figure above shows the logical view of a sharded table
and its physical implementation.

3.2 Partitions, Tablespaces, and Chunks

Distribution of partitions across shards is achieved by creating partitions in
tablespaces that reside on different shards.

Each partition of a sharded table is stored in a separate tablespace, making the
tablespace the unit of data distribution in an SDB.

As described in Sharded Table Family, to minimize the number of multi-shard joins,
corresponding partitions of all tables in a table family are always stored in the same
shard. This is guaranteed when tables in a table family are created in the same set of
distributed tablespaces as shown in the syntax examples where tablespace setts1 is
used for all tables.

However, it is possible to create different tables from a table family in different
tablespace sets, for example the Customers table in tablespace set t s1 and Orders in
tablespace set ts2. In this case, it must be guaranteed that the tablespace that stores
partition 1 of Customers always resides in the same shard as the tablespace that
stores partition 1 of Orders. To support this functionality, a set of corresponding
partitions from all of the tables in a table family, called a chunk, is formed. A chunk
contains a single partition from each table of a table family.

A chunk that contains corresponding partitions from the tables of Cutomers-Orders-
Lineltems schema is shown in the following figure.

Figure 3-2 Chunk as a Set of Partitions

Chunk #1

Sharded
Tables

ORACLE

——> Customers_P1 (1-1000000) Orders_P1 Lineitems_P1

Each shard contains multiple chunks as shown in the following figure.

3-2

Chapter 3
Partitions, Tablespaces, and Chunks

Figure 3-3 Contents of a Shard

Chunk #1
Sharded — > Customers_P1 (1-1M) Orders_P1 Lineitems_P1
Tables

Chunk #6
Sharded —————» Customers_P6 (5000001-6M) Orders_P6 Lineitems_P6
Tables

Chunk #11
Sharded ——» Customers_P11(10000001-11M) Orders_P11 Lineitems_P11

Tables

Stockitems (Duplicated Table)

Shard

In addition to sharded tables, a shard can also contain one or more duplicated tables.
Duplicated tables cannot be stored in tablespaces that are used for sharded tables.

ORACLE' 33

Sharding Methods

This chapter discusses the sharding methods supported by Oracle Sharding, how to
choose a method, and how to use subpartitioning.

The following topics describe the sharding methods supported by Oracle Sharding:

* System-Managed Sharding
System-managed sharding is a sharding method which does not require the user
to specify mapping of data to shards. Data is automatically distributed across
shards using partitioning by consistent hash. The partitioning algorithm evenly and
randomly distributes data across shards.

* User-Defined Sharding
User-defined sharding lets you explicitly specify the mapping of data to individual
shards. It is used when, because of performance, regulatory, or other reasons,
certain data needs to be stored on a particular shard, and the administrator needs
to have full control over moving data between shards.

e Composite Sharding
The composite sharding method allows you to create multiple shardspaces for
different subsets of data in a table partitioned by consistent hash. A shardspace is
set of shards that store data that corresponds to a range or list of key values.

e Using Subpartitions with Sharding
Because Oracle Sharding is based on table partitioning, all of the subpartitioning
methods provided by Oracle Database are also supported for sharding.

4.1 System-Managed Sharding

ORACLE

System-managed sharding is a sharding method which does not require the user to
specify mapping of data to shards. Data is automatically distributed across shards
using partitioning by consistent hash. The partitioning algorithm evenly and randomly
distributes data across shards.

The distribution used in system-managed sharding is intended to eliminate hot spots
and provide uniform performance across shards. Oracle Sharding automatically
maintains the balanced distribution of chunks when shards are added to or removed
from an SDB.

Consistent hash is a partitioning strategy commonly used in scalable distributed
systems. It is different from traditional hash partitioning. With traditional hashing, the
bucket number is calculated as HF(key) % Nwhere HF is a hash function and N is the
number of buckets. This approach works fine if N is constant, but requires reshuffling
of all data when N changes.

More advanced algorithms, such as linear hashing, do not require rehashing of the
entire table to add a hash bucket, but they impose restrictions on the number of
buckets, such as the number of buckets can only be a power of 2, and on the order in
which the buckets can be split.

4-1

Chapter 4
System-Managed Sharding

The implementation of consistent hashing used in Oracle Sharding avoids these
limitations by dividing the possible range of values of the hash function (for example.
from 0 to 232) into a set of N adjacent intervals, and assigning each interval to a
chunk , as shown in the figure below. In this example, the SDB contains 1024 chunks,
and each chunk gets assigned a range of 222 hash values. Therefore partitioning by
consistent hash is essentially partitioning by the range of hash values.

Figure 4-1 Ranges of Hash Values Assigned to Chunks

4194304 8388608 4290772992 42949667296

Chunk #1

ORACLE

Chunk #2 Chunk #1024

Assuming that all of the shards have the same computing power, an equal number of
chunks is assigned to each shard in the SDB. For example, if 1024 chunks are created
in an SDB that contains 16 shards, each shard will contain 64 chunks.

In the event of resharding, when shards are added to or removed from an SDB, some
of the chunks are relocated among the shards to maintain an even distribution of
chunks across the shards. The contents of the chunks does not change during this
process; no rehashing takes place.

When a chunk is split, its range of hash values is divided into two ranges, but nothing
needs to be done for the rest of the chunks. Any chunk can be independently split at
any time.

All of the components of an SDB that are involved in directing connection requests to
shards maintain a routing table that contains a list of chunks hosted by each shard and
ranges of hash values associated with each chunk. To determine where to route a
particular database request, the routing algorithm applies the hash function to the
provided value of the sharding key, and maps the calculated hash value to the
appropriate chunk, and then to a shard that contains the chunk.

The number of chunks in an SDB with system-managed sharding can be specified in
the CREATE SHARDCATALOG command. If not specified, the default value, 120 chunks per
shard, is used. Once an SDB is deployed, the number of chunks can only be changed
by splitting chunks.

Before creating a sharded table partitioned by consistent hash, a set of tablespaces
(one tablespace per chunk) has to be created to store the table partitions. The
tablespaces are automatically created by executing the SQL statement, CREATE
TABLESPACE SET.

All of the tablespaces in a tablespace set have the same physical attributes and can
only contain Oracle Managed Files (OMF). In its simplest form, the CREATE TABLESPACE
SET statement has only one parameter, the name of the tablespace set, for example:

CREATE TABLESPACE SET ts1,

In this case each tablespace in the set contains a single OMF file with default
attributes. To customize tablespace attributes, the USI NG TEMPLATE clause (shown in the
example below) is added to the statement. The USI NG TEMPLATE clause specifies
attributes that apply to each tablespace in the set.

4-2

ORACLE

Chapter 4
System-Managed Sharding

CREATE TABLESPACE SET tsl1
USI NG TEMPLATE
(

DATAFI LE SI ZE 10M

EXTENT MANAGEMENT LOCAL UNI FORM SI ZE 256K
SEGVENT SPACE MANAGEMENT AUTO

ONLI NE

)

After a tablespace set has been created, a table partitioned by consistent hash can be
created with partitions stored in the tablespaces that belong to the set. The CREATE
TABLE statement might look as follows:

CREATE SHARDED TABLE cust oners
(cust_id NUVMBER NOT NULL
, hanme VARCHAR2(50)
, address VARCHAR2(250)

(
, location_id VARCHAR2(20)
, class VARCHAR2(3)
, Signup DATE

, CONSTRAINT cust _pk PRI MARY KEY(cust _id)

PARTI TI ON BY CONSI STENT HASH (cust _i d)
PARTI TI ONS AUTO
TABLESPACE SET tsl

PARTI TI ONS AUTOIn this statement means that the number of partitions is automatically
set to the number of tablespaces in the tablespace set t s1 (which is equal to the
number of chunks) and each partition will be stored in a separate tablespace.

Each tablespace in a tablespace set belongs to a distinct chunk. In the other words, a
chunk can contain only one tablespace from a given tablespace set. However, the
same tablespace set can be used for multiple tables that belong to the same table
family. In this case, each tablespace in the set will store multiple partitions, one from
each table.

Alternatively, each table in a table family can be stored in a separate tablespace set. In
this case, a chunk contains multiple tablespaces, one from each tablespace set with
each tablespace storing a single partition.

The following figure illustrates the relationship between partitions, tablespaces, and
shards for a use case with a single sharded table. In this case, each chunk contains a
single tablespace, and each tablespace stores a single partition.

4-3

Chapter 4
User-Defined Sharding

Figure 4-2 System-Managed Sharding

Shard 1

P_1
tbs_1-1

P_120
tbs1-120

Tablespace Set tbs1

Shard 2 Shard 3 Shard 4
1
P_121 P_241 P_361 |
ths1_121 ths1-241 ths1-361 |
5 B . 1
1
: . . 1
P_240 P_360 P_480 !
tbs1-240 ths1-360 tbs1-480 |
1

¢ Note:

The sharding method is specified in the GDSCTL CREATE SHARDCATALOG command
and cannot be changed later.

4.2 User-Defined Sharding

ORACLE

User-defined sharding lets you explicitly specify the mapping of data to individual
shards. It is used when, because of performance, regulatory, or other reasons, certain
data needs to be stored on a particular shard, and the administrator needs to have full
control over moving data between shards.

User-defined sharding is not supported where Oracle GoldenGate is used as the
replication method.

Another advantage of user-defined sharding is that, in case of planned or unplanned
outage of a shard, the user knows exactly what data is not available. The
disadvantage of user-defined sharding is the need for the database administrator to
monitor and maintain balanced distribution of data and workload across shards.

With user-defined sharding, a sharded table can be partitioned by range or list. The
CREATE TABLE syntax for a sharded table is not very different from the syntax for a
regular table, except for the requirement that each partition should be stored in a
separate tablespace.

CREATE SHARDED TABLE accounts
(id NUMBER
, account _nunber NUVBER
, custoner_id NUMBER

, branch_id NUMBER
, state VARCHAR(2) NOT NULL
, status VARCHAR2(1)

PARTI TI ON BY LIST (state)
(PARTITION p_northwest VALUES (' OR, 'WA
, PARTITI ON p_sout hwest VALUES (' AZ', 'UT

) TABLESPACE tsl
, , 'NM) TABLESPACE ts2
, PARTITION p_northcentral VALUES ('SD', 'W') TABLESPACE ts3
, PARTITION p_southcentral VALUES (' OK', 'TX') TABLESPACE ts4
, PARTITION p_northeast VALUES ('NY', 'VM, 'NJ') TABLESPACE ts5

4-4

Chapter 4
User-Defined Sharding

, PARTITION p_sout heast VALUES ('FL',
)

"GA') TABLESPACE ts6

There is no tablespace set for user-defined sharding. Each tablespace has to be
created individually and explicitly associated with a shardspace. A shardspace is set of
shards that store data that corresponds to a range or list of key values.

In user-defined sharding, a shardspace consists of a shard or a set of fully replicated
shards. See Shard-Level High Availability for details about replication with user-
defined sharding. For simplicity, assume that each shardspace consists of a single
shard.

The following statements can be used to create the tablespaces for the accounts table
in the example above.

CREATE TABLESPACE tbsl I N SHARDSPACE west ;
CREATE TABLESPACE tbs2 | N SHARDSPACE west ;

CREATE TABLESPACE tbs3 I N SHARDSPACE central;
CREATE TABLESPACE tbs4 I N SHARDSPACE central;

CREATE TABLESPACE tbs5 | N SHARDSPACE east ;
CREATE TABLESPACE tbs6 | N SHARDSPACE east;

Before executing the CREATE TABLESPACE statements, the shardspaces must be created
and populated with shards using the following GDSCTL commands:

ADD SHARDSPACE —SHARDSPACE west, central, east;
ADD SHARD —CONNECT shar d- 1 —SHARDSPACE west ;
ADD SHARD —CONNECT shar d-2 —SHARDSPACE central ;
ADD SHARD —CONNECT shar d- 3 —SHARDSPACE east ;

The following figure shows the mapping of partitions to tablespaces, and tablespaces
to shards, for the account s table in the previous examples.

Figure 4-3 User-Defined Sharding

Shard 1

P_NorthWest
Tablespace tbs1

P_SouthWest
Tablespace tbs2

Shard 2

P_NorthCentral
Tablespace thbs3

P_SouthCentral
Tablespace tbs4

Shard 3

P_NorthEast
Tablespace tbs5

P_SouthEast
Tablespace ths6

[
Shardspace West

[
Shardspace Central

[
Shardspace East

As with system-managed sharding, tablespaces created for user-defined sharding are
assigned to chunks. However, no chunk migration is automatically started when a
shard is added to the SDB. The user needs to execute the MOVE CHUNK command for
each chunk that needs to be migrated.

ORACLE

4-5

Chapter 4
Composite Sharding

The SPLIT CHUNK command, which is used to split a chunk in the middle of the hash
range for system-managed sharding, is not supported for user-defined sharding. You
must use the ALTER TABLE SPLI T PARTI Tl ON statement to split a chunk.

" Note:

The sharding method is specified in the GDSCTL CREATE SHARDCATALOG command
and cannot be changed later.

For a user-defined sharded database, two replication schemes are supported: Oracle
Data Guard or Oracle Active Data Guard.

4.3 Composite Sharding

The composite sharding method allows you to create multiple shardspaces for
different subsets of data in a table partitioned by consistent hash. A shardspace is set
of shards that store data that corresponds to a range or list of key values.

System-managed sharding uses partitioning by consistent hash to randomly distribute
data across shards. This provides better load balancing compared to user-defined
sharding that uses partitioning by range or list. However, system-managed sharding
does not give the user any control on assignment of data to shards.

When sharding by consistent hash on a primary key, there is often a requirement to
differentiate subsets of data within an SDB in order to store them in different
geographic locations, allocate to them different hardware resources, or configure high
availability and disaster recovery differently. Usually this differentiation is done based
on the value of another (non-primary) column, for example, customer location or a
class of service.

Composite sharding is a combination of user-defined and system-managed sharding
which, when required, provides benefits of both methods. With composite sharding,
data is first partitioned by list or range across multiple shardspaces, and then further
partitioned by consistent hash across multiple shards in each shardspace.

The two levels of sharding make it possible to automatically maintain balanced
distribution of data across shards in each shardspace, and, at the same time, partition
data across shardspaces.

For example, suppose you want to allocate three shards hosted on faster servers to
“gold” customers and four shards hosted on slower machines to “silver” customers.
Within each set of shards, customers have to be distributed using partitioning by
consistent hash on customer ID.

ORACLE 4-6

Chapter 4
Composite Sharding

Figure 4-4 Composite Sharding

SHARD1

SHARD2 SHARD3

- Tablespace

tbs1-121 tbs1-241 Set tbs1

tbs1-240 tbs1-360

Shardspace for GOLD customers - shspace1

SHARD4

SHARD5 SHARD6 SHARD7

- Tablespace

tbs2-121 tbs2-241 tbs2-361 Set tbs2

tbs1-240 tbs2-360 tbs2-480

ORACLE

Shardspace for SILVER customers - shspace2

Two shardspaces need to be created for such a configuration, using the following
GDSCTL commands:

ADD SHARDSPACE —SHARDSPACE shspacel;
ADD SHARDSPACE —SHARDSPACE shspace2;

ADD SHARD —CONNECT shardl —SHARDSPACE shspacel,;
ADD SHARD —CONNECT shard2 —SHARDSPACE shspacel,;
ADD SHARD —CONNECT shar d3 —SHARDSPACE shspacel,;

ADD SHARD —CONNECT shar d4 —SHARDSPACE shspace?;
ADD SHARD —CONNECT shar d5 —SHARDSPACE shspace?;
ADD SHARD —CONNECT shar d6 —SHARDSPACE shspace?;
ADD SHARD —CONNECT shard7 —SHARDSPACE shspace?;

With composite sharding, as with the other sharding methods, tablespaces are used to
specify the mapping of partitions to shards. To place subsets of data in a sharded
table into different shardspaces, a separate tablespace set must be created in each
shardspace as shown in the following example.

CREATE TABLESPACE SET thsl I N SHARDSPACE shspacel;
CREATE TABLESPACE SET ths2 I N SHARDSPACE shspace2;

To store user-defined subsets of data in different tablespaces, Oracle Sharding
provides syntax to group partitions into sets and associate each set of partitions with a
tablespace set. Support for partition sets can be considered a logical equivalent of a
higher level of partitioning which is implemented on top of partitioning by consistent
hash.

4-7

4.4 Using

ORACLE

Chapter 4
Using Subpartitions with Sharding

The statement in the following example partitions a sharded table into two partition
sets: gold and silver, based on class of service. Each patrtition set is stored in a
separate tablespace. Then data in each partition set is further partitioned by consistent
hash on customer ID.

CREATE SHARDED TABLE cust omers

(cust_id NUVBER NOT NULL

, name VARCHAR2(50)

, address VARCHAR2(250)

, location_id VARCHAR2(20)

, class VARCHAR?(3)

, Signup_date DATE

, CONSTRAINT cust _pk PRI MARY KEY(cust_id, class)

)
PARTITIONSET BY LIST (cl ass)
PARTI TI ON BY CONSI STENT HASH (cust i d)
PARTI TI ONS AUTO
(PARTITIONSET gold VALUES (“gld”) TABLESPACE SET tbsl,
PARTITIONSET silver VALUES (“slv’) TABLESPACE SET tbs2)

" Note:

In Oracle Database 12c¢ Release 2 only a single partition set from a table can
be stored in a shardspace.

The sharding method is specified in the GDSCTL CREATE SHARDCATALOG command
and cannot be changed later.

Subpartitions with Sharding

Because Oracle Sharding is based on table partitioning, all of the subpartitioning
methods provided by Oracle Database are also supported for sharding.

Subpatrtitioning splits each partition into smaller parts and may be beneficial for
efficient parallel execution within a shard, especially in the case of sharding by range
or list when the number of partitions per shard may be small.

From a manageability perspective, subpartitioning makes it possible to support the
tiered storage approach by putting subpartitions into separate tablespaces and moving
them between storage tiers. Migration of subpartitions between storage tiers can be
done without sacrificing the scalability and availability benefits of sharding and the
ability to perform partition pruning and partition-wise joins on a primary key.

The following example shows system-managed sharding by consistent hash combined
with subpartitioning by range.

CREATE SHARDED TABLE cust omers
(cust_id NUMBER NOT NULL
, hanme VARCHAR2(50)

, address VARCHAR2(250)
, location_id VARCHAR2(20)
, class VARCHAR2(3)
, Signup_date DATE

, CONSTRAINT cust _pk PRI MARY KEY(cust_id, signup_date)

)
TABLESPACE SET tsl

4-8

Chapter 4
Using Subpartitions with Sharding

PARTI TI ON BY CONSI STENT HASH (cust i d)

SUBPARTITION BY RANGE (signup_date)

SUBPARTITION TEMPLATE

(SUBPARTITION perl VALUES LESS THAN (TO_DATE(*01/01/2000",DD/MM/YYYY™)),
SUBPARTITION per2 VALUES LESS THAN (TO_DATE(*01/01/2010",DD/MM/YYYY™)),
SUBPARTITION per3 VALUES LESS THAN (TO_DATE(*01/01/2020",*DD/MM/YYYY™)),
SUBPARTITION future VALUES LESS THAN (MAXVALUE))

)
PARTI TI ONS AUTO

The following figure offers a graphical view of the table created by this statement.

Figure 4-5 Subpartitions Stored in the Tablespace of the Parent Partition

Shard 1 Shard 2 Shard 3

! Partition 1 Partition 3 Partition 5 +— Tablespace
I (1]2]3]4] (1]2]3]4] (1]2]3]4] I Settbst

: Sub-Partitions Sub-Partitions Sub-Partitions :

1 ths1-1 ths1-3 tbs1-5 1

1 1

1 Partition 2 Partition 4 Partition 6 1

! (1]2]3]4] (1]2]3]4] HHEBA !

: Sub-Partitions Sub-Partitions Sub-Partitions :

1 tbs1-2 tbs1-4 tbs1-6 1

ORACLE

In this example each subpartition is stored in the parent partition’s tablespace.
Because subpartitioning is done by date, it makes more sense to store subpartitions in
separate tablespaces to provide the ability to archive older data or move it to a read-
only storage. The appropriate syntax is shown here.

CREATE SHARDED TABLE cust omers
(cust_id NUVBER NOT NULL
, name VARCHAR2(50)
, address VARCHAR2(250)
, location_id VARCHAR2(20)
, class VARCHAR?(3)
, Signup_date DATE NOT NULL
, CONSTRAINT cust _pk PRI MARY KEY(cust_id, signup_date)
)
PARTI TI ON BY CONSI STENT HASH (cust _i d)
SUBPARTITION BY RANGE(signup_date)
SUBPARTITION TEMPLATE
(SUBPARTITION perl VALUES LESS THAN (TO_DATE("01/01/2000",DD/MM/YYYY"))
TABLESPACE SET tsi,
SUBPARTITION per2 VALUES LESS THAN (TO_DATE("01/01/2010","DD/MM/YYYY™))
TABLESPACE SET ts2,
SUBPARTITION per3 VALUES LESS THAN (TO_DATE("01/01/2020","DD/MM/YYYY™))
TABLESPACE SET ts3,
SUBPARTITION future VALUES LESS THAN (MAXVALUE))
TABLESPACE SET ts4

)
PARTI TI ONS AUTO

Note that in the case of a database that is not sharded, when tablespaces are
specified in the subpartition template it means that subpartition N from every partition

4-9

ORACLE

Chapter 4
Using Subpartitions with Sharding

is stored in the same tablespace. This is different in case of sharding when
subpartitions that belong to the different partitions must be stored in separate
tablespaces so that they can be moved in the event of resharding.

Subpatrtitioning can be used with composite sharding, too. In this case data in a table
is organized in three levels: partition sets, partitions, and subpartitions. Examples of
the three levels of data organization are shown below.

Specifying subpartition templates per partitionset is not supported to ensure that there
is uniformity in the number and bounds of subpartitions across partitionsets. If you
need to specify tablespaces for subpartitions per partitionset, you can use the
SUBPARTI TI ONS STORE | N clause.

CREATE SHARDED TABLE custoners
(cust_id NUVMBER NOT NULL
, hanme VARCHAR2(50)

, address VARCHAR2(250)
, location_id VARCHAR2(20)
, class VARCHAR2('3) NOT NULL

, Signup_date DATE NOT NULL
, CONSTRAINT cust_pk PRI MARY KEY(cust_id, class, signup_date)

PARTITIONSET BY LIST (class)

PARTI TI ON BY CONSI STENT HASH (cust _i d)

SUBPARTI TI ON BY RANGE (si gnup_dat e)
SUBPARTI TI ON TEMPLATE /* applies to both SHARDSPACEs */
(SUBPARTI TI ON per1 VALUES LESS THAN (TO _DATE(' 01/01/2000'," DO MM YYYY'))
, SUBPARTI TI ON per2 VALUES LESS THAN (TO DATE(' 01/01/2010", "' DD MM YYYY'))
, SUBPARTI TI ON per3 VALUES LESS THAN (TO DATE(' 01/01/2020", "' DD MM YYYY'))
, SUBPARTI TI ON future VALUES LESS THAN (MAXVALUE)

)
PARTI TI ONS AUTO

PARTITIONSET gold VALUES (“gld”) TABLESPACE SET thsl
subpartitions store in(thsl)
, PARTITIONSET silver VALUES (“slv”) TABLESPACE SET ths2
subpartitions store in(ths2)

)

In this example, subpartitions are stored in the tablespace of the parent partition, and
the subpartition template is the same for each PARTI TI ONSET. To store subpartitions in
separate tablespaces the following syntax can be used.

CREATE SHARDED TABLE cust omers
(cust_id NUMBER NOT NULL
, hane VARCHAR2(50)

, address VARCHAR2(250)
, location_id VARCHAR2(20)
, class VARCHAR2('3) NOT NULL

, Signup_date DATE NOT NULL
, CONSTRAINT cust _pk PRI MARY KEY(class, cust_id, signup_date)

PARTITIONSET BY LIST (class)
PARTI TI ON BY CONSI STENT HASH (cust i d)
SUBPARTI TI ON BY RANGE (si gnup_date)
PARTI TI ONS AUTO
(
PARTITIONSET gold VALUES (“gld”)
SUBPARTI TI ON TEMPLATE
(SUBPARTI TI ON per1 VALUES LESS THAN (TO DATE(' 01/01/2000' ' DD/ MM YYYY'))

4-10

Chapter 4
Using Subpartitions with Sharding

TABLESPACE SET tbsl

, SUBPARTI TI ON per2 VALUES LESS THAN (TO DATE(' 01/01/2010',"' DD/ MM YYYY'))
TABLESPACE SET tbs2

, SUBPARTI TI ON per3 VALUES LESS THAN (TO DATE(' 01/01/2020',' DD/ MM YYYY'))
TABLESPACE SET tbs3

, SUBPARTI TION future VALUES LESS THAN (MAXVALUE))
TABLESPACE SET tbs4

)
, PARTITIONSET silver VALUES (“slv’) TABLESPACE SET tsl

SUBPARTI Tl ON TEMPLATE

(' SUBPARTI TI ON per1 VALUES LESS THAN (TO DATE(' 01/01/2000' " DD/ MM YYYY'))
TABLESPACE SET tbs5

. SUBPARTI TI ON per2 VALUES LESS THAN (TO DATE(' 01/01/2010', ' DD/ MM YYYY'))
TABLESPACE SET t bs6

. SUBPARTI TI ON per3 VALUES LESS THAN (TO DATE(' 01/01/2020' ' DD/ MM YYYY'))
TABLESPACE SET tbs7

, SUBPARTI TI ON future VALUES LESS THAN (MAXVALUE))
TABLESPACE SET tbs8

ORACLE 4-11

Design Considerations for Sharded
Database Applications

To obtain the benefits of sharding, a schema of an SDB should be designed in a way
that maximizes the number of database requests executed on a single shard.

The following topics describe the terminology and concepts you will need to manage a
sharded database schema:

* Considerations for Sharded Database Schema Design
Design of the database schema has a big impact on the performance and
scalability of a sharded database (SDB). An improperly designed schema can lead
to unbalanced distribution of data and workload across shards and large
percentage of multi-shard operations.

» Developing Applications for Oracle Sharding
Sharding provides linear scalability and complete fault isolation for the most
demanding OLTP applications without compromising on the enterprise qualities of
Oracle Database: strict consistency, the full power of SQL, developer agility with
JSON, security, high availability, backup and recovery, life-cycle management,
and more.

5.1 Considerations for Sharded Database Schema Design

Design of the database schema has a big impact on the performance and scalability of
a sharded database (SDB). An improperly designed schema can lead to unbalanced
distribution of data and workload across shards and large percentage of multi-shard
operations.

Once the SDB is populated with data, it is impossible to change many attributes of the
schema, such as whether a table is sharded or duplicated, sharding key, and so on.
Therefore, the following points should be carefully considered before deploying an
SDB:

* Which tables should be sharded?

* Which tables should be duplicated?

* Which sharded table should be the root table?

* What method should be used to link other tables to the root table?
e Which sharding method should be used?

* Which sharding key should be used?

* Which super sharding key should be used (if the sharding method is composite)?

5.2 Developing Applications for Oracle Sharding

Sharding provides linear scalability and complete fault isolation for the most
demanding OLTP applications without compromising on the enterprise qualities of

ORACLE 5-1

ORACLE

Chapter 5
Developing Applications for Oracle Sharding

Oracle Database: strict consistency, the full power of SQL, developer agility with
JSON, security, high availability, backup and recovery, life-cycle management, and
more.

Sharding is a data tier architecture in which data is horizontally partitioned across
independent databases. Each database in such a configuration is called a shard. All of
the shards together make up a single logical database, which is referred to as a
sharded database (SDB).

There are three methods of sharding available to developers.

* System-managed sharding does not require the user to specify mapping of data to
shards. Data is automatically distributed across shards using partitioning by
consistent hash. The partitioning algorithm evenly and randomly distributes data
across shards for linear scalability.

» Composite sharding allows the creation of multiple shardspaces for different
subsets of data in a table partitioned by consistent hash. Composite sharding is
unique to Oracle and offers developers the ability to differentiate subsets of data
within an SDB in order to store them in different geographic locations, allocate to
them different hardware resources, etc, and then elastically scale performance
within each subset.

» User-defined sharding lets you explicitly specify the mapping of data to individual
shards. It is used when, because of performance, regulatory, or other reasons,
certain data needs to be stored on a particular shard, and the administrator needs
to have full control over moving data between shards.

Oracle Sharding is based on table partitioning; all of the subpartitioning methods
provided by Oracle Database are also supported for sharding.

Sharding is intended for OLTP applications that are suitable for a sharded database
architecture. Specifically:

e Applications must have a well-defined data model and data distribution strategy,
system-managed (consistent hash) or composite, and must primarily accesses
data using a sharding key. Examples of sharding keys include customer ID,
account number, country_id, and so on.

e The data model should be a hierarchical tree structure with a single root table.
Oracle Sharding supports any number of levels within the hierarchy.

e For the system-managed sharding method, the sharding key must be based on a
column that has high cardinality; the number of unique values in this column must
be much bigger than the number of shards. Customer ID, for example, is a good
candidate for the sharding key, while a United States state name is not.

e The sharding key should be very stable; its value should almost never change.

e The sharding key must be present in all of the sharded tables. This allows the
creation of a family of equi-partitioned tables based on the sharding key. The
sharding key must be the leading column of the primary key of the root table.

« Joins between tables in a table family should be performed using the sharding key.

e Composite sharding enables two levels of sharding - one by list or range and
another by consistent hash. This is accomplished by the application providing two
keys: a super sharding key and a sharding key.

« All database requests that require high performance and fault isolation must only
access data associated with a single value of the sharding key. The application

5-2

ORACLE

Chapter 5
Developing Applications for Oracle Sharding

must provide the sharding key when establishing a database connection. If this is
the case, the request is routed directly to the appropriate shard.

Multiple requests can be executed in the same session as long as they all are
related to the same sharding key. Such transactions typically access 10s or 100s
of rows. Examples of single-shard transactions include order entry, lookup and
update of a customer’s billing record, and lookup and update of a subscriber’s
documents.

Database requests that must access data associated with multiple values of the
sharding key, or for which the value of the sharding key is unknown, must be
executed from the query coordinator which orchestrates parallel execution of the
guery across multiple shards.

Applications use Oracle integrated connection pools (UCP, OCI, ODP.NET, JDBC)
to connect to a sharded database.

Separate connection pools must be used for direct routing and proxy routing. For
direct routing, separate global services must be created for read-write and read-
only workloads. This is true only if Data Guard replication is used. For proxy
routing, use the GDS$CATALOG service on the shard catalog database.

2 See Also:

e Direct Routing to a Shard
* Queries and DMLs with Proxy Routing in an SDB

5-3

Routing in an SDB Environment

Oracle Sharding supports direct, key-based, routing to a shard, routing by proxy, and
routing to mid-tiers.

The following topics describe routing in an SDB environment.

* Direct Routing to a Shard
Oracle clients and connections pools are able to recognize sharding keys specified
in the connection string for high performance data dependent routing. A shard
routing cache in the connection layer is used to route database requests directly to
the shard where the data resides.

e Queries and DMLs with Proxy Routing in an SDB
Sharding supports routing for queries that do not specify a sharding key. This
allows the flexibility for any database application to execute SQL statements
(including SELECT and DM.) in a system where tables are sharded or duplicated
without the need to specify the shards where the query should be executed.

6.1 Direct Routing to a Shard

Oracle clients and connections pools are able to recognize sharding keys specified in
the connection string for high performance data dependent routing. A shard routing
cache in the connection layer is used to route database requests directly to the shard
where the data resides.

The following topics describe direct, key-based, routing to a shard:

* About Direct Routing to a Shard
In direct, key-based, routing to a shard, a connection is established to a single,
relevant shard which contains the data pertinent to the required transaction using
a sharding key.

e Sharding APIs
Oracle connection pools and drivers support Oracle Sharding.

6.1.1 About Direct Routing to a Shard

ORACLE

In direct, key-based, routing to a shard, a connection is established to a single,
relevant shard which contains the data pertinent to the required transaction using a
sharding key.

A sharding key is used to route database connection requests at a user session level
during connection checkout. The composite sharding method requires both a sharding
key and a super sharding key. Direct, key-based, routing requires the sharding key (or
super sharding key) be passed as part of the connection. Based on this information, a
connection is established to the relevant shard which contains the data pertinent to the
given sharding key or super sharding key.

Once the session is established with a shard, all SQL queries and DMLs are
supported and executed in the scope of the given shard. This routing is fast and is

6-1

Chapter 6
Direct Routing to a Shard

used for all OLTP workloads that perform intra-shard transactions. It is recommended
that direct routing be employed for all OLTP workloads that require the highest
performance and availability.

In support of Oracle Sharding, key enhancements have been made to Oracle
connection pools and drivers. Starting in Oracle Database 12¢ Release 2, JDBC,
Universal Connection Pool (UCP), OCI Session Pool (OCI), and Oracle Data Provider
for .NET (ODP.NET) provide new APIs to pass sharding keys during the connection
creation. Apache Tomcat, IBM Websphere, Oracle WebLogic Server, and JBOSS can
leverage JDBC/UCP support and use sharding. PHP, Python, Perl, and Node.js can
leverage OCI support.

A shard topology cache is a mapping of the sharding key ranges to the shards. Oracle
Integrated Connection Pools maintain this shard topology cache in their memory.
Upon the first connection to a given shard (during pool initialization or when the pool
connects to newer shards), the sharding key range mapping is collected from the
shards to dynamically build the shard topology cache.

Caching the shard topology creates a fast path to the shards and expedites the
process of creating a connection to a shard. When a connection request is made with
a sharding key, the connection pool looks up the corresponding shard on which this
particular sharding key exists (from its topology cache). If a matching connection is
available in the pool then the pool returns a connection to the shard by applying its
internal connection selection algorithm.

A database connection request for a given sharding key that is in any of the cached
topology map, goes directly to the shard (that is, bypassing the shard director).
Connection Pool also subscribes to RLB notifications from the SDB and dispenses the
best connection based on runtime load balancing advisory. Once the connection is
established, the client executes transactions directly on the shard. After all
transactions for the given sharding key have been executed, the application must
return the connection to the pool and obtain a connection for another key.

If a matching connection is not available in the pool, then a new connection is created
by forwarding the connection request with the sharding key to the shard director.

Once the pools are initialized and the shard topology cache is built based on all
shards, a shard director outage has no impact on direct routing.

" See Also:

Direct Routing to a Shard

6.1.2 Sharding APIs

ORACLE

Oracle connection pools and drivers support Oracle Sharding.

JDBC, UCP, OCI, and Oracle Data Provider for .NET (ODP.NET) recognize sharding
keys as part of the connection check. Apache Tomcat, Websphere, and WebLogic
leverage UCP support for sharding and PHP, Python, Perl, and Node.js leverage OCI
support.

6-2

Chapter 6
Direct Routing to a Shard

Sharding APIs for Oracle UCP

A shard-aware application gets a connection to a given shard by specifying the
sharding key using the enhanced sharding API calls cr eat eShar di ngkeyBui | der and
creat eConnect i onBui | der.

At a high-level, the following steps have to be followed in making an application work
with a Sharded Database:

1. Update the URL to reflect the Shard Directors and Global Service.
2. Set the pool parameters at the pool level and the shard level:

e Initial number of connections to be created when UCP is started using
setlnitial Pool Size

* Minimum number of connections maintained by pool at runtime using
set M nPool Si ze

* UCP property to set maximum number of connections allowed on connection
pool using set MaxPool Si ze

e Set max connections per shard with set MaxConnect i onsPer Shar d
3. Build a sharding key object with cr eat eShar di ngkeyBui | der .
4. Establish a connection using creat eConnect i onBui | der .
5. [Execute transactions within the scope of the given shard.

Example 6-1 Establishing a Connection Using UCP Sharding API

The following is a code fragment which illustrates how the sharding keys are built and
connections established using UCP Sharding API calls.

Pool Dat aSour ce pds =
Pool Dat aSour ceFact ory. get Pool Dat aSour ce() ;

I/ Set Connection Pool properties
pds. set URL(DB_URL) ;
pds. set User ("hr");
pds. set Passwor d("****");
pds. set I nitial Pool Si ze(10);
pds. set M nPool Si ze(20);
pds. set MaxPool Si ze(30);

/1 build the sharding key object

O acl eShar di ngKey shardi ngkey =
pds. cr eat eShar di ngKeyBui | der ()
. subkey("mary. sni th@xanpl e. cont', O acl eType. VARCHAR2)
cbuild();

/1 Get an UCP connection for a shard
Connection conn =
pds. cr eat eConnect i onBui | der ()
. shar di ngKey(shar di ngKey)
cbuild();

ORACLE 6-3

Chapter 6
Direct Routing to a Shard

Example 6-2 Sample Shard-Aware Application Code Using UCP Connection
Pool

In this example the pool settings are defined at the pool level and at the shard level.

import java.sql.Connection
inport java.sql.ResultSet;
import java.sql.SQ.Exception
inport java.sql.Statement;

i mport oracle.jdbc. O acl eShar di ngKey;

import oracle.jdbc. Oracl eType

i mport oracle.jdbc. pool . Oracl eDat aSour ce

i mport oracle. ucp.j dbc. Pool Dat aSour ce

i mport oracle. ucp.jdbc. Pool Dat aSour ceFact ory;

public class MaxConnPer Shard

{
public static void main(String[] args) throws SQLException

{
String url = "jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(HOST=shar d- di r 1)
(PORT=3216)
(PROTOCOL=tcp)) (CONNECT_DATA=(SERVICE_NAME=shsvc.shpool .oradbcloud) (REGION=east)))";
String user="testuserl", pwd = "testuserl";

int maxPerShard = 100, initPoolSize = 20;

Pool Dat aSour ce pds = Pool Dat aSour ceFact ory. get Pool Dat aSour ce() ;
pds. set Connect i onFact or yC assName(Or acl eDat aSour ce. cl ass. get Nane())
pds. set URL(url);

pds. set User (user);

pds. set Passwor d(pwd) ;

pds. set Connect i onPool Name("t est pool ") ;
pds.setInitialPoolSize(initPoolSize);

// set max connection per shard

pds.setMaxConnectionsPerShard(maxPerShard);

System out. print!|n("Mx-connections per shard is
"+pds. get MaxConnect i onsPer Shard())

// build the sharding key object

int shardingKeyval = 123;

OracleShardingKey sdkey = pds.createShardingKeyBuilder()
.subkey(shardingKeyVal, OracleType.NUMBER)
-buildQ);

/1 try to build maxPerShard connections with the sharding key
Connection[] conns = new Connecti on[maxPer Shard] ;
for (int i=0; i<maxPerShard; i++)
{
conns[i] = pds.createConnectionBuilder()
.shardingKey(sdkey)
.buildQ;

Statement stnt = conns[i].createStatenent();
Result Set rs = stnt.executeQuery("select sys_context('userenv'
"instance_nane')
sys_context (' userenv', 'chunk_id') fromdual")
while (rs.next()) {
Systemout. printIn((i+l)+" - inst:"+rs.getString(1)+"
chunk: "+rs. getString(2))

ORACLE 6-4

ORACLE

Chapter 6
Direct Routing to a Shard

rs.close();
stnt.close();

}

Systemout.printIn("Try to build "+(maxPer Shard+1)+" connection ...");
try {
Connection conn = pds. createConnecti onBui | der ()
. shar di ngKey(sdkey)
cbuild();

Statenment stmt = conn.createStatenment();
Result Set rs = stnt.executeQuery("select sys_context('userenv',

"instance_nane'),

per

}
}

sys_context('userenv', 'chunk_id') fromdual");
while (rs.next()) {
System out. print|n((maxPer Shard+1)+" - inst:"+rs.getString(1)+",
chunk: "+rs.getString(2));

rs.close();
stnt.close();

Systemout. printin("Problenm!! could not build connection as nax-connections

shard exceeded");
conn. cl ose();
} catch (SQLException e) {
Systemout. println("Mx-connections per shard net, could not build connection
any nore, expected exception: "+e.getMssage());

}

for (int i=0; i<conns.length; i++)

conns[i].close();

}

ODP.NET Sharding APIs

A shard-aware application gets a connection to a given shard by specifying the
sharding key and super sharding key using ODP.NET APIs, such as the

Set Shar di ngKey(Or acl eShar di ngKey shar di ngkey, Oracl eShardi ngKey super Shar di ngKey)
instance method on the O acl eConnecti on class.

At a high level, the following steps are necessary for a .NET application to work with a
Sharded Database:

1.

Use ODP.NET, Unmanaged Driver.

Sharding is supported with or without ODP.NET connection pooling. Each pool
can maintain connections to different shards of the sharded database.

Use an Or acl eShar di ngkey class to set the sharding key and another instance for
the super sharding key.

Invoke the O acl eConnect i on. Set Shar di ngkey() method prior to calling
Oracl eConnect i on. Open() so that ODP.NET can return a connection with the
specified sharding key and super sharding key.

These keys must be set while the Oracl eConnection is in a Closed state, otherwise
an exception is thrown.

6-5

Chapter 6
Queries and DMLs with Proxy Routing in an SDB

Example 6-3 Sample Shard-Aware Application Code Using ODP.NET

usi ng System
usi ng Oracl e. Dat aAccess. d i ent;

class Sharding

{
static void Main()

{

Oracl eConnection con = new Oracl eConnection
("user id=hr;password=hr;Data Source=orcl;");
//Setting a shard key
O acl eShardi ngkey shar di ngkey = new O acl eShar di ngKey(Oracl eDbType. I nt 32, 123);
//Setting a second shard key value for a conposite key
shar di ngKey. Set Shar di ngKey(O acl eDbType. Varchar2, "gold");
//Creating and setting the super shard key
O acl eShardi ngKey super Shardi ngkey = new Or acl eShar di ngKey();
super Shar di ngKey. Set Shar di ngKey(Or acl eDbType. I nt 32, 1000);

//Setting super sharding key and sharding key on the connection
con. Set Shar di ngKey(shar di ngKey, super Shar di ngKey) ;

con. Open();
/I perform SQL query

¢ See Also:

Oracle Database JDBC Developer’s Guide for information about JDBC support
for Oracle Sharding

Oracle Universal Connection Pool Developer’s Guide for information about
UCP support for Oracle Sharding

Oracle Data Provider for .NET Developer's Guide for Microsoft Windows for
information about ODP.NET support for Oracle Sharding

Oracle Call Interface Programmer's Guide for information about the OCI
interface for using shards

6.2 Queries and DMLs with Proxy Routing in an SDB

Sharding supports routing for queries that do not specify a sharding key. This allows
the flexibility for any database application to execute SQL statements (including
SELECT and DM.) in a system where tables are sharded or duplicated without the
need to specify the shards where the query should be executed.

The following topics describe proxy routing in detail:

e About Proxy Routing in a Sharded Database
Proxy routing is an ancillary usage pattern targeted for developer convenience. It
requires a connection be established to the coordinator.

ORACLE 6-6

Chapter 6
Queries and DMLs with Proxy Routing in an SDB

* Oracle Sharding Coordinator
The Oracle Sharding coordinator database contains the metadata of the sharded
topology and provides query processing support for sharded databases.

* Querying and DMLs Using Proxy Routing
Proxy routing enables aggregation of data and reporting across shards. It also
allows the flexibility for any database application to execute SQL statements
(including SELECT and DML) in a system where tables are sharded or duplicated
without the need to specify the sharding key (during connect) where the query
should execute.

* Proxy Routing for Single-Shard Queries
A single-shard query is a query which needs to scan data from only one shard and
does not need to lookup data from any other shards.

* Proxy Routing for Multi-Shard Queries
A multi-shard query must scan data from more than one shard, and the processing
on each shard is independent of any other shard.

e Supported Query Shapes in Proxy Routing
Oracle Sharding supports single and multi-shard query shapes with some
restrictions.

» Execution Plans for Proxy Routing
In a multi-shard query, each shard produces an independent execution plan that is
potentially different from the plans on the other shards in the query.

6.2.1 About Proxy Routing in a Sharded Database

ORACLE

Proxy routing is an ancillary usage pattern targeted for developer convenience. It
requires a connection be established to the coordinator.

The shard catalog database assumes the role of the coordinator database. The
coordinator uses the metadata of the sharded topology and provides query processing
support for sharded databases. The SQL compiler identifies the relevant shards
automatically and coordinates the query execution across all of the participating
shards. Once the session is made with the coordinator, SQL queries and DMLs are
executed and require no modification.

Proxy routing is suitable for the following scenarios:

* When the application cannot pass the sharding key during connect

* When the application needs to access data from sharded tables residing on
multiple shards

* SQL queries typically used in reporting such as aggregates on sales data

Routing using the coordinator allows your application to submit SQL statements
without a sharding key value passed during connect. The coordinator's SQL compiler
analyzes and rewrites the query into query fragments that are sent and executed by
the participating shards. The queries are rewritten so that most of the query
processing is done on the participating shards and then aggregated by the
coordinator. In essence, the shards act as compute nodes for the queries executed by
coordinator. Because the computation is pushed to the data, there is reduced
movement of data between shards and the coordinator. This arrangement also
enables the effective use of resources by offloading processing from the coordinator
on to the shards as much as possible.

6-7

Chapter 6
Queries and DMLs with Proxy Routing in an SDB

It is recommended that applications separate their workloads for direct routing and
proxy routing. Separate connection pools must be created for these workloads.

6.2.2 Oracle Sharding Coordinator

The Oracle Sharding coordinator database contains the metadata of the sharded
topology and provides query processing support for sharded databases.

Connecting to the Coordinator

To perform multi-shard queries, connect to the coordinator using the GDS$CATALOG
service on the shard catalog database:

sql pl us app_schema/ app_schema@har dcat vm 1521/ GDS\ $CATALOG or adbcl oud

Coordinator High Availability

The unavailability of the coordinator impacts proxy-routing based workloads, so it is
highly recommended that the coordinator be protected with Data Guard in Maximum
Availability protection mode (zero data loss failover) with fast-start failover enabled.
The coordinator may optionally be Oracle RAC-enabled for additional availability and
scalability.

Unavailability of the coordinator has zero impact on workloads utilizing direct routing.

Coordinator Database Sizing
The shard catalog and coordinator host the following key information:

* Metadata of the sharded database topology
» Schema of the sharded application
» Master copies of the duplicated tables

The size of the metadata and the schema is nominal; however, the number of
duplicated tables and the space they occupy should be planned for when sizing the
coordinator.

In addition to the above, the coordinator should also be sized to handle proxy routing,
which can be CPU, 1/0O, and memory intensive based on the SQL queries and the
amount of data being processed.

» Resiliency of Proxy Routing
It is highly recommended that the coordinator be protected with Data Guard with
fast-start failover and optionally be Oracle RAC-enabled for availability and
scalability

6.2.2.1 Resiliency of Proxy Routing

ORACLE

It is highly recommended that the coordinator be protected with Data Guard with fast-
start failover and optionally be Oracle RAC-enabled for availability and scalability

Failure of the coordinator affects multi- and single-shard queries that are routed
through the coordinator. The following are failure scenarios while querying and the
expected behavior of proxy routing:

e If a participating shard is down, then the coordinator sends the query to another
shard with same data.

6-8

Chapter 6
Queries and DMLs with Proxy Routing in an SDB

» If failure happens during execution of the query on a participating shard, then the
user will receive an error.

6.2.3 Querying and DMLs Using Proxy Routing

ORACLE

Proxy routing enables aggregation of data and reporting across shards. It also allows
the flexibility for any database application to execute SQL statements (including
SELECT and DML) in a system where tables are sharded or duplicated without the
need to specify the sharding key (during connect) where the query should execute.

In both aggregation and SQL execution without a sharding key use-cases, the user
accepts a reduced level of performance compared to direct, key-based, routing.

In a sharded database (SDB), there are two types of tables: sharded tables and
duplicated tables.

Sharded tables are equi-partitioned on a sharding key.

S=S1 U S2 U ..U Sn

Duplicated tables are identical on all shards.

R=RlL=..=Rn

Proxy routing in an SDB provides a transparent mechanism to execute typical SQL
gueries that access data from sharded and duplicated tables without requiring the
application to specify the relevant shards The SQL compiler identifies the relevant
shards automatically and coordinates the query execution across all the participating
shards. Database links are used for the communication between the coordinator and
the shards.

At a high level the coordinator rewrites each incoming query, Q, into a distributive form
composed of two queries, CQ and SQ, where SQ (Shard Query) is the portion of Q
that executes on each participating shard and CQ (Coordinator Query) is the portion
that executes on the coordinator shard.

Q => CQ(Shard_lterator(SQ))

The following is an example of an aggregate query Q1 rewritten into Q1’ for an inter
shard execution:

QL : SELECT COUNT(*) FROM custoners
Ql': SELECT SUM sc) FROM (Shard_Iterator(SELECT COUNT(*) sc FROM sl (i)))

There are two key elements in this process: (1) identifying the relevant shards (2)
rewriting the query into a distributive form, and shard iteration.

During the compilation of a query on the coordinator database, the query compiler
analyzes the predicates on the sharding key and extracts the ones that can be used to
identify the participating shards, i.e. shards that will contribute rows for the sharded
tables referenced in the query. The rest of the shards are referred to as pruned
shards.

In the case where only one participating shard was identified, the full query is routed to
that shard for full execution. This is termed as a Single Shard Query. If there is more
than one participating shard the query is known as multi-shard query and is rewritten.
The rewriting process takes into account the expressions computed by the query as
well as the query shape.

6-9

Chapter 6
Queries and DMLs with Proxy Routing in an SDB

6.2.4 Proxy Routing for Single-Shard Queries

A single-shard query is a query which needs to scan data from only one shard and
does not need to lookup data from any other shards.

The single-shard query is similar to a client connecting to a specific shard and issuing
a query on that shard. In this scenario, the entire query will be executed on the single
participating shard, and the coordinator just passes processed rows back to the client.
The plan on the coordinator is similar to the remote mapped cursor.

For example, the following query is fully mapped to a single shard because the data
for customer 123 is located only on that shard.

SELECT count (*) FROM custoners c¢, orders o WHERE c.custno = o.custno and c.custno =
123;

The query contains a condition on the shard key that maps to one and only one shard
which is known at query compilation time (literals) or query start time (bind). The query
is fully executed on the qualifying shard. single-shard queries can be SELECT,
UPDATE, DELETE and INSERT. MERGE/UPSERT are not supported.

Single-shard queries are supported for:

e Equality and In-list, such as Area = ‘ Wst’

» Conditions containing literal, bind, or expression of literals and binds, such as
Area = :bind
Area = CASE :bind <10 THEN ‘West' ELSE ‘East’ END

e SELECT, UPDATE, DELETE and | NSERT

6.2.5 Proxy Routing for Multi-Shard Queries

ORACLE

A multi-shard query must scan data from more than one shard, and the processing on
each shard is independent of any other shard.

A multi-shard query maps to more than one shard and the coordinator may need to do
some processing before sending the result to the client. For example, the following
query fetches the number of orders placed by each customer.

SELECT count (*), c.custno FROM customers ¢, orders o WHERE c.custno = o0.custno
GROUP BY c. custno;

The query is transformed to the following by the coordinator.

SELECT sum(count _col), custno FROM (SELECT count (*) count_col, c.custno
FROM custoners ¢, orders o
VHERE c. custno = o0.custno GROUP BY c. custno) GROUP BY custno;

The inline query block is mapped to every shard just as a remote mapped query block.
The coordinator performs further aggregation and GROUP BY on top of the result set from
all shards. The unit of execution on every shard is the inline query block.

Multi-shard queries are supported for SELECT statements only. A query can either
access a single shard (in case of equality filter), or ALL shards (in case of no filter
predicate on sharding key).

6-10

Chapter 6
Queries and DMLs with Proxy Routing in an SDB

* Specifying Consistency Levels in a Multi-Shard Query
You can use the initialization parameter
MULTISHARD_QUERY_DATA_CONSISTENCY to set different consistency levels
when executing multi-shard queries across shards.

6.2.5.1 Specifying Consistency Levels in a Multi-Shard Query

You can use the initialization parameter
MULTISHARD_QUERY_DATA_CONSISTENCY to set different consistency levels
when executing multi-shard queries across shards.

You can specify different consistency levels for multi-shard queries. For example, you
might want some queries to avoid the cost of SCN synchronization across shards, and
these shards could be globally distributed. Another use case is when you use
standbys for replication and slightly stale data is acceptable for multi-shard queries, as
the results could be fetched from the primary and its standbys.

The default mode is strong, which performs SCN synchronization across all shards.
Other modes skip SCN synchronization. The delayed_standby_allowed level allows
fetching data from the standbys as well, depending on load balancing and other
factors, and could contain stale data.

This parameter can be set either at the system level or at the session level.

¢ See Also:

Oracle Database Reference for more information about
MULTISHARD_QUERY_DATA CONSISTENCY usage.

6.2.6 Supported Query Shapes in Proxy Routing

ORACLE

Oracle Sharding supports single and multi-shard query shapes with some restrictions.

Query Involves Only Duplicated Tables

For queries that involve only duplicated tables there are no restrictions on the query
shape. The query is executed on the coordinator.

Query Involves Only Sharded Tables

For a single table query, the query can have an equality filter on the sharding key that
qualifies a shard. For join queries, all of the tables should be joined using equality on
the sharding key. The following are some examples of queries involving sharded
tables.

Inner join where equi-join is only on sharding key.

SELECT ...FROM s1 INNER JO N s2 ON sl.sk=s2. sk
VWHERE any_filter(sl) AND any_filter(s2)

Left outer join only on sharding key.

SELECT ...FROM s1 LEFT QUTER JO N s2 ON s1.sk=s2.sk

Right outer join, same as left outer join.

6-11

ORACLE

Chapter 6
Queries and DMLs with Proxy Routing in an SDB

SELECT ...FROM s1 RI GHT QUTER JO N s2 ON sl1.sk=s2.sk

Full outer join only on the sharding key, but only if Native is valid which requires equi-
join.

SELECT ...FROM s1 FULL QUTER JO N s2 ON sl.sk=s2.sk
WHERE any _filter(sl) AND any_filter(s2)

Query Involves Sharded and Duplicated Tables

A query involving both sharded and duplicated tables can be either a single-shard or
multi-shard query, based on the predicates on the sharding key. The only difference is
that the query will contain a non sharded table which is duplicated on each shard.

Joins between a sharded table and a duplicated table can be on any column using any
comparison operator (= < > <= >=) or even arbitrary join expression. The following are
examples of join patterns.

Inner join

SELECT ...FROM s1 INNER JON r1 ON any_join_condition(sl,r1)
VWHERE any filter(sl) AND any filter(rl)

Left/Right outer join
Where sharded table is the first table in LEFT QUTER JO N;

SELECT ... FROM s1 LEFT QUTER JON r1 ON any_join_condition(sl,r1)
VHERE any_filter(sl) AND any filter(rl)

SELECT ...FROM r1 LEFT OUTER JO N s1 ON any_joi n_condition(sl,s2)
AND any_filter(r1l) AND filter_one_shard(sl)

Where sharded table is second table in Rl GHT QUTER JO N:

SELECT ...FROM r1 RIGHT QUTER JON s1 ON any_join_condition(sl,r1)
VWHERE any filter(sl) AND any filter(rl)

SELECT ... FROM s1 RIGHT QUTER JON r1 ON any_join_condition(sl,s2)
AND filter_one_shard(sl) AND any filter(rl)

Full outer join

SELECT ...FROM s1 FULL OUTER JO N rl1 ON sl.sk=s2.sk
VHERE any_filter(sl) AND any filter(s2)

Semi-join (EXI STS)

SELECT ...FROM s1 EXI STS
(SELECT 1 FROM r1 WHERE r 1. anykey=sl. anykey)

SELECT ...FROM r1 EXI STS
(SELECT 1 FROM s1 WHERE r 1. anykey=sl.anykey and filter_one_shard(sl))

Anti-join (NOT EXI STS)

SELECT ...FROM s1 NOT EXI STS
(SELECT 1 FROM r1 WHERE r 1. anykey=s1. anykey)

Left/Right outer join

6-12

ORACLE

Chapter 6
Queries and DMLs with Proxy Routing in an SDB

Where the duplicated table is the first table in LEFT QUTER JO N, or the sharded table is
first and it maps to a single shard based on filter predicate on sharding key:

SELECT ...FROMr1 LEFT QUTER JO N s1 ON any_joi n_condition(sl,s2)
AND any_filter(rl) AND any_filter(sl)

Where the duplicated table is the second table in R GHT QUTER JO N, or the sharded
table is second and it maps to a single shard based on filter predicate on sharding key:

SELECT ...FROM s1 RIGHT QUTER JON r1 ON any_join_condition(sl,s2)
AND any _filter (s1) AND any_filter(rl)

Full Outer Join

Sharded table requiring access to multiple shards:

SELECT ...FROM s1 FULL QUTER JON r1 ON sl1.non_sk=s2.non_sk
WHERE any_filter(sl) AND any_filter(s2)

Semi-join (EXI STS)
Sharded table is in a subquery that requires access of multiple shards:

SELECT ...FROM r1 EXI STS
(SELECT 1 FROM s1 WHERE r 1. anykey=sl. anykey)

Anti-join (NOT EXI STS)
Sharded table is in the sub-query:

SELECT ...FROMr1 NOT EXI STS
(SELECT 1 FROM s1 WHERE r 1. anykey=sl. anykey

Aggregate Functions

The following aggregations are supported by proxy routing:

e COUNT
e SWM
e MN
e MAX
* AVG

Multi-shard Queries and Global CR

A multi-shard query must maintain global read consistency (CR) by issuing the query
at the highest common SCN across all the shards. See Specifying Consistency Levels
in a Multi-Shard Query for information about how to set consistency levels.

Transactions

A DML statement that affects only one shard is supported. For example,

update S1 set col = ...where sk = <constant>;

A DML statement that affects more than one shard is not supported. For example,

update S1 set col = .,

6-13

Chapter 6
Queries and DMLs with Proxy Routing in an SDB

Within a transaction, multiple single shard DMLs can be performed on different shards.
For example,

insert into Sl values (.);

Update S1 set col = ..where sk = constant;
Del ete S1 where sk = constant;
Commi t;

For multi-shard DML, the coordinator uses database link, starts a distributed
transaction and performs two phase commit to guarantee the consistency of the
distributed transaction. In the case of an in-doubt transaction, the database
administrator has to recover it manually.

Passing Hints in Multi-Shard Queries

Any hint specified in the original query on the coordinator is propagated to the shards.

Tracing and Troubleshooting Slow Running Multi-Shard Queries

Set the trace event shard_sql on the coordinator to trace the query rewrite and shard
pruning. One of the common performance issues observed is when the GROUP BY is
not pushed to the shards because of certain limitations of the sharding. Check if all of
the possible operations are pushed to the shards and the coordinator has minimal
work to consolidate the results from shards.

6.2.7 Execution Plans for Proxy Routing

ORACLE

In a multi-shard query, each shard produces an independent execution plan that is
potentially different from the plans on the other shards in the query.

Starting in Oracle Database 18c you no longer need to connect to individual shards to
see the explain plan for SQL fragments. Interfaces provided in

dbrs_xpl an. di spl ay_cursor () display on the coordinator the plans for the SQL
segments executed on the shards, and [V/ X] $SHARD SQL uniquely maps a shard SQL
fragment of a multi-shard query to the target shard database.

SQL segment interfaces for dbms_xplan.display_cursor()

Two interfaces display the plan of a SQL segment executed on shards. The interfaces
take shard IDs as the argument to display the plans from the specified shards . The
ALL_SHARDS format displays the plans from all of the shards.

To print all the plans from shards use the format ALL_SHARDS as shown here.

sel ect * from tabl e(dbnms_xpl an. di spl ay_cursor(sql _i d=>:sqlid,
cursor_child_no=>:chil dno,
format =>' BASI C +ALL_SHARDS'
shard_i ds=>shard_i ds))

To print selective plans from the shards, pass shard IDs in the di spl ay_cursor ()
function. For plans from multiple shards pass an array of numbers containing shard
IDs of interest in the shard_i ds parameter as shown here.

select * fromtabl e(dbns_xpl an. di splay_cursor(sql _i d=>:sqlid,
cursor_child_no=>: chil dno,
format =>' BASI C ,
shard_ids=>ids))

6-14

ORACLE

Chapter 6
Queries and DMLs with Proxy Routing in an SDB

To return a plan from one shard pass the shard ID directly to the shard_i d parameter,
as shown here.

select * fromtabl e(dbns_xpl an. di spl ay_cursor(sql _i d=>:sqlid,
cursor_chil d_no=>: chil dno,
format =>' BASI C ,
shard_id=>1))

[VIX]$SHARD_SQL

[VI X] $SHARD_SQL uniquely maps a shard SQL fragment of a multi-shard query to the
target shard database. This view is relevant only for the shard coordinator database to
store a list of shards accessed for each shard SQL fragment for a given multi-shard
query. Every execution of a multi-shard query can execute a shard SQL fragment on
different set of shards, so every execution updates the shard IDs. This view maintains
the SQL ID of a shard SQL fragment for each REMOTE node and the SHARD IDs on
which the shard SQL fragment was executed.

Name Nul | ? Type
SQL_ID VARCHAR2(13)
CH LD_NUMBER NUVBER
NODE_I D NUVBER
SHARD SQ._ID VARCHAR2(13)
SHARD | D NUVBER
SHARD_CHI LD_NUMBER NUMBER

e SQL_ID - SQL ID of a multi-shard query on coordinator

e CHILD_NUMBER - cursor child number of a multi-shard query on coordinator

e NODE_ID - ID of REMOTE node for a shard SQL fragment of a multi-shard query
e SHARD_SQL_ID — SQL ID of the shard SQL fragment for given remote NODE ID
¢ SHARD_ID - IDs of shards where the shard SQL fragment was executed

e SHARD _CHILD_NUMBER- cursor child number of a shard SQL fragment on a
shard (default 0)

The following is an example of a multi-shard query on the sharded database and the
execution plan.

SQ> sel ect count(*) fromdepartnents a where exists (select distinct departnent_id
fromdepartments b where b. department _i d=60);

| 1d | Operation | Name |
| 0| SELECT STATENENT
| 1| SORT AGGREGATE
| 2] FILTER

| 3| VI EW VW SHARD_377C5901
| 4 SHARD | TERATCR

| 5] REMOTE

| 6] VI EW

| 7 SHARD | TERATCR
| 8] REMOTE

VW SHARD EEC581E4

A query of SQL_ID on the V$SHARD_SQL view.

SQ.> Select * fromv$shard_sql where SQL_ID = ‘ 1n024z033271u’;
SQ_ID NODE_ID SHARD SQL_ID SHARD ID

6-15

ORACLE

1n024z033271u
1n024z033271u
1n024z033271u
1n024z033271u

¢ See Also:

52386yz9suuj t
52386yz9suuj t
52386yz9suuj t
8f50ct j 1a2t bs

Oracle Database Reference

Chapter 6
Queries and DMLs with Proxy Routing in an SDB

Oracle Database PL/SQL Packages and Types Reference

6-16

Shard-Level High Availability

Oracle Sharding is integrated with Oracle Database replication technologies for high
availability and disaster recovery at the shard level.

The following topics describe how to use Oracle’s replication technologies to make
your sharded databases highly available:

e About Sharding and Replication
Oracle Sharding is tightly integrated with the Oracle replication and disaster
recovery technologies Oracle Data Guard and Oracle GoldenGate.

e Using Oracle Data Guard with an SDB
Oracle Data Guard replication maintains one or more synchronized copies
(standbys) of a shard (the primary) for high availability and data protection.
Standbys may be deployed locally or remotely, and when using Oracle Active Data
Guard can also be open for read-only access.

e Using Oracle GoldenGate with a Sharded Database
Oracle GoldenGate is used for fine-grained multi-master replication where all
shards are writable, and each shard can be partially replicated to other shards
within a shardgroup.

7.1 About Sharding and Replication

Oracle Sharding is tightly integrated with the Oracle replication and disaster recovery
technologies Oracle Data Guard and Oracle GoldenGate.

Replication provides high availability, disaster recovery, and additional scalability for
reads. A unit of replication can be a shard, a part of a shard, or a group of shards.

Replication topology in a sharded database (SDB) is declaratively specified using
GDSCTL command syntax. You can choose one of two technologies—Oracle Data
Guard or Oracle GoldenGate—to replicate your data. Oracle Sharding automatically
deploys the specified replication topology and enables data replication. Note that
Oracle GoldenGate is only supported in system-managed sharded database
environments.

The availability of an SDB is not affected by an outage or slowdown of one or more
shards. Replication is used to provide individual shard-level high availability (Oracle
Active Data Guard or Oracle GoldenGate). Replication is automatically configured and
deployed when the SDB is created. Optionally, you can use Oracle RAC for shard-
level high availability, complemented by replication, to maintain shard-level data
availability in the event of a cluster outage. Oracle Sharding automatically fails over
database connections from a shard to its replica in the event of an unplanned outage.

* When To Choose Oracle GoldenGate for Shard High Availability
When should Oracle GoldenGate be employed as your high availablility solution
for Oracle Sharding?

ORACLE 7-1

Chapter 7
Using Oracle Data Guard with an SDB

7.1.1 When To Choose Oracle GoldenGate for Shard High Availability

7.2 Using

ORACLE

When should Oracle GoldenGate be employed as your high availablility solution for
Oracle Sharding?

Oracle GoldenGate should be your preferred high availability solution in the following
cases:

e All shards read-write. With Active Data Guard the DR/backup shards are read-
only.

* More flexibility in deploying shards. Each shard can be on a different operating
system or a different database version.

e More than a single updatable copy of the data. For example, with Oracle
GoldenGate, using the replication factor of 4, you can have 4 read-write copies of
the data that can be updated.

¢ See Also:

Working with Oracle GoldenGate Sharding in the Fusion Middleware Using the
Oracle GoldenGate Microservices Architecture guide for more information
about using Oracle GoldenGate with Oracle Sharding.

Oracle Data Guard with an SDB

Oracle Data Guard replication maintains one or more synchronized copies (standbys)
of a shard (the primary) for high availability and data protection. Standbys may be
deployed locally or remotely, and when using Oracle Active Data Guard can also be
open for read-only access.

Oracle Data Guard can be used as the replication technology for SDBs using the
system-managed or composite method of sharding.

Using Oracle Data Guard with a System-Managed SDB

In system-managed and composite sharding, the logical unit of replication is a group of
shards called a shardgroup. In system-managed sharding, a shardgroup contains all of
the data stored in the SDB. The data is sharded by consistent hash across shards that
make up the shardgroup. Shards that belong to a shardgroup are usually located in
the same data center. An entire shardgroup can be fully replicated to one or more
shardgroups in the same or different data centers.

The following figure illustrates how Data Guard replication is used with system-
managed sharding. In the example in the figure there is a primary shardgroup,
Shardgroup 1, and two standby shardgroups, Shardgroup 2 and Shardgroup 3.
Shardgroup 1 consists of Data Guard primary databases (shards 1-3). Shardgroup 2
consists of local standby databases (shards 4-6) which are located in the same
datacenter and configured for synchronous replication. And Shardgroup 3 consists of
remote standbys (shards 7-9) located in a different datacenter and configured for
asynchronous replication. Oracle Active Data Guard is enabled in this configuration, so
each standby is open read-only.

7-2

Chapter 7
Using Oracle Data Guard with an SDB

Figure 7-1 System-Managed Sharding with Data Guard Replication

: 1 2 3 |

|
I Shardgroup 1 :
: |

|
| |
Datacenter _ _ _ _ _ _ _ _ __ _¥_ _________ Yoo ___ ¢____\

|
| 4 5 6 :
|
:Shardgroupz I
|

|
|

|
|

|
e l ___________ l ___________l___ﬂ

The concept of shardgroup as a logical unit of replication hides from the user the
implementation details of replication. With Data Guard, replication is done at the shard
(database) level. The SDB in the figure above consists of three sets of replicated
shards: {1, 4, 7}, {2, 5, 8} and {3, 6, 9}. Each set of replicated shards is managed as a
Data Guard Broker configuration with fast-start failover (FSFO) enabled.

To deploy replication, specify the properties of the shardgroups (region, role, and so
on) and add shards to them. Oracle Sharding automatically configures Data Guard
and starts an FSFO observer for each set of replicated shards. It also provides load
balancing of the read-only workload, role based global services and replication lag,
and locality based routing.

Run the following GDSCTL commands to deploy the example configuration shown in
the figure above.

CREATE SHARDCATALOG -dat abase host 00: 1521: shardcat -regi on dcl, dc2

ADD GSM -gsm gsnl -listener 1571 -catal og host00: 1521: shardcat -regi on dcl
ADD GSM -gsm gsn? -listener 1571 -catal og host00: 1521: shardcat -regi on dc2

ADD SHARDGROUP - shar dgroup shardgroupl -region dcl -deploy_as primary

ADD SHARDGROUP - shar dgroup shardgroup? -region dcl -depl oy_as active_standby

ADD SHARDGROUP - shar dgroup shardgroup3 -region dc2 -depl oy_as active_standby
CREATE SHARD - shar dgroup shardgroupl -destination host0l -credential oracle_cred
CREATE SHARD - shar dgroup shardgroupl -destination host02 -credential oracle_cred
CREATE SHARD - shar dgroup shardgroupl -destination host03 -credential oracle_cred
CREATE SHARD - shar dgroup shardgroup3 -destination host09 -credential oracle_cred

DEPLOY

ORACLE 7-3

Chapter 7
Using Oracle Data Guard with an SDB

Using Oracle Data Guard with a User-Defined SDB

With user-defined sharding the logical (and physical) unit of replication is a shard.
Shards are not combined into shardgroups. Each shard and its replicas make up a
shardspace which corresponds to a single Data Guard Broker configuration.
Replication can be configured individually for each shardspace. Shardspaces can
have different numbers of standbys which can be located in different data centers. An
example of user-defined sharding with Data Guard replication is shown in the following
figure.

Figure 7-2 User-Defined Sharding with Data Guard Replication

———— = = = = = _—_——— = = = = = _—_——— = = = = =

Datacenter 3

| | |
: Shardspace A | : Shardspace B | : Shardspace C |
| | |
: L o |
I L : | 2 : I 3 :
| : | : | :
| ! | ! | !
I : I : I :
| : | : | :
| ! | ! | !
I : I : I :
Datacenter 1 | : | : | :
| | |
I 4 : | : | 5 '
| : | : | :
| ! | ! | !
I : I : I :
| : | : | :
| ! | ! | !
I : | : I :
| ' I ' | '
| : | : | :
| AR SRR |
I 6 : I 7 ' | '
| : | : I :
Datacenter 2 : | : , : ,
| ' | . | .
| : | : | :
| ! | ! | !
| : | : | :
: L o i
| | | | | Y |
| 8 | | 9 I | 10 I
| I | ! | !
| ' | . | .
| : | : | :
| I | ! | !
| : | . | .
| : | : | :
| I |

Run the following GDSCTL commands to deploy the example user-defined SDB with
Data Guard replication shown in the figure above.

CREATE SHARDCATALQG - shardi ng user —database host 00: 1521: cat -regi on dcl, dc2, dc3
ADD GSM -gsm gsnl -listener 1571 —catal og host00: 1521: cat -region dcl
ADD GSM -gsm gsn® -listener 1571 —catal og host00: 1521: cat -regi on dc2
ADD GSM -gsm gsnB -listener 1571 —catal og host00: 1521: cat -region dc3

ADD SHARDSPACE - shardspace shardspace_a
ADD SHARDSPACE - shardspace shardspace_b

ORACLE 7-4

Chapter 7
Using Oracle Data Guard with an SDB

ADD SHARDSPACE - shardspace shardspace_c

CREATE SHARD shar dspace shardspace_a -region dcl -deploy_as primary -destination
host 01 -credential oracle_cred -netparanfile /hone/oracl el netca_dbhone.rsp

CREATE SHARD shar dspace shardspace_a -region dcl -depl oy_as standby -destination
host 04 -credential oracle_cred -netparanfile /hone/oracl el netca_dbhone.rsp

CREATE SHARD shar dspace shardspace_a -region dc2 -depl oy_as standby -destination
host 06 -credential oracle_cred -netparanfile /hone/oracl el netca_dbhone.rsp

CREATE SHARD shar dspace shardspace_a -region dc3 -depl oy_as standby -destination
host 08 -credential oracle_cred -netparanfile /hone/oracl el netca_dbhone.rsp

CREATE SHARD shar dspace shardspace_b -region dcl -deploy_as primary -destination
host08 -credential oracle_cred -netparanfile /hone/oraclel/netca_dbhone.rs

CREATE SHARD shar dspace shardspace_c -region dc3 -depl oy_as standby -destination
host 10 -credential oracle_cred -netparanfile /hone/oracl el netca_dbhone.rsp

DEPLOY

Using Oracle Data Guard with a Composite SDB

In composite sharding an SDB consists of multiple shardspaces. However, each
shardspace, instead of replicated shards, contains replicated shardgroups.

ORACLE 7.5

Figure 7-3 Composite Sharding with Data Guard Replication

Chapter 7
Using Oracle Data Guard with an SDB

: Shardspace A : ! Shardspace B
|
|
| |
| | |
|
| | Shardgroup | 1| Shardgroup
|| A1 ML
|
. !
| |
|
I13atacenter : l l l : | l
| | :
| |
I'| Shardgroup I : Shardgroup
1| A2 1, |B2
|
. !
| | |
| I
I
| |
| | : Y
|
| !
| |
Datacenter ! || | Shardgroup
2 | I B3
| | |
| |
|
| |
| | :
| |
I y v v I :
| | |
| | |
| |
Datacenter | | Shardgroup : :
1| A3 N
| | |
| N
.. __ S !
Run the following GDSCTL commands to deploy the example configuration shown in
the previous figure.
CREATE SHARDCATALQG - shardi ng conposite —dat abase host00: 1521: cat -regi on dcl,
dc2, dc3
ADD GSM -gsm gsnl -listener 1571 —catal og host00: 1521: cat -region dcl
ADD GSM -gsm gsn? -listener 1571 —catal og host00: 1521: cat -region dc2
ADD GSM -gsm gsnB -listener 1571 —catal og host00: 1521: cat -region dc3
ADD SHARDSPACE - shardspace shardspace_a
ADD SHARDSPACE - shardspace shardspace_b
ADD SHARDGROUP -shardgroup shardgroup_al —shardspace shardspace_a -region dcl
-depl oy_as prinary
ADD SHARDGROUP -shardgroup shardgroup_a2 —shardspace shardspace_a -region dcl
-depl oy_as active_standby
ADD SHARDGROUP - shardgroup shardgroup_a3 —shardspace shardspace_a -region dc3
-depl oy_as active_standby
ADD SHARDGROUP - shardgroup shardgroup_bl —shardspace shardspace_b -region dcl
-depl oy_as prinary
ADD SHARDGROUP -shardgroup shardgroup_b2 —shardspace shardspace_b -region dcl
-depl oy_as active_standby
ADD SHARDGROUP - shardgroup shardgroup_b3 —shardspace shardspace_b -region dc2
ORACLE

7-6

7.3 Using

Chapter 7
Using Oracle GoldenGate with a Sharded Database

-depl oy_as active_standby

CREATE SHARD - shardgroup shardgroup_al -destination host0l —credential orcl_cred

CREATE SHARD - shardgroup shardgroup_b3 -destination host09 -credential orcl_cred

DEPLOY

Oracle GoldenGate with a Sharded Database

Oracle GoldenGate is used for fine-grained multi-master replication where all shards
are writable, and each shard can be partially replicated to other shards within a
shardgroup.

In Oracle GoldenGate, replication is handled at the chunk level. For example, in
Shardgroup 1 in the following figure, half of the data stored in each shard is replicated
to one shard, and the other half to another shard. If any shard becomes unavailable,
its workload is split between two other shards in the shardgroup. The multiple failover
destinations mitigate the impact of a shard failure because there is no single shard that
has to handle all of the workload from the failed shard.

Figure 7-4 System-Managed Sharding with Golden Gate Replication

Datacenter 1

Datacenter 2

ORACLE

Shardgroup 1

1 2 3

— e e e e e e e e e e e e = — 4

N

Shardgroup

With Oracle GoldenGate replication, a shardgroup can contain multiple replicas of
each row in a sharded table; therefore, high availability is provided within a
shardgroup, and there is no need to have a local replica of the shardgroup, as there is
in the case of Data Guard replication. The number of times each row is replicated
within a shardgroup is called its replication factor and is a configurable parameter.

7-7

ORACLE

Chapter 7
Using Oracle GoldenGate with a Sharded Database

To provide disaster recovery, a shardgroup can be replicated to one or more data
centers. Each replica of a shardgroup can have a different number of shards,
replication factor, database versions, and hardware platforms. However, all
shardgroup replicas must have the same number of chunks, because replication is
done at the chunk level.

Shardgroup 2 in the figure above contains the same data as Shardgroup 1, but resides
in a different data center. Shards in both data centers are writable. The default
replication factor, 2, is used for both shardgroups.

Note that because Shardgroup 2 contains only two shards and the replication factor is
2, the shards are fully replicated, and each of them contains all of the data stored in
the SDB. This means that any query routed to these shards can be executed without
going across shards. There is only one failover destination in this shardgroup; if a
shard goes down, the load on the other shard doubles.

Oracle Sharding is designed to minimize the number of conflicting updates performed
to the same row on different shards. This is achieved designating a master chunk for
each range of hash values and routing most of requests for the corresponding data to
this chunk.

Sometimes it is impossible to avoid update conflicts because of state transitions, such
as a chunk move or split, or a shard going up or down. The user may also intentionally
allow conflicts in order to minimize transaction latency. For such cases Oracle
GoldenGate provides automatic conflict detection and resolution which handles all
kinds of conflicts including insert-delete conflicts.

Before creating any shards, there are some prerequisites:

* Register with scheduler (when using GDSCTL cr eat e shard)
» Prepare site-security wallets or client and server certificates.

» Install Oracle GoldenGate and add at least one secure deployment with sharding
option, and start up GoldenGate services and servers.

* In each Oracle home, make a copy of the client wallets used to add GoldenGate
deployments, and place it at SORACLE_BASE/admin/ggshd_wallet/.

* Load PL/SQL packages from a GoldenGate install home.

Run the following GDSCTL commands to deploy an example configuration shown in
the figure above.

CREATE SHARDCATALQG - dat abase host 00: 1521: shardcat - chunks 60
-user 'gsncatuser/gsntatuser_password’
-repl 0GG -sharding system-sdb orasdb
ADD GSM -gsm gsnl -1istener 1571 —catal og shard-dir1:1521: shardcat -1ocal ons 3841
ADD GSM -gsm gsn® -1istener 1571 —catal og shard-dir1:1521: shardcat -1ocal ons 3841
START GSM - gsm gsnt
START GSM - gsm gsn?
CONFI GURE -timeout 900
ADD REG ON -region dcl
ADD REG ON -region dc2
MODI FY GSM -gsm gsnil -region dcl
MODI FY GSM -gsm gsn2 -region dc2
ADD SHARDGROUP - shardgroup shardgroupl -region dcl -repfactor 2
ADD SHARDGROUP - shardgroup shardgroup2 -region dc2 -repfactor 2

CREATE SHARD - shardgroup shardgroupl -destination host0l -credenti al
oracle_cred

7-8

Chapter 7
Using Oracle GoldenGate with a Sharded Database

-net param / hone/ or acl e/ net ca_dbhone. rsp -gg_servi ce host 01: 9900/

renot e_schedul er _agent

-gg_password ggadm n_password -dbparanfile /home/oracl e/ dbparans01.tnp
-dbtenpl atefile /hone/ oracl e/ shar ddb01. dbt

CREATE SHARD -shardgroup shardgroupl -destination host02 -credential
oracle_cred

-net param / hone/ or acl e/ net ca_dbhone. rsp -gg_servi ce host 02: 9900/

renot e_schedul er _agent

-gg_password ggadm n_password -dbparanfile /home/ oracl e/ dbparans02.tnp
-dbtenpl atefile /hone/ oracl e/ shar ddb02. dbt

CREATE SHARD -shardgroup shardgroupl -destination host03 -credential
oracle_cred

-net param / hone/ or acl e/ net ca_dbhone. rsp -gg_servi ce host 03: 9900/

renot e_schedul er _agent

-gg_password ggadm n_password -dbparanfile /home/ oracl e/ dbparans03.tnp
-dbtenpl atefile /hone/ oracl e/ shar ddb03. dbt

CREATE SHARD -shardgroup shardgroup2 -destination host04 -credentia
oracle_cred

-net param / hone/ or acl e/ net ca_dbhome. rsp -gg_servi ce host 04: 9900/

renot e_schedul er _agent

-gg_password ggadm n_password -dbparanfile /home/oracl e/ dbparans04.tnp
-dbtenpl atefile /hone/ oracl e/ shar ddb04. dbt

CREATE SHARD -shardgroup shardgroup2 -destination host05 -credentia
oracle_cred

-net param / hone/ or acl e/ net ca_dbhome. rsp -gg_servi ce host 05: 9900/

renot e_schedul er _agent

-gg_password ggadm n_password -dbparanfile /home/ oracl e/ dbparans05. t np
-dbtenpl atefile /hone/ oracl e/ shar ddb05. dbt

DEPLOY

Note that the above example uses CREATE SHARD to create new shards during
deployment. ADD SHARD is the alternative to CREATE SHARD, and the ADD SHARD method
assumes the pre-existence of clean slate database instances ready to be converted
into database shards.

" Note:

Unlike sharding replication with Data Guard or Active Data Guard, you cannot
deploy Oracle GoldenGate manually, it must be done using the DEPLOY
command.

Oracle Goldengate only supports system-managed sharded database
environments.

ORACLE o

Chapter 7
Using Oracle GoldenGate with a Sharded Database

" See Also:

Working with Oracle GoldenGate Sharding in the Fusion Middleware Using the
Oracle GoldenGate Services Architecture guide for more information about
using Oracle GoldenGate with Oracle Sharding.

ORACLE 7-10

Sharded Database Deployment

Sharded database deployment includes the prerequisites and instructions for installing
the required software components, creating the catalog, roles, and the sharded
database, configuring replication for high availability, and creating the schema for the
sharded database.

The following topics contain the concepts and tasks you need to deploy a sharded
database:

* Introduction to SDB Deployment
Oracle Sharding provides the capability to automatically deploy the sharded
database (SDB), which includes both the shards and the replicas.

* Oracle Sharding Prerequisites
Before you install any software, review these hardware, network, and operating
system requirements for Oracle Sharding.

* Installing Oracle Database Software
Install Oracle Database on each system that will host the shard catalog or
database shards.

* Installing the Shard Director Software
Install the global service manager software on each system that you want to host a
shard director.

e Creating the Shard Catalog Database
Create an Oracle Database using DBCA to host the shard catalog.

» Setting Up the Oracle Sharding Management and Routing Tier
The shard catalog, shard directors and shards must be configured to communicate
with each other.

* Creating and Deploying a System-Managed SDB
* Creating and Deploying a User-Defined SDB

* Creating and Deploying a Composite SDB
To deploy a composite SDB you must install the required Oracle Sharding
software components, configure the objects for a composite SDB, and create the
schema.

8.1 Introduction to SDB Deployment

ORACLE

Oracle Sharding provides the capability to automatically deploy the sharded database
(SDB), which includes both the shards and the replicas.

The SDB administrator defines the topology (regions, shard hosts, replication
technology) and invokes the DEPLOY command with a declarative specification using
the GDSCTL command-line interface.

At a high level, the deployment steps are:

1. Set up the components.

8-1

Chapter 8
Introduction to SDB Deployment

» Create a database that hosts the shard catalog.
* Install Oracle Database software on the shard nodes.

* Install shard director (GSM) software on the shard director nodes.

Note:

For production deployments, it is highly recommended that you configure
Data Guard for the shard catalog database.
2. Specify the topology layout using the following commands.
* CREATE SHARDCATALOG
e ADD GSM
e START GSM
+ ADD CREDENTI AL (if using CREATE SHARD)
e ADD SHARDGROUP
* ADD | NVI TEDNCDE
e CREATE SHARD (or ADD SHARD) for each shard
3. Run DEPLOY and add the global service to access any shard in the SDB.
e DEPLOY
e ADD SERVI CE

* Choosing a Deployment Method
You can deploy a sharded database, by creating the shards at the same time for a
new database, or by adding the shards from a preexisting database.

e Using Oracle Multitenant with Oracle Sharding
You can use a multitenant container database (CDB) containing a single pluggable
database (PDB) as a shard in your Oracle Sharding configuration.

8.1.1 Choosing a Deployment Method

ORACLE

You can deploy a sharded database, by creating the shards at the same time for a
new database, or by adding the shards from a preexisting database.

Oracle Sharding supports two deployment methods. The first method is with the CREATE
SHARD command, where the creation of shards and the replication configuration are
automatically done by the Oracle Sharding management tier. This method cannot be
used in a multitenant architecture where PDBs are used as shards.

The second deployment method is with the ADD SHARD command. If your database
creation standards require that you deploy the SDB using your own pre-created
databases, the ADD SHARD deployment method supports this requirement by simply
adding your prebuilt database shards.

Deployment Method: CREATE SHARD

The DEPLOY command creates the shards. This is done using the DBMS_SCHEDULER
package (executed on the shard catalog), which communicates with the Scheduler
agents on the remote shard hosts.

8-2

Chapter 8
Introduction to SDB Deployment

Agents then invoke DBCA and NETCA, and if Oracle GoldenGate replication is
specified, GoldenGate Creation Assistance (GGCA) , to create the shards and the
local listeners. After the primary shards are created the corresponding standby shards
are built using the RMAN DUPLI CATE command.

When Data Guard is used as the high availability solution, once the primary and
standby shards are built, the DEPLOY command configures Data Guard Broker with
Fast-Start Failover (FSFO) enabled. The FSFO observers are automatically started on
the regional shard director.

Note:

The CREATE SHARD method is not supported for PDBs used as shards. Only
the ADD SHARD methods can be used in a multitenant architecture.

Archivelog and flashback are enabled for all of the shards. This is required for
the FSFO observer to perform standby auto-reinstantiation upon failover.

Deployment Method: ADD SHARD

Use the ADD SHARD command to add shards to a sharded database configuration if you
have your own database creation standards and prefer to deploy the sharded
database using your own pre-created databases. This method is recommended for
shards that are Oracle RAC-enabled, Oracle Restart-enabled, or PDB shards. The ADD
SHARD deployment method supports this requirement by adding shards, which already
have database installations deployed on them, rather than creating new instances.

When the ADD SHARD command is used for deployment, and Data Guard is used for
high availability, the DEPLOY command handles the configuration of Oracle GoldenGate,
or Data Guard, Broker and Fast-start Failover. It also handles the scenario where you
have pre-configured Data Guard for the shard that is being added.

Unlike sharding with Data Guard or Active Data Guard, you cannot deploy Oracle
GoldenGate manually, it must be done using the DEPLOY command.

8.1.2 Using Oracle Multitenant with Oracle Sharding

ORACLE

You can use a multitenant container database (CDB) containing a single pluggable
database (PDB) as a shard in your Oracle Sharding configuration.

To support consolidation of databases on under-utilized hardware, for ease of
management, or geographical business requirements, you can use single PDBs in
CDBs as database shards. For example, for database consolidation, you can add
other, non-shard PDBs to the CDB containing a shard PDB.

To add a shard PDB to the sharded database configuration, you should first add the
CDB in which that shard PDB is contained to the shard catalog. The GDSCTL
command ADD CDB is used to add a pre-created CDB to the shard catalog. Then, use
the GDSCTL ADD SHARD command with the - cdb option to add shards which are a PDB
contained within a CDB to the sharded database during deployment.

The following example adds a CDB with unique name db11 to the shard catalog and
then adds it to shardgroup shgrpl in a sharded database configuration.

8-3

ORACLE

Chapter 8
Introduction to SDB Deployment

GDSCTL> add cdb -connect CDB$ROOT_connect _string - pwd GSMUSER passwor d
GDSCTL> add shard -cdb dbll -connect PDB_connect_string —shardgroup shgrpl
-depl oy_as active_standby -pwd GSMUSER password

Use CONFI G CDB to display information about the CDB in the shard catalog.
GDSCTL> config cdb

Nanme: tstsdbyb

Connection string: (DESCRI PTI ON=(ADDRESS=(PROTOCOL=t cp) (HOST=cdblhost) (PORT=1521))
(CONNECT_DATA=(SERVI CE_NAME=cdb1. exanpl e. con)))

SCAN addr ess:

ONS renote port: 0

Di sk Threshold, ns: 20

CPU Threshold, % 75

Version: 18.0.0.0

Rack:

Moving PDB Shards

You can manually unplug a shard PDB from a CDB, and plug it in to a different CDB.
This can be done outside of the sharding interfaces, and then you can update the
shard catalog metadata to indicate that the PDB shard has moved to another CDB.
The GDSCTL command ADD SHARD with the —-REPLACE option is used to update the
location of the shard PDB in the shard catalog.

PDB Shard High Availability

Oracle Data Guard supports replication only at the CDB level. The existing sharding
architecture allows replicated copies of the sharded data for high availability, and it can
optionally configure and use Data Guard to create and maintain these copies. Data
Guard does not currently support replication at the PDB level; it can only replicate an
entire container.

Making Changes to CDB in Sharding Configuration

Use MODI FY CDB to change the metadata of the CDB in the shard catalog. Some
parameters cannot be used after the CDB contains shards, or contains shards that
have been deployed.

GDSCTL> nodi fy cdb -shard cdbl -pwd new password

Use REMOVE CDB to remove a CDB from the shard catalog. Removing a CDB does not
destroy it.

@DSCTL> renove cdb -cdb cdbl

Upgrading from a Non-PDB Shard to a PDB Shard

When upgrading from a non-PDB sharded environment to one which makes use of
PDBs, you must back up each existing non-PDB shard and then create a new CDB,
and a PDB inside it. The shard is then restored to the PDB inside the CDB, as the
CDB migration guide recommends. At this point, the shard has become a PDB inside
a CDB, and you use the GDSCTL ADD CDB command to add the new CDB, and then
run ADD SHARD - REPLACE, specifying the connect string of the PDB, to tell the sharding
infrastructure to replace the old location of the shard with new PDB location.

8-4

Chapter 8
Oracle Sharding Prerequisites

¢ See Also:

Oracle Database Global Data Services Concepts and Administration Guide for
information about the GDSCTL commands used with PDB shards

Oracle Multitenant Administrator's Guide for information about Oracle
Multitenant

8.2 Oracle Sharding Prerequisites

Before you install any software, review these hardware, network, and operating
system requirements for Oracle Sharding.

Hardware and operating system requirements for the shards are the same as
those on which Oracle Database is supported. See your Oracle Database
installation documentation for these requirements.

Hardware, software, and operating system requirements for the shard catalog and
shard directors are the same as those on which the Global Data Services catalog
and global service manager are supported. See Oracle Database Global Data
Services Concepts and Administration Guide for these requirements.

Network requirements are Low Latency GigE

Port communication requirements are listed below. All of the following are required
for using CREATE SHARD. When using ADD SHARD, items 4 and 5 are not
relevant.

1. Each and every shard must be able to reach each and every shard director's
listener and ONS ports. The default listener port of the shard director is 1522,
and the default ONS ports on most platforms are 6123 for the local ONS and
6234 for remote ONS. These shard director listener ports and the ONS ports
must also be opened to the application/client tier, all of the shards, the shard
catalog, and all other shard directors.

2. Each and every shard must be able to reach the TNS Listener port of the
shard catalog (both primary and standby).

3. The TNS Listener port (default 1521) of each shard must be opened to shard
directors and the shard catalog.

4. On the primary and standby shard catalog database, the port used for -
agent _port (default 8080) in the CREATE SHARDCATALOG command must be visible
to all of the shards.

5. The scheduler agent port on all of the shards must be visible to shard catalog
node. Execute schagent -status on each shard to identify the port.

8.3 Installing Oracle Database Software

Install Oracle Database on each system that will host the shard catalog or database
shards.

ORACLE

Before installing Oracle Database, create an operating system user on all of the
systems where you will be hosting the sharded database, shard catalog, and shard

8-5

Chapter 8
Installing Oracle Database Software

directors, and assign them to the DBA group. Allow the user to run su, and make note
of the credentials so that you can use them in later procedures.

See Oracle Database Installation Guide for Linux, or your platform’s installation guide,
for information about configuring operating system users.

1. Download the Oracle Database installer on all of the systems that will host the
shard catalog or the database shards.

2. Install Oracle Database on all of the systems where you intend to host the shard
catalog and sharded database.

a. Run the installer on the first system.

$ cd /u01/ st age/ dat abase
$./runinstaller

As you step through the Oracle Database installation, be sure to select the
following options on the noted screens:

* On the Installation Option page, select Install database software only.

* Onthe Grid Installation Options page, select Single instance database
installation. Oracle RAC and Oracle RAC One Node are not supported in
this release.

* Onthe Database Edition page, select Enterprise Edition.

* Onthe Installation Location page, use the same Oracle base and
Software location values that you used when creating the environment
scripts in the steps above.

* Onthe Create Inventory page, accept the defaults.

* On the Operating System Groups page, accept the defaults or make
changes as appropriate for your environment.

* Onthe Summary page, you can click Save Response File to create a file
for silent installation of the Oracle Database software on the remaining
hosts.

» During installation, execute the or ai nst Root . sh and r oot . sh scripts as r oot
in a separate terminal when prompted.

b. Optionally, using the response file you created in the first installation, run a
silent install on each of the remaining hosts.

Note that, after performing a silent install using a response file, when you run
the database root . sh script its execution might not prompt you interactively for
any values and uses only default values (for example, for the local user bi n
directory). If any non-default values are desired, specify just the -responseFi | e
location when invoking the Installer and omit the - si | ent option. Click through
the Installer screens, accepting the response file values, and then run the root
script(s) when prompted. During root script execution, any user prompts are
presented to you and non-default values can be entered.

" See Also:

Oracle Database Installation Guide for Linux for more information about using
the response file for silent installation of Oracle Database

ORACLE 8-6

Chapter 8
Installing the Shard Director Software

8.4 Installing the Shard Director Software

Install the global service manager software on each system that you want to host a
shard director.

1.

Download the Oracle Global Service Manager installer on all of the systems that
will host the shard directors.

See Oracle Database Global Data Services Concepts and Administration Guide
for information about installing a global service manager.

Optionally, using the response file you created in the first installation, run a silent
install on each of the remaining shard director hosts.

See Oracle Database Global Data Services Concepts and Administration Guide
for more information about the silent install process.

Note that, after performing a silent install using a response file, when you run the
database root . sh script its execution might not prompt you interactively for any
values and uses only default values (for example, for the local user bi n directory).
If any non-default values are desired, specify just the - responseFi | e location when
invoking the Installer and omit the -si | ent option. Click through the Installer
screens, accepting the response file values, and then run the root script(s) when
prompted. During root script execution, any user prompts are presented to you
and non-default values can be entered.

8.5 Creating the Shard Catalog Database

Create an Oracle Database using DBCA to host the shard catalog.

ORACLE

1.

Connect to the host where you will host the shard catalog, and verify that the
expected environment variables are set to the correct values.

$ env |grep ORA
ORACLE_BASE=/ u01/ app/ oracl e
ORACLE_HOVE=/ u01/ app/ or acl e/ product/ 18. 0. 0/ dbhone_1

Create the oradata and fast_recovery_area directories.

$ nkdir /u01/ app/ oracl e/ oradat a
$ nkdir /u0l/app/oracl e/ fast_recovery_area

Run DBCA to create the shard catalog database.

$ dbca

The Database Configuration Assistant opens.
On the Database Operation page, select Create a database, and click Next.
On the Creation Mode page, select Advanced configuration, and click Next.

On the Deployment Type page, select the Oracle Single Instance database
database type, select the General Purpose or Transaction Processing
template, and click Next.

On the Database Identification page, enter the Global Database name and the
shard catalog SID that you configured in the shard catalog host environment
script, and click Next.

8-7

10.

11.
12.

13.

14.

15.

16.
17.
18.

19.

20

Chapter 8
Setting Up the Oracle Sharding Management and Routing Tier

On the Storage Option page, select the Use following for the database storage
attributes option, select File System, select the Use Oracle-Managed Files
(OMF) option, and click Next.

On the Select Fast Recovery Option page, select Specify Fast Recovery Area,
select Enable archiving, and click Next.

On the Specify Network Configuration Details page, select Create a new listener,
set the listener name and port number, and click Next.

Make note of the listener name so that you can connect to the database later.
Skip the Data Vault Option page.

On the Configuration Options page Memory tab, select Use Automatic Shared
Memory Management.

On the Configuration Options page Character sets tab, select Use Unicode
(AL32UTFS8), and click Next

On the Management Option page, uncheck the Configure Enterprise Manager
(EM) database express option, and click Next.

On the User Credentials page, select the appropriate option for your business
needs, enter the passwords, and click Next.

Make a note of the passwords you entered because you will need them later.
On the Creation Option page, select Create database, and click Next.
On the Summary page, click Finish.

After the database has been created, make a note of the Global Database Name,
SID, and spfile values.

If you plan to use Oracle Data Guard to protect the shard catalog database, click
Password Management, unlock the SYSDG account, and make a note of the
password you enter for this account.

. Click Close to exit DBCA.

8.6 Setting Up the Oracle Sharding Management and
Routing Tier

The shard catalog, shard directors and shards must be configured to communicate
with each other.

ORACLE

Before you begin, carefully read through the port requirements prerequisites listed in
Oracle Sharding Prerequisites, and make any changes necessary before proceeding
with the tasks in this section.

1.

On the shard catalog host, verify that the expected environment values are set to
the correct values.

$ env |grep ORA

ORACLE_SI D=shar dcat

ORACLE_BASE=/ u01/ app/ or acl e

ORACLE_HOVE=/ u01/ app/ or acl e/ product/ 18. 0. 0/ dbhone_1

If the shard catalog listener is not already started, start the shard catalog listener.

$ Isnrctl start

8-8

ORACLE

Chapter 8
Setting Up the Oracle Sharding Management and Routing Tier

Verify that DB_CREATE_FI LE_DEST parameter is set on the shard catalog database.

If the parameter is not set, then set it as shown in the following example. Note that
open_I i nks and open_I i nks_per _i nst ance are set to 16 for the purposes of the
Oracle Sharding demo application.

$ sqglplus / as sysdba

SQ> alter systemset db_create file_dest="/u0l/app/oracle/oradata’ scope=hoth;
SQ> alter systemset open_links=16 scope=spfile;
SQ> alter systemset open_links_per_instance=16 scope=spfile;

Shut down and restart the shard catalog database.

SQ.> shutdown i medi ate
Dat abl ase cl osed.
Dat abase di smount ed.

SQL> startup
ORACLE instance started.

Total System dobal Area 4798283776 bytes

Fi xed Size 4430760 bytes
Variabl e Size 1006634072 bytes
Dat abase Buffers 3774873600 bytes
Redo Buffers 12345344 bytes

Dat abase nount ed.
Dat abase opened.

Grant roles and privileges on the shard catalog database.

SQ.> set echo on
SQL> set ternout on
SQ.> spool setup_grants_privs.| st

a. Unlock and set the password for the GSMCATUSER schema.

This schema is used by the shard director when connecting to the shard
catalog database.

SQ.> alter user gsntatuser account unlock;
SQ.> alter user gsnctatuser identified by gsncatuser_password,

b. Create the administrator schema and grant privileges to it.

The mysdbadmin account is an account in the shard catalog database which
stores information on the sharding environment. The mysdbadmin account is
the database administrator schema for making administrative changes to the
sharded database environment. GDSCTL connects through this user to the
database when GDSCTL commands are run, and the mysdbadmin user
makes the necessary changes in the database.

SQL> create user mysdbadmin identified by nmysdbadnmi n_password;
SQ.> grant connect, create session, gsmadmin_role to nysdbadm n;
SQ.> grant inherit privileges on user SYS to GSMADM N_I NTERNAL;
SQ.> spool of f

Connect to a shard director host and start GDSCTL.

The commands in the following steps are executed from a shard director host
because the GDSCTL command line interface is installed there.

The following example includes a sanity check that environment variables have
been set properly.

8-9

Chapter 8
Setting Up the Oracle Sharding Management and Routing Tier

$ env |grep ORA
ORACLE_BASE=/ u01/ app/ oracl e
ORACLE_HOVE=/ u01/ app/ or acl e/ product/ 18. 0. 0/ gsmhone_1

$ gdsct|

7. Create the shard catalog and configure the remote scheduler agent on the shard
catalog.

In this example, the sharded database is given the name cust_sdb, and two
regions are created: regionl and region2. The regions are used as local
availability domains for failover of the shards from the primary to physical standby.
The regions are not meant to represent geographical regions in these examples.

To create shard catalog for system-managed sharding, with Oracle GoldenGate
replication:

GDSCTL> create shardcatal og - dat abase

shard_cat al og_host: port _nunber: shard_cat al og_nane

-user gsm adm n/ mysdbadm n_password -repl 0GG -repfactor 2 -sdb cust_sdb
-region regionl, region2 -agent_port port_num -agent_password rsa_password

Note:

For production systems, it is a good practice to use the default (120 chunks
per shard) , instead of specifying the - chunks parameter while creating the
shard catalog.

Because system-managed is the default sharding method, it does not need
to be specified with the - shar di ng parameter.

To create shard catalog for a composite sharded database, with Data Guard
replication:

GDSCTL> create shardcatal og - dat abase

shard_cat al og_host: port _nunber: shard_cat al og_nane

-chunks 60 -shardspace shardspacel -sharding composite -sdb conp_shpool
-protect mode maxavailability -user gsm adm n/mysdbadni n_password

To create shard catalog for a user-defined sharded database, with Data Guard
replication:

GDSCTL> create shardcatal og -sdb udef _shpool -sharding user
-protect mode maxavailability

- dat abase shard_catal og_host: port _nunber: shard_cat al og_nane
-user gsm adm n/ mysdbadni n_password -region regionl, region2

¢ Note:

The -agent _port and - agent _passwor d parameters are not necessary if you
are using the ADD SHARD deployment method.

8. While you are connected to the shard director host, create and start the shard
director.

ORACLE 8-10

ORACLE

10.

Chapter 8
Setting Up the Oracle Sharding Management and Routing Tier

GDSCTL> add gsm -gsm sharddirectorl -1istener |istener_port -pwd
gsntat user _passwor d
-catal og shard_catal og_host: 1521: shardcat -region regionl

@DSCTL> start gsm -gsm sharddirectorl

Repeat steps 6 and 8 on each shard director host. Replace the shard director
name and region name with appropriate values for each host.
Using GDSCTL, set the operating system credentials.

GDSCTL> add credential -credential credential _name -osaccount 0s_account _nane
-ospassword os_password
GDSCTL> exit

Note:

this step is not necessary if you are using the ADD SHARD deployment
method.

These credentials are the operating system user name and password on the shard
hosts (not the catalog host), and the credentials are used by the remote scheduler
agent to run jobs on the hosts to set up the shards using DBCA, NETCA, and the
like.

Repeat this step if a different operating system credential will be used for each
host.

Connect to each of the shard hosts, register remote scheduler agents on them,
and create directories for oradata and fast_recovery_area on them.

" Note:

This step is only required if you are using the CREATE SHARD method
described in Introduction to SDB Deployment. If you are using the ADD
SHARD method you can skip this step.

Execute the following statements on each of the machines that will host a shard.

Note that the os_account_name is the account used for Oracle software
installation, shard_host is the host name or IP address of the machine hosting the
shard, the shard_catalog_host is the host name or IP address of the shard catalog
host, and port_num is the remote scheduler agent port number as specified in the
-agent _port parameter for create shardcat al og in step 7 above. The remote
scheduler agent prompts you for the agent registration password specified in the -
agent _passwor d parameter of create shardcatal og in step 7 above.

$ ssh os_account _name@har d_host
passwd: os_passwor d

$ schagent -start

$ schagent -status
$ schagent -registerdatabase shard_catal og_host port_num

8-11

Chapter 8
Creating and Deploying a System-Managed SDB

$ nkdir /u0l/app/oracl e/ oradat a
$ nkdir /u0l/app/oracle/fast_recovery_area

See Also:

Oracle Database Global Data Services Concepts and Administration Guide for
information about usage and options for the GDSCTL commands.

8.7 Creating and Deploying a System-Managed SDB

The following topics describe the tasks for creating and deploying a system-managed
SDB.

* Deploying a System-Managed SDB
To deploy a system-managed SDB you create shardgroups and shards, create
and configure the databases to be used as shards, execute the DEPLOY
command, and create role-based global services.

e Creating a Schema for a System-Managed SDB
Create the schema user, tablespace set, sharded tables, and duplicated tables for
the SDB. Verify that the DDLs are propagated to all of the shards, and, while
connected to the shards, verify the automatic Data Guard Broker configuration
with Fast-Start Failover.

e System-Managed SDB Demo Application
The system-managed sharded database (SDB) demo application simulates the
workload of an online retail store. Use it to validate the setup of any system-
managed (automatic sharding) SDB configuration. The demo application also
provides a practical example of sharding concepts for administrators and
developers new to database sharding.

8.7.1 Deploying a System-Managed SDB

ORACLE

To deploy a system-managed SDB you create shardgroups and shards, create and
configure the databases to be used as shards, execute the DEPLOY command, and
create role-based global services.

System-managed sharding does not require the user to map data to shards. Data is
automatically distributed across shards using partitioning by consistent hash. The
partitioning algorithm evenly and randomly distributes data across shards. For more
conceptual information about the system-managed SDB, see System-Managed
Sharding.

1. If you are using the ADD SHARD method described in Introduction to SDB
Deployment you must first create the databases to be used as shards on their
respective hosts.

The shard databases must have the following characteristics:
* They must have an associated TNS Listener on each host
* The GSMUSER account must be unlocked with a known password

* SYSDGand SYSBACKUP privileges must be granted to GSMUSER

8-12

ORACLE

Chapter 8
Creating and Deploying a System-Managed SDB

* The primary and standby databases must be configured as such

* Redo apply should be set up between the corresponding primary and standby
databases

* Flashback and force logging should be enabled
* The compati bl e parameter must be set to at least 12.2.0
e A server parameter file (SPFILE) must be in use

e A DATA PUWP_DI Rdirectory object must be created in each database and must
point to a valid directory

You must then validate that a database is correctly set up for sharding. Run the
following statements against each database, while logged in as SYS, before
adding it to the configuration.

SQL> set serveroutput on
SQL> execute DBMS_GSM Fl X val i dat eShar d

Screen output will include INFO, WARNING, and ERROR information that needs
to be analyzed for any issues. All WARNING and ERROR messages must be
resolved. Re-run val i dat eShar d() after making changes to confirm the
configuration.

Connect to the shard director host.
$ ssh os_user @hard_directorl_host

Set the global service manager for the current session, and specify the credentials
to administer it.

$ gdsct|
GDSCTL> set gsm -gsm sharddirectorl
GDSCTL> connect nysdbadni n/ nysdbadm n_password

Add a shardgroup for the primary shards.

In this example the shardgroup is named primary_shardgroup, and is part of a
Data Guard replication solution.

GDSCTL> add shardgroup -shardgroup primary_shardgroup -deploy_as primary
-region regionl

The following example shows the shardgroup creation for an Oracle GoldenGate
replication solution.

GDSCTL> add shardgroup -shardgroup shardgroupl -region regionl -repfactor 2

Add a shardgroup for the standby shards.

In this example the shardgroup is named standby_shardgroup, and is created for
an Active Data Guard active standby using the - depl oy_as parameter.

@DSCTL> add shardgroup -shardgroup standby_shardgroup -deploy_as active_standby
-region region2

Adding a second shardgroup in an Oracle GoldenGate configuration might look
like the following example.

@DSCTL> add shardgroup -shardgroup shardgroup2 -region region2 -repfactor 2

Add each shard’s host address to the valid node checking for registration (VNCR)
list in the catalog, then create or add the shard in either the primary or standby
shardgroup, as shown in the following examples.

8-13

Chapter 8
Creating and Deploying a System-Managed SDB

Note:

The valid node checking for registration (VNCR) feature provides the ability
to configure and dynamically update a set of IP addresses, host names, or
subnets from which registration requests are allowed by the shard
directors. Database instance registration with a shard director succeeds
only when the request originates from a valid node. By default, the shard
management tier (based on Oracle Global Data Services framework)
automatically adds a VNCR entry for the host on which a remote database
is running each time create shard or add shard is executed. The automation
(called auto-VNCR) finds the public IP address of the target host, and
automatically adds a VNCR entry for that IP address. If the host has
multiple public IP addresses, then the address on which the database
registers may not be the same as the address which was added using
auto-VNCR and , as a result, registration many be rejected. If the target
database host has multiple public IP addresses, it is advisable that you
configure VNCR manually for this host using the add i nvi t ednode or add

i nvi t edsubnet commands in GDSCTL.

If there are multiple net-cards on the target host (/ shi n/i fconfi g returns
more than one public interface), use add i nvi t ednode to be safe (after
finding out which interface will be used to route packets).

If there is any doubt about registration, then use confi g vncr and use add
i nvi t ednode as necessary. There is no harm in doing this, because if the

node is added already, auto-VNCR ignores it, and if you try to add it after
auto-VNCR already added it, you will get a warning stating that it already
exists.

The following example shows how to create four shards using the CREATE SHARD
command, using a Data Guard high availability solution, two of which are in the
primary shardgroup and two in the standby shardgroup. The credential_name is
the operating system credential you created in the shard catalog for the
destination host.

While creating the shards, you can also set the SYS password in the create shard
using - sys_passwor d as shown in the following example. This sets the SYS
password after the shards are created when running DEPLOY.

There are other optional parameters for CREATE SHARD that allow you to customize
the database parameters, storage and file locations, listener port numbers, and so
on, which are documented in the Oracle Database Global Data Services Concepts
and Administration Guide appendices.

GDSCTL> add i nvitednode shard_host _1
GDSCTL> create shard -shardgroup primary_shardgroup -destination shard_host_1
-credential credential _name -sys_password sys_password

GDSCTL> add i nvitednode shard_host_2

GDSCTL> create shard -shardgroup standby_shardgroup -destination shard_host_2
-credential credential _name -sys_password sys_password

GDSCTL> add i nvitednode shard_host 3

GDSCTL> create shard -shardgroup primary_shardgroup -destination shard_host_3
-credential credential _name -sys_password sys_password

GDSCTL> add i nvitednode shard_host 4

ORACLE 8-14

ORACLE

Chapter 8
Creating and Deploying a System-Managed SDB

GDSCTL> create shard -shardgroup standby_shardgroup -destination shard_host_4
-credential credential _name -sys_password sys_password

In an Oracle GoldenGate replication solution, the shardgroups would not be
designated as primary and standby because replication is handled at the chunk
level and distributed among the shards within a shardgroup. However, a disaster
recovery best practice is to replicate a shardgroup to one or more data centers.
The following is an example of creating a shard with Oracle GoldenGate
replication.

GDSCTL> create shard -shardgroup shardgroup -destination shard_host
-credential oracle_cred -netparam /hone/ oracl e/ net ca_dbhone. rsp
-gg_service shard_host _1: $ADM NSRVR_PORT/ $GGHOVE
-gg_password ggadm n_password
-dbparanfile /home/ oracl e/ dbparans01. t np
-dbtenpl atefile /hone/ oracl e/ shar ddb01. dbt

If you are using the ADD SHARD method described in Introduction to SDB
Deployment, use the following command instead of the CREATE SHARD commands in
the example above. If the shard database to be added is a pluggable database
(PDB), you must use the - cdb option to ADD SHARD to specify which container
database (CDB) the PDB shard is in. In addition, ADD CDB must be used before the
ADD SHARD command to add the CDB to the catalog. See Oracle Database Global
Data Services Concepts and Administration Guide for the syntax for ADD CDB and
ADD SHARD. Note that in Oracle Database 18c, only one PDB in each CDB is
allowed to be a shard.

GDSCTL> add shard —shardgroup shgrpl
—connect shard_host: TNS_| i stener_port/shard_dat abase_nane
—pwd GSMUSER_passwor d

Check the configuration from a shard director.

Note that the shard names, shl, sh2, sh3, and sh4, are system generated shard
names when the CREATE SHARD method is used.

GDSCTL> config
Regi ons

regionl
regi on2

sharddirectorl
sharddirector2

Sharded Dat abase

cust _sdb

Dat abases

primary_shardgroup

8-15

ORACLE

Chapter 8

Creating and Deploying a System-Managed SDB

st andby_shar dgr oup

Shard spaces

shar dspaceor a

Servi ces

Nane: oradbcl oud
Master GSM sharddirectorl
DDL sequence #: 0

GDSCTL> confi g shardspace
SHARDSPACE Chunks

shar dspaceor a 12

GDSCTL> confi g shardgroup

Shard G oup Chunks Regi on
primary_shardgroup 12 regionl
st andby_shar dgr oup 12 regi on2

GDSCTL> config vner
Name Goup ID

shard_host _2
shard_host _3
shard_host 4
shard_catal og_host _| P

GDSCTL> config shard

Nare Shard Group Status State
shl pri mary_shardgroup U none
sh2 standby_shardgroup U none
sh3 primry_shardgroup U none
sh4 standby_shardgroup U none

SHARDSPACE

shar dspaceor a
shar dspaceor a

Regi on
regi onl
regi on2
regi onl
regi on2

Availability

Run the DEPLOY command to create the shards and the replicas.

The DEPLOY command takes some time to run, approximately 15 to 30 minutes.

GDSCTL> depl oy

When the CREATE SHARD method is used to create the shards, the DEPLOY
command creates the primary and standby shards using DBCA. Archivelog and
flashback, which is required for the Fast-Start Failover observers to perform
standby reinstantiation, are enabled for all of the shards.

Once the primary and standby shards are built, the DEPLOY command configures
the Data Guard Broker with Fast-Start Failover enabled. The Fast-Start Failover

8-16

ORACLE

10.

11.

12.

Chapter 8
Creating and Deploying a System-Managed SDB

observers are automatically started on the standby group’s shard director
(sharddirector2 in this example).

Verify that all of the shards are deployed.
GDSCTL> config shard

Name Shard G oup Stat us State Regi on Avail ability
shl primry_shardgroup Gk Depl oyed regionl ONLINE

sh2 standby_shardgroup Gk Depl oyed region2 READ ONLY
sh3 primry_shardgroup Gk Depl oyed regionl ONLINE

sh4 standby_shardgroup Gk Depl oyed region2 READ ONLY

Verify that all of the shards are registered.

GDSCTL> dat abases
Dat abase: "shl" Registered: Y State: Ok ONS: N. Role: PRI MARY
Instances: 1 Region: regionl
Regi stered instances:
cust _sdb%d
Dat abase: "sh2" Registered: Y State: Ok ONS: N Role: PH STNDBY
Instances: 1 Region: region2
Regi stered instances:
cust _sdhod 1
Dat abase: "sh3" Registered: Y State: Ok ONS: N. Role: PRI MARY
Instances: 1 Region: regionl
Regi stered instances:
cust _sdbo%®1
Dat abase: "sh4" Registered: Y State: Ok ONS: N. Role: PH STNDBY
Instances: 1 Region: region2
Regi stered instances:
cust _sdbh9B1

Check the configuration of a shard.

@DSCTL> config shard -shard shl
Name: shl

Shard G oup: prinmary_shardgroup
Status:

State: Depl oyed

Regi on: regionl

Connection string: shard_host_1:TNS |istener_port/shl: dedi cat ed
SCAN addr ess:

ONS renote port: 0

Di sk Threshold, ns: 20

CPU Threshold, % 75

Version: 18.0.0.0

Last Failed DDL:

DDL Error: ---

Failed DDL id:

Avail ability: ONLINE

Supported services

Add a global service that runs on all of the primary shards.

The oltp_rw_srvc global service is a global data service that a client can use to
connect to the sharded database. The oltp_rw_srvc service runs the OLTP
transactions on the primary shards. Likewise, the oltp_ro_srvc global service is
created to run read-only workload on the standby shards.

8-17

Chapter 8
Creating and Deploying a System-Managed SDB

GDSCTL> add service -service oltp_rw.srvc -role primry

GDSCTL> config service

Nane Net wor k nane Pool Started Preferred
al |
oltp_rwsrvc oltp_rwsrvc.cust_sdb. oracdbcl oud cust_sdb No Yes

13. Start the oltp_rw_srvc global service.

GDSCTL> start service -service ol tp_rwsrvc

GDSCTL> status service
Service "ol tp_rw srvc. cust_sdb. oradbcl oud" has 2 instance(s). Affinity: ANYWHERE
Instance "cust_sdb%d", nane: "shl", db: "shl", region: "regionl", status:
ready.
Instance "cust_sdb%1", name: "sh3", db: "sh3", region: "regionl", status:
ready.

14. Add a global service for the read-only workload to run on the standby shards.

GDSCTL> add service -service oltp_ro_srvc -role physical _standby

GDSCTL> config service

Nane Net wor k nane Pool Started Preferred
al |

oltp_rwsrvc oltp_rwsrvc.cust_sdb. oracdbcl oud cust_sdb Yes Yes
oltp_ro_srvc oltp_ro_srvc.cust_sdb. oracdbcl oud cust_sdb No Yes

15. Start the read-only service, and verify the status of the global services.

GDSCTL> start service -service oltp_ro_srvc

GDSCTL> status service
Service "ol tp_ro_srvc. cust_sdb. oradbcl oud" has 2 instance(s). Affinity: ANYWHERE
Instance "cust_sdb%d1", name: "sh2", db: "sh2", region: "region2", status
ready.
Instance "cust_sdb%81", name: "sh4", db: "sh4", region: "region2", status
ready.
Service "ol tp_rw_srvc. cust _sdb. oradbcl oud" has 2 instance(s). Affinity: ANYWHERE
Instance "cust_sdb%d", nane: "shl", db: "shl", region: "regionl", status
ready.
Instance "cust_sdb%1", name: "sh3", db: "sh3", region: "regionl", status
ready.

2 See Also:
Creating a Schema for a System-Managed SDB

Oracle Database Global Data Services Concepts and Administration Guide for
more information about GDSCTL command usage

ORACLE 8-18

Chapter 8
Creating and Deploying a System-Managed SDB

8.7.2 Creating a Schema for a System-Managed SDB

Create the schema user, tablespace set, sharded tables, and duplicated tables for the
SDB. Verify that the DDLs are propagated to all of the shards, and, while connected to
the shards, verify the automatic Data Guard Broker configuration with Fast-Start
Failover.

ORACLE

1.

Connect to the shard catalog database, create the application schema user, and
grant privileges and roles to the user.

In this example, the application schema user is called app_schema.

$ sqlplus / as sysdba

SQL> al ter session enable shard ddl;

SQL> create user app_schema identified by app_schema_passwor d;
SQ> grant all privileges to app_schens;

SQ> grant gsmadmin_role to app_scheng;

SQL> grant select_catalog_role to app_schens,;

SQ> grant connect, resource to app_schens;

SQ> grant dba to app_schens;

SQL> grant execute on dbns_crypto to app_schens;

Create a tablespace set for the sharded tables.

SQL> CREATE TABLESPACE SET TSP_SET 1 using tenpl ate
(datafile size 100m aut oextend on next 10M maxsize unlimited
extent management |ocal segnent space managenent auto);

Specifying the shardspace is optional when creating the tablespace set. If the
shardspace is not specified in the command, the default shardspace,
shardspaceora, is used.

If you use LOBs in a column, you can specify a tablespace set for the LOBs.

SQL> CREATE TABLESPACE SET LOBTSL;

Note:

Tablespace sets for LOBS cannot be specified at the subpatrtitition level in
system-managed sharding.

Create a tablespace for the duplicated tables.

In this example the duplicated table is the Products table in the sample
Customers-Orders-Products schema.

SQL> CREATE TABLESPACE products_tsp datafile size 100m
aut oextend on next 10M naxsize unlimted
extent managenent |ocal uniformsize 1m

Create a sharded table for the root table.

In this example, the root table is the Customers table in the sample Customers-
Orders-Products schema.

SQL> CONNECT app_schena/ app_schena_password

SQL> ALTER SESSI ON ENABLE SHARD DODL;

8-19

Chapter 8
Creating and Deploying a System-Managed SDB

SQL> CREATE SHARDED TABLE Custoners
(

Cust | d VARCHAR2(60) NOT NULL,
FirstName VARCHAR2(60),

Last Nanme VARCHAR2(60) ,

G ass VARCHAR2(10) ,

Geo VARCHAR2(8) ,

Cust Profile VARCHAR2(4000),

Passwd RAW 60) ,
CONSTRAI NT pk_cust oners PRI MARY KEY (Custld),
CONSTRAINT j son_customers CHECK (CustProfile IS JSON)
) TABLESPACE SET TSP_SET 1
PARTI TI ON BY CONSI STENT HASH (Cust|d) PARTITIONS AUTG,

Note:

If any columns contain LOBSs, you can include the tablespace set in the
parent table creation statement, as shown here.

SQ.> CREATE SHARDED TABLE Custoners
(

Custld VARCHAR2(60) NOT NULL,
FirstName VARCHAR2(60),

Last Nane VARCHAR2(60) ,

C ass VARCHAR2(10) ,

Ceo VARCHAR2(8) ,

Cust Profile VARCHAR2(4000),

Passwd RAW 60) ,

image BLOB,

CONSTRAI NT pk_cust oners PRI MARY KEY (Custld),
CONSTRAINT j son_customers CHECK (CustProfile I'S JSON)
) TABLESPACE SET TSP_SET_1
LOB(image) store as (TABLESPACE SET LOBTS1)
PARTI TI ON BY CONSI STENT HASH (Cust|d) PARTITIONS AUTG,

6. Create a sharded table for the other tables in the table family.

In this example, sharded tables are created for the Orders and Lineltems tables in
the sample Customers-Orders-Products schema.

The Orders sharded table is created first:

SQL> CREATE SHARDED TABLE Orders

(
Orderld I NTEGER NOT NULL,
Custld VARCHAR2(60) NOT NULL,
OrderDate TIMESTAVMP NOT NULL,
Sunot al NUMBER(19, 4),
Status CHAR(4),
CONSTRAINT pk_orders PRI MARY KEY (Custld, Orderld),
CONSTRAINT fk_orders_parent FOREIGN KEY (Custld)
REFERENCES Custoners ON DELETE CASCADE

) PARTI TI ON BY REFERENCE (fk_orders_parent);

Create the sequence used for the Orderld column.

SQL> CREATE SEQUENCE Orders_Seq;

ORACLE 8-20

ORACLE

Chapter 8
Creating and Deploying a System-Managed SDB

Create a sharded table for Lineltems

SQL> CREATE SHARDED TABLE Lineltens
(

Orderld | NTEGER NOT NULL,
Custld VARCHAR2(60) NOT NULL,
Product 1 d | NTEGER NOT NULL,
Price NUMBER(19, 4),

Qy NUMBER,

CONSTRAINT pk_items PRI MARY KEY (Custld, Orderld, Productld),
CONSTRAINT fk_itens_parent FOREIGN KEY (Custld, Orderld)
REFERENCES Orders ON DELETE CASCADE

) PARTI TI ON BY REFERENCE (fk_itens_parent);

Create any required duplicated tables.
In this example, the Products table is a duplicated object.

SQL> CREATE DUPLI CATED TABLE Products
(
Productld | NTEGER GENERATED BY DEFAULT AS | DENTITY PRI MARY KEY,
Nare VARCHAR2(128) ,
DescrUri VARCHAR2(128),
LastPrice NUMBER(19, 4)
) TABLESPACE products_tsp;

From the shard director host, verify that there were no failures during the creation
of the tablespaces.

@DSCTL> show ddl
id DDL Text Fai |l ed shards

grant connect, resource to app_schema
grant dba to app_schema

grant execute on dbns_crypto to app_s...
CREATE TABLESPACE SET TSP_SET 1 usin...
9 CREATE TABLESPACE products_tsp datafi...
10 CREATE SHARDED TABLE Customers (Cu...
11 CREATE SHARDED TABLE Orders (O der. ..
12 CREATE SEQUENCE Orders_Seq;

13 CREATE SHARDED TABLE Lineltens (...
14 CREATE MATERI ALI ZED VI EW " APP_SCHEMA". . .

0 N o o1

Note:

The show ddl command output might be truncated. You can run SELECT
ddl _text FROM gsmadnin_internal .ddl _requests on the catalog to see the full
text of the statements.

Verify that there were no DDL errors on each of the shards.

Runthe confi g shardand confi g chunks commands on each shard in your
configuration.

@DSCTL> config shard -shard shl

Narme: shl

Shard G oup: prinmary_shardgroup

Status:

State: Depl oyed

Regi on: regionl

Connection string: shard_host _1:1521/shl_host: dedi cat ed

8-21

ORACLE

10.

SCAN addr ess:

ONS renote port: 0
Di sk Threshold, ns: 20
CPU Threshold, % 75

Version: 18.0.0.0
Last Failed DDL:
DDL Error: ---
Failed DDL id:

Avail ability: ONLINE

Supported services

oltp_ro_srvc
ol tp_rw.srvc

GDSCTL> config chunks

Chunks

From

~N e
.

7

Chapter 8

Creating and Deploying a System-Managed SDB

Preferred Status

To
6
6

12
12

Enabl ed
Enabl ed

Verify that the tablespaces of the tablespace set you created for the sharded table
family and the tablespaces you created for the duplicated tables are created on all

of the shards.

The number of tablespaces in the tablespace set is based on the number of
chunks you specified in the cr eat e shar dcat al og command.

The tablespace set with the first 6 chunks of the 12 that were specified in the
shard catalog creation example, and the duplicated Products tablespace is shown
in the following example.

$ sqlplus / as sysdba

SQ> sel ect TABLESPACE NAME, BYTES/ 1024/1024 MB from sys.dba_data_files
order by tabl espace_nane;

TABLESPACE_NAME

CO01TSP_SET 1
C002TSP_SET 1
C003TSP_SET 1
C004TSP_SET 1
CO05TSP_SET 1
CO0BTSP_SET 1
PRODUCTS_TSP
SYSAUX
SYSTEM
SYS_SHARD TS
TSP_SET 1

TABLESPACE_NAME

UNDCTBS1
USERS

100
100
100
100

8-22

ORACLE

11.

12.

13 rows sel ected.

Repeat this step on all of the shards in your configuration.

Chapter 8

Creating and Deploying a System-Managed SDB

Verify that the chunks and chunk tablespaces were created on all of the shards.

SQ> set linesize

SQ.> col umm tabl e_name formt a20

140

SQ> col um tabl espace_nane format a20
SQ.> col um partition_nane format a20

SQ> show par aneter db_uni que_nane

string shl

db_uni que_nane

SQL> sel ect table_nane, partition_nane, tablespace_nane

fromdba_tab_par

TYPE VALUE

titions

where tabl espace_nane |ike ' CFSP_SET_1'

order by tablesp

TABLE_NAME

LI NEI TEM
CUSTOVERS
LI NEI TEMS
ORDERS
CUSTOVERS
ORDERS
LI NEI TEMS
ORDERS
CUSTOMERS

TABLE_NAMVE

LI NEI TEMS
CUSTOVERS

LI NEI TEMS

ORDERS

CUSTOVERS

LI NEI TEMS

ORDERS

18 rows sel ected.

Repeat this step on all of the shards in your configuration.

ace_nane;

PARTI TI ON_NAME

CUSTOMERS_P1
CUSTOMERS_P1
CUSTOMERS_P1
CUSTOVERS_P2
CUSTOMVERS_P2
CUSTOVERS_P2
CUSTOMVERS_P3
CUSTOMVERS_P3
CUSTOMVERS_P3
CUSTOVERS_P4
CUSTOVERS_P4

PARTI TI ON_NAME

CUSTOVERS_P4
CUSTOMVERS_P5
CUSTOMVERS_P5
CUSTOMVERS_P5
CUSTOMVERS_P6
CUSTOMVERS_P6
CUSTOMVERS_P6

TABLESPACE_NAME

C001TSP_SET 1
C001TSP_SET 1
C001TSP_SET 1
C002TSP_SET 1
C002TSP_SET 1
C002TSP_SET 1
C003TSP_SET 1
C003TSP_SET 1
C003TSP_SET 1
C004TSP_SET 1
C004TSP_SET 1

TABLESPACE_NAME

C004TSP_SET 1
C005TSP_SET 1
C005TSP_SET 1
C005TSP_SET 1
C006TSP_SET 1
C006TSP_SET 1
C006TSP_SET 1

Connect to the shard catalog database and verify that the chunks are uniformly

distributed.
$ sqglplus / as sy

SQ> set echo of f

SQ.> SELECT a.nane Shard, COUNT(b.chunk_nunber) Nunber _of _Chunks
FROM gsmadmi n_i nternal . dat abase a, gsmadm n_internal.chunk_loc b

sdba

VHERE a. dat abase_nuneh. dat abase_num

GROUP BY a. nane
ORDER BY a. nane

8-23

ORACLE

13.

14.

Chapter 8
Creating and Deploying a System-Managed SDB

SHARD NUMBER_OF _CHUNKS
shl 6
sh2 6
sh3 6
sh4 6

Verify that the sharded and duplicated tables were created.

Log in as the application schema user on the shard catalog database and each of
the shards.

The following example shows querying the tables on a database shard as the
app_schema user.

$ sql pl us app_schena/ app_schema_passwor d
Connect ed.

SQL> sel ect table_name from user_tabl es;

TABLE_NAME

ORDERS
LI NEI TEMS
PRODUCTS

4 rows selected.

Verify that the Data Guard Broker automatic Fast-Start Failover configuration was
done.

$ ssh os_usernane@hard_host _1
$ dgmyr|

DGMERL> connect sys/ passwor d
Connected to "shl"
Connected as SYSDG.
DGMGRL> show configuration
Configuration - shl

Protection Mde: MaxPerformance

Menber s:

shl - Primary database

sh2 - (*) Physical standby database

Fast-Start Failover: ENABLED

Configuration Status:
SUCCESS (status updated 15 seconds ago)

DGAVGRL> show dat abase shl

Dat abase - shl

Rol e: PRI MARY
Intended State: TRANSPORT- ON
I nstance(s):

shl

Dat abase Status:
SUCCESS

8-24

Chapter 8
Creating and Deploying a System-Managed SDB

DAVGRL> show dat abase sh2

Dat abase - sh2

Rol e: PHYSI CAL STANDBY

Intended State: APPLY- ON

Transport Lag: 0 seconds (conputed O seconds ago)
Apply Lag: 0 seconds (conputed 0 seconds ago)

Average Apply Rate: 2.00 KByte/s
Real Tinme Query: ON
I nstance(s):

sh2

Dat abase Status:
SUCCESS

DGVERL> show fast_start fail over

Fast-Start Failover: ENABLED

Threshol d: 30 seconds

Target: sh2

hserver: shard_di rect or _host
Lag Linit: 30 seconds
Shutdown Primary: TRUE
Auto-reinstate: TRUE

Observer Reconnect: (none)
Observer Override: FALSE

Configurabl e Failover Conditions
Heal th Conditions:

Corrupted Controlfile YES
Corrupted Dictionary YES
I naccessi bl e Logfile NO
Stuck Archiver NO
Datafile Wite Errors YES

Oracle Error Conditions:
(none)

15. Locate the Fast-Start Failover observers.
Connect to the shard catalog database and run the following commands:

$ sqglplus / as sysdha
SQL> SELECT observer_state FROM gsmadmi n_i nternal . broker _confi gs;

OBSERVER_STATE

GSM server SHARDDI RECTOR2. (hserver started.
Log files at '/u0l/app/oracle/product/18.0.0/ gsnmhone_1/ net wor k/ adm n/
gsm observer_1.10g".

GSM server SHARDDI RECTOR2. (hserver started.

Log files at '/u0l/app/oracle/product/18.0. 0/ gsnmhone_1/ net wor k. admi n/
gsm observer_2.10g'.

ORACLE 8-25

Chapter 8
Creating and Deploying a User-Defined SDB

" See Also:

Oracle Database Global Data Services Concepts and Administration Guide for
information about GDSCTL command usage

8.7.3 System-Managed SDB Demo Application

The system-managed sharded database (SDB) demo application simulates the
workload of an online retail store. Use it to validate the setup of any system-managed
(automatic sharding) SDB configuration. The demo application also provides a
practical example of sharding concepts for administrators and developers new to
database sharding.

The demo application assumes that a system-managed SDB environment was already
created along with the CUSTOMER table-family. The environment may have any
number of chunks and shards (database nodes). When run, the application will first
populate the Products table and then start a one-hour workload that can be paused at
any time by the administrator. The workload includes four types of transactions: create
a customer order, lookup the list of orders, create a new product, and multi-shard
guery with report generation. All aspects of a sharded database configuration are
exercised.

You can download the demo application, along with a README file that describes how
to run and monitor it, from My Oracle Support Document 2184500.1.

8.8 Creating and Deploying a User-Defined SDB

The following topics describe the tasks for creating and deploying a user-defined SDB.

* Deploying a User-Defined SDB
The following procedure describes how to deploy a user-defined sharded
database using the ADD SHARD command and an Oracle Active Data Guard high
availability solution.

e Creating a Schema for a User-Defined SDB
Create the schema user, tablespace set, sharded tables, and duplicated tables for
the SDB. Verify that the DDLs are propagated to all of the shards, and, while
connected to the shards, verify the automatic Data Guard Broker configuration
with Fast-Start Failover.

8.8.1 Deploying a User-Defined SDB

ORACLE

The following procedure describes how to deploy a user-defined sharded database
using the ADD SHARD command and an Oracle Active Data Guard high availability
solution.

User-defined sharding allows the user to map data to shards. For more conceptual
information about the user-defined sharding method, see User-Defined Sharding.

1. Because this procedure describes using the ADD SHARD method as detailed in
Introduction to SDB Deployment, you must first create the databases to be used
as shards on their respective hosts.

8-26

https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=2184500.1

Chapter 8
Creating and Deploying a User-Defined SDB

The shard databases must have the following characteristics:

* They must have an associated TNS Listener on each host

* The GSMUSER account must be unlocked with a known password

e SYSDGand SYSBACKUP privileges must be granted to GSMUSER

e The primary and standby databases must be configured as such

* Redo apply should be set up between the corresponding primary and standby
databases

» Flashback and force logging should be enabled
* The conpati bl e parameter must be set to at least 12.2.0
e A server parameter file (SPFILE) must be in use

e A DATA PUWP_DI Rdirectory object must be created in each database and must
point to a valid directory

You must then validate that a database is correctly set up for sharding. Execute
the following against each database before adding it to the configuration.

SQL> set serveroutput on
SQL> execute DBMS_GSM FI X val i dat eShar d

Screen output will include INFO, WARNING, and ERROR information that needs
to be analyzed for any issues. All WARNING and ERROR messages must be
resolved. Re-run val i dat eShar d() after making changes to confirm the
configuration.

2. Connect to the shard director host.
$ ssh os_user @hard_directorl_host

3. Set the global service manager for the current session, and specify the credentials
to administer it.

$ gdsct|
GDSCTL> set gsm -gsm sharddirectorl
GDSCTL> connect nysdbadni n/ mysdbadmi n_passwor d

4. Add shardspaces to the sharded database configuration for each customized
grouping of shards your business case requires.

The shardspaces contain the primary shard database and one or more active
standbys.

In this example the shardspaces are named shspacel and shspace2. You can
choose your own names.

GDSCTL> add shardspace -shardspace shspacel -protect node maxavailability
GDSCTL> add shardspace -shardspace shspace2 -protect node maxavailability

5. Add each shard’s host address to the valid node checking for registration (VNCR)
list in the catalog, then add the shard in either the primary or standby shardgroup,
as shown in the following example.

ORACLE 8-27

ORACLE

Chapter 8
Creating and Deploying a User-Defined SDB

Note:

The valid node checking for registration (VNCR) feature provides the ability
to configure and dynamically update a set of IP addresses, host names, or
subnets from which registration requests are allowed by the shard
directors. Database instance registration with a shard director succeeds
only when the request originates from a valid node. By default, the shard
management tier (based on Oracle Global Data Services framework)
automatically adds a VNCR entry for the host on which a remote database
is running each time create shard or add shard is executed. The automation
(called auto-VNCR) finds the public IP address of the target host, and
automatically adds a VNCR entry for that IP address. If the host has
multiple public IP addresses, then the address on which the database
registers may not be the same as the address which was added using
auto-VNCR and , as a result, registration many be rejected. If the target
database host has multiple public IP addresses, it is advisable that you
configure VNCR manually for this host using the add i nvi t ednode or add

i nvi t edsubnet commands in GDSCTL.

If there are multiple net-cards on the target host (/ shi n/i fconfi g returns
more than one public interface), use add i nvi t ednode to be safe (after
finding out which interface will be used to route packets).

If there is any doubt about registration, then use confi g vncr and use add
i nvi t ednode as necessary. There is no harm in doing this, because if the

node is added already, auto-VNCR ignores it, and if you try to add it after
auto-VNCR already added it, you will get a warning stating that it already
exists.

The following example shows how to add four shards using the ADD SHARD
command, the first two of which are primary and active standby shards in
shardspace shspacel, and the second two are primary and active standbys in
shardspace shspace2. Note that the primaries are given a region of regionl and
the standbys are given region2.

GDSCTL> add i nvitednode shard_host _1
GDSCTL> add shard -connect shard_host _1: 1521/ shar d_dat abase_nane
-shardspace shspacel -deploy_as primary -pwd GSMUSER password -region regionl

GDSCTL> add i nvitednode shard_host_2

GDSCTL> add shard -connect shard_host_2: 1521/ shar d_dat abase_nane
-shardspace shspacel -depl oy_as active_standby -pwd GSMJUSER password
-region region2

GDSCTL> add i nvitednode shard_host_3
GDSCTL> add shard -connect shard_host _3: 1521/ shar d_dat abase_nane
-shardspace shspace2 -deploy_as primary -pwd GSMUSER password -region regionl

GDSCTL> add i nvitednode shard_host_4

GDSCTL> add shard -connect shard_host _4: 1521/ shar d_dat abase_nane
-shardspace shspace? -depl oy_as active_standby -pwd GSMJUSER password
-region region2

If the shard database to be added is a pluggable database (PDB), you must use
the - cdb option to ADD SHARD to specify which container database (CDB) the PDB
shard is in. In addition, ADD CDB must be used before the ADD SHARD command to

8-28

ORACLE

Chapter 8

Creating and Deploying a User-Defined SDB

add the CDB to the catalog. See Oracle Database Global Data Services Concepts

and Administration Guide for the syntax for ADD CDB and ADD SHARD. Note that in
Oracle Database 18c, only one PDB in each CDB is allowed to be a shard.

Check the configuration from a shard director.

GDSCTL> config
Regi ons
regionl
regi on2

sharddirectorl
sharddirector2

Sharded Dat abase

udef _shpoo

Dat abases

shspacel
shspace2

Servi ces

Name: oradbcl oud
Master GSM sharddirectorl
DDL sequence #: 0

GDSCTL> config vncr

Name Goup ID
shard_host 1

shard_host 2

shard_host 3

shard_host 4
shard_cat al og_host _| P

GDSCTL> config shard
Nane Shard space Status State Regi on

Avail ability

8-29

ORACLE

10.

Chapter 8
Creating and Deploying a User-Defined SDB

shl shspacel U none regi onl
sh2 shspacel U none regi on2
sh3 shspace2 U none regi onl
sh4 shspace2 U none regi on2

Run the DEPLOY command to create the shards and the replicas.

The DEPLOY command takes some time to run, approximately 15 to 30 minutes.
GDSCTL> depl oy

Once the primary and standby shards are built, the DEPLOY command configures
the Data Guard Broker with Fast-Start Failover enabled. The Fast-Start Failover

observers are automatically started on the standby group’s shard director
(sharddirector2 in this example).

Verify that all of the shards are deployed.
GDSCTL> config shard

Nane Shard space Stat us State Regi on Avail ability
shl shspacel (03 Depl oyed regionl ONLINE

sh2 shspacel (03 Depl oyed region2 READ_ONLY
sh3 shspace2 (03 Depl oyed regionl ONLINE

sh4 shspace2 (03 Depl oyed region2 READ_ONLY

Verify that all of the shards are registered.

GDSCTL> dat abases
Dat abase: "shl" Registered: Y State: Ok ONS: N. Role: PR MARY
Instances: 1 Region: regionl
Regi stered instances:
udef _shpool %
Dat abase: "sh2" Registered: Y State: Gk ONS: N. Role: PH STNDBY
Instances: 1 Region: region2
Regi stered instances:
udef _shpool %41
Dat abase: "sh3" Registered: Y State: Ok ONS: N. Role: PR MARY
Instances: 1 Region: regionl
Regi stered instances:
udef _shpool %21
Dat abase: "sh4" Registered: Y State: Ok ONS: N. Role: PH STNDBY
Instances: 1 Region: region2
Regi stered instances:
udef _shpool %81

Check the configuration of a shard.

GDSCTL> config shard -shard shl
Name: shl

Shard space: shspacel

Status:

State: Depl oyed

Regi on: regionl

Connection string: shard_host_1:1521/sh1: dedi cat ed
SCAN addr ess:

ONS renote port: 0

Di sk Threshold, ns: 20

CPU Threshold, % 75

Version: 18.0.0.0

Last Failed DDL:

DDL Error: ---

Failed DDL id:

Avail ability: ONLINE

8-30

ORACLE

11.

12.

13.

14.

Chapter 8
Creating and Deploying a User-Defined SDB

Supported services

Add a global service that runs on all of the primary shards.

The oltp_rw_srvc global service is a global data service that a client can use to
connect to the sharded database. The oltp_rw_srvc service runs the OLTP
transactions on the primary shards. Likewise, the oltp_ro_srvc global service is
created to run read-only workload on the standby shards.

GDSCTL> add service -service oltp_rwsrvc -role primry

GDSCTL> config service

Nare Net wor k nane Pool Started Preferred
al |
oltp_rwsrvc oltp_rwsrvc.cust_sdb. oracdbcl oud udef_shpool No Yes

Start the oltp_rw_srvc global service.

GDSCTL> start service -service ol tp_rwsrvc

GDSCTL> status service
Service "ol tp_rw srvc. cust_sdb. oradbcl oud" has 2 instance(s). Affinity: ANYWHERE
I nstance "udef_shpool 94", name: "shl", db: "shl", region: "regionl",
status: ready.
I nstance "udef_shpool 921", name: "sh3", db: "sh3", region: "regionl",
status: ready.

Add a global service for the read-only workload to run on the standby shards.

GDSCTL> add service -service oltp_ro_srvc -role physical _standby

GDSCTL> config service

Nare Net wor k nane Pool Started Preferred
al |

oltp_rwsrvc oltp_rwsrvc.cust_sdb. oracdbcl oud cust_sdb Yes Yes
oltp_ro_srvc oltp_ro_srvc.cust_sdb. oracdbcl oud cust_sdb No Yes

Start the read-only service, and verify the status of the global services.

GDSCTL> start service -service oltp_ro_srvc

GDSCTL> status service

Service "oltp_ro_srvc. cust_sdb. oradbcl oud" has 2 instance(s). Affinity: ANYWHERE
Instance "udef_shpool 941", name: "sh2", db: "sh2", region: "region2",

status: ready.
I nstance "udef_shpool 981", name: "sh4", db: "sh4", region: "region2",

status: ready.

Service "ol tp_rw_srvc. cust _sdb. oradbcl oud" has 2 instance(s). Affinity: ANYWHERE
I nstance "udef_shpool 94", name: "shl", db: "shl", region: "regionl",

status: ready.
I nstance "udef_shpool 921", name: "sh3", db: "sh3", region: "regionl",

status: ready.

8-31

Chapter 8
Creating and Deploying a User-Defined SDB

¢ See Also:

Oracle Database Global Data Services Concepts and Administration Guide for
more information about GDSCTL command usage

8.8.2 Creating a Schema for a User-Defined SDB

Create the schema user, tablespace set, sharded tables, and duplicated tables for the
SDB. Verify that the DDLs are propagated to all of the shards, and, while connected to
the shards, verify the automatic Data Guard Broker configuration with Fast-Start
Failover.

ORACLE

1.

Connect to the shard catalog database, create the application schema user, and
grant privileges and roles to the user.

In this example, the application schema user is called app_schema.

$ sqlplus / as sysdba

SQ.> alter session enable shard ddl;

SQ.> create user app_schemn identified by app_schema_password,;
SQ> grant all privileges to app_schemg;

SQ.> grant gsmadmin_role to app_schens;

SQ.> grant select_catalog_role to app_schens;

SQL> grant connect, resource to app_scheng;

SQ.> grant dba to app_schens;

SQ.> grant execute on dbns_crypto to app_schemg;

Create tablespaces for the sharded tables.

SQL> CREATE TABLESPACE c1_tsp DATAFILE SIZE 100M aut oextend on next 10M maxsize
unlinmted extent managenent |ocal segment space nmanagement auto in
shardspace shspacel;

SQL> CREATE TABLESPACE c2_tsp DATAFILE SIZE 100M aut oextend on next 10M maxsize
unlinted extent managenent |ocal segment space nmanagement auto in
shar dspace shspace?;

If you use LOBs in any columns, you can specify tablespaces for the LOBs.

SQL> CREATE TABLESPACE | obtsl ... in shardspace shspacel;

SQL> CREATE TABLESPACE | obts2 ... in shardspace shspace2;
Create a tablespace for the duplicated tables.

In this example the duplicated table is the Products table in the sample
Customers-Orders-Products schema.

SQL> CREATE TABLESPACE products_tsp datafile size 100m aut oext end
on next 10M maxsize unlimted extent management |ocal uniformsize 1m

Create a sharded table for the root table.

In this example, the root table is the Customers table in the sample Customers-
Orders-Products schema.

SQ.> CONNECT app_schena/ app_schenma_password

SQL> ALTER SESSI ON ENABLE SHARD DDL;

8-32

Chapter 8
Creating and Deploying a User-Defined SDB

SQL> CREATE SHARDED TABLE Custoners
(

Custld VARCHAR2(60) NOT NULL,
Cust Profile VARCHAR2(4000),
Passwd RAW 60) ,

CONSTRAI NT pk_cust oners PRI MARY KEY (Custld),
CONSTRAINT j son_customers CHECK (CustProfile IS JSON)

) PARTI TI ON BY RANGE (Cust!d)

(PARTITION ckl values less than ('m) tablespace ckl_tsp,
PARTITION ck2 val ues less than (MAXVALUE) tabl espace ck2_tsp

Note:

If any columns in the sharded tables contain LOBs, the CREATE
SHARDED TABLE statement can include the LOB tablespaces, as shown
here.

SQ.> CREATE SHARDED TABLE Custoners
(

Custld VARCHAR2(60) NOT NULL,
Cust Profile VARCHAR2(4000),

Passwd RAW 60) ,

image BLOB,

CONSTRAINT pk_cust oners PRI MARY KEY (Custld),
CONSTRAINT j son_customers CHECK (CustProfile I'S JSON)
) PARTI TI ON BY RANGE (Custld)
(PARTITION ckl values less than ('m) tabl espace ckl_tsp
lob(image) store as (tablespace lobtsl),
PARTI TI ON ck2 val ues | ess than (MAXVALUE) tabl espace ck2_tsp
lob(image) store as (tablespace lobts2)

K

6. Create a sharded table for the other tables in the table family.

In this example, sharded tables are created for the Orders and Lineltems tables in
the sample Customers-Orders-Products schema.

The Orders sharded table is created first:

SQL> CREATE SHARDED TABLE Orders

(
Orderld I NTEGER NOT NULL,
Custld VARCHAR2(60) NOT NULL,
OrderDate TIMESTAMP NOT NULL,
Suntot al NUMBER(19, 4),
St atus CHAR(4),
CONSTRAINT pk_orders PRI MARY KEY (Custld, Orderld),
CONSTRAINT fk_orders_parent FOREIGN KEY (Custld)
REFERENCES Custoners ON DELETE CASCADE

) PARTI TI ON BY REFERENCE (fk_orders_parent);

Create the sequence used for the Orderld column.

SQL> CREATE SEQUENCE Orders_Seq;

Create a sharded table for Lineltems

ORACLE 8-33

ORACLE

Chapter 8
Creating and Deploying a User-Defined SDB

SQL> CREATE SHARDED TABLE Lineltens
(

Orderld | NTEGER NOT NULL,
Custld VARCHAR2(60) NOT NULL,
Product 1 d | NTEGER NOT NULL,
Price NUMBER(19, 4),

Qy NUMBER,

CONSTRAINT pk_itenms PRI MARY KEY (Custld, Orderld, Productld),
CONSTRAINT fk_itens_parent FOREIGN KEY (Custld, Orderld)
REFERENCES Orders ON DELETE CASCADE

) PARTI TI ON BY REFERENCE (fk_itenms_parent);

Create any required duplicated tables.
In this example, the Products table is a duplicated object.

SQL> CREATE DUPLI CATED TABLE Products
(
Productd | NTEGER GENERATED BY DEFAULT AS | DENTITY PRI MARY KEY,
Nare VARCHAR2(128) ,
DescrUri VARCHAR2(128),
LastPrice NUMBER(19, 4)
) TABLESPACE products_tsp;

From the shard director host, verify that there were no failures during the creation
of the tablespaces.

@DSCTL> show ddl
id DDL Text Fai |l ed shards

3 grant create table, create procedure,...
4 grant unlimted tabl espace to app_schema
5 grant select_catalog_role to app_schema
6 create tabl espace cl_tsp DATAFILE SIZ. ..
7 Create tabl espace c2_tsp DATAFILE SIZ...
8 CREATE SHARDED TABLE Customers (Cu...

9 CREATE SHARDED TABLE Orders (Order...

10 CREATE SHARDED TABLE Lineltens (O...

11 create tabl espace products_tsp datafi...

12 CREATE MATERI ALI ZED VI EW " APP_SCHEMA". . .
Note:

The show ddl command output might be truncated. You can run SELECT
ddl _text FROM gsmadnin_internal .ddl _requests on the catalog to see the full
text of the statements.

Verify that there were no DDL errors on each of the shards.

Runthe confi g shardand confi g chunks commands on each shard in your
configuration.

@DSCTL> config shard -shard shl

Narme: shl

Shard space: shspacel

Status:

State: Depl oyed

Regi on: regionl

Connection string: shard_host _1:1521/shl: dedi cat ed

8-34

ORACLE

10.

11.

Chapter 8
Creating and Deploying a User-Defined SDB

SCAN addr ess:

ONS renote port: 0

Di sk Threshold, ns: 20
CPU Threshold, % 75
Version: 18.0.0.0
Last Failed DDL:

DDL Error: ---

Failed DDL id:

Avail ability: ONLINE
Rack:

Supported services

Name Preferred Status
oltp_ro_srvc Yes Enabl ed
ol tp_rw.srvc Yes Enabl ed

GDSCTL> config chunks

Chunks

Dat abase From To
shl 1 1
sh2 1 1
sh3 2 2
sh4 2 2

Verify that the tablespaces you created for the sharded table family and the
tablespaces you created for the duplicated tables are created on all of the shards.

The number of tablespaces in the tablespace set is based on the number of
chunks you specified in the cr eat e shar dcat al og command.

The tablespace set with the first 6 chunks of the 12 that were specified in the
shard catalog creation example, and the duplicated Products tablespace is shown
in the following example.

$ sqlplus / as sysdba

SQ> sel ect TABLESPACE_NAME, BYTES/ 1024/ 1024 MB
fromsys.dba_data_files
order by tabl espace_nane;

TABLESPACE_NAVE VB

C1 TSP 100

PRODUCTS_TSP 10
SYSAUX 722.1875
SYSEXT 39
SYSTEM 782. 203125
SYS_SHARD TS 100
uDL 470

7 rows sel ected.

Repeat this step on all of the shards in your configuration.
Verify that the chunks and chunk tablespaces were created on all of the shards.

SQL> set linesize 140
SQL> colum table nanme format a20
SQ> col um tabl espace_nane format a20

8-35

ORACLE

12.

13.

Chapter 8
Creating and Deploying a User-Defined SDB

SQ.> col um partition_nane format a20
SQ> show par aneter db_uni que_nane

NAME TYPE VALUE

db_uni que_name string shl

SQL> sel ect table_nane, partition_nane, tablespace_nane
fromdba_tab_partitions

where tabl espace_nane |ike ' COFSP_SET_1'

order by tabl espace_nane;

TABLE_NAME PARTI TI ON_NAME ~ TABLESPACE_NAME
CUSTOMERS KL CL_TSP
ORDERS KL CL_TSP
LI NEI TEMB KL CL_TSP

Repeat this step on all of the shards in your configuration.
Verify that the sharded and duplicated tables were created.

Log in as the application schema user on the shard catalog database and each of
the shards.

The following example shows querying the tables on a database shard as the
app_schema user.

$ sql pl us app_schena/ app_schema_passwor d
Connect ed.

SQ.> sel ect table_nanme from user_tables;

TABLE_NAME

ORDERS
LI NEI TEMS
PRODUCTS
USLOGS_PRODUCTS

Verify that the Data Guard Broker automatic Fast-Start Failover configuration was
done.

$ ssh os_username@har d_host _1
$ dgnorl

DGMERL> connect sys/ passwor d
Connected to "shl"
Connected as SYSDG.
DGMGRL> show configuration
Configuration - shl

Protection Mde: MaxPerformance

Menber s:

shl - Primary database

sh2 - (*) Physical standby database

Fast-Start Failover: ENABLED

Configuration Status:

8-36

ORACLE

SUCCESS

Chapter 8

Creating and Deploying a User-Defined SDB

(status updated 15 seconds ago)

DGAVGRL> show dat abase shl

Dat abase - shl
Rol e: PRI MARY
Intended State: TRANSPORT- ON

I nstance(s):

shl

Dat abase Status:

SUCCESS

DAVGRL> show dat abase sh2

Dat abase - sh2
Rol e: PHYSI CAL STANDBY
Intended State: APPLY- ON

Transport Lag:
Apply Lag:

Aver age

Apply Rate: 2.00 KByte/s

Real Tinme Query: ON
I nstance(s):

sh2

Dat abase Status:

SUCCESS

DGVERL> show fast _start fail over

Fast-Start

Thr eshol
Tar get :

bserver:

Lag Lini

0 seconds (conputed 0 seconds ago)
0 seconds (conputed O seconds ago)

Fai | over: ENABLED
d: 30 seconds
sh2
shard_direct or _host
t: 30 seconds

Shutdown Primary: TRUE

Aut 0-r ei

nstate: TRUE

Observer Reconnect: (none)
Observer Override: FALSE

Configurabl e Failover Conditions
Heal th Conditions:
Corrupted Controlfile
Corrupted Dictionary

St uck

I naccessi bl e Logfile
Archi ver
le Wite Errors

Dat af i

Oracle Error Conditions:

(none)

YES
YES

YES

14. Locate the Fast-Start Failover observers.

Connect to the shard catalog database and run the following commands:

$ ssh oracl e@hard6

$ ps -ef |
oracle

grep dgnyrl
8210 8089 0 22:18 pts/4

00: 00: 00 grep dgmyrl

8-37

Chapter 8
Creating and Deploying a Composite SDB

oracle 20189 1 002577 00: 02: 40 dgngr| -del ete_script
@ u01/ app/ oracl e/ product/ 18. 0. 0/ gsmhone_1/ net wor k/ adm n/ gsm observer _1. cfg
oracle 20193 1 002:57°? 00: 02: 43 dgngr| -del ete_script

@ u01/ app/ oracl e/ product/ 18. 0. 0/ gsmhone_1/ net wor k/ adm n/ gsm observer _2. cfg

" See Also:

Oracle Database Global Data Services Concepts and Administration Guide for
information about GDSCTL command usage

8.9 Creating and Deploying a Composite SDB

To deploy a composite SDB you must install the required Oracle Sharding software
components, configure the objects for a composite SDB, and create the schema.

The composite sharding method allows you to create multiple shardspaces for
different subsets of data in a table partitioned by consistent hash. A shardspace is set
of shards that store data that corresponds to a range or list of key values.

The following topics describe the tasks for deploying a composite SDB.

* Deploying a Composite SDB
To deploy a composite SDB you create shardgroups and shards, execute the
DEPLOY command, and create role-based global services.

* Creating a Schema for a Composite SDB
Create the schema user, tablespace set, sharded tables, and duplicated tables for
the SDB. Verify that the DDLs are propagated to all of the shards, and, while
connected to the shards, verify the automatic Data Guard Broker configuration
with Fast-Start Failover.

8.9.1 Deploying a Composite SDB

ORACLE

To deploy a composite SDB you create shardgroups and shards, execute the DEPLOY
command, and create role-based global services.

The examples used in this deployment procedure are based on a global distribution
scenario where separate shardspaces and shardgroups are created for America and
Europe.

1. Connect to a shard director host, and verify the environment variables.

$ ssh os_user @hard_director_home

$ env |grep ORA

ORACLE_BASE=/ u01/ app/ or acl e

ORACLE_HOVE=/ u01/ app/ or acl e/ product/ 18. 0. 0/ gsmhone_1

2. Set the global service manager for the current session, and specify the credentials
to administer it.

$ gdsct|
GDSCTL> set gsm -gsm sharddirectorl
GDSCTL> connect nysdbadni n/ nysdbadm n_password

3. Add shardspaces and shardgroups for each customized grouping of shards your
business case requires.

8-38

ORACLE

Chapter 8
Creating and Deploying a Composite SDB

In this example the shardspaces and shardgroups are created for the America and
Europe customers. You can choose your own names.

GDSCTL> add shardspace -shardspace cust_anerica

GDSCTL> add shardgroup -shardspace cust_anerica -shardgroup anerica_shgrpl

-depl oy_as primary -region regionl

GDSCTL> add shardspace -shardspace cust_europe

GDSCTL> add shardgroup -shardspace cust_europe -shardgroup europe_shgrpl

-depl oy_as primary -region regi on2

Note:

For production deployments, additional shardgroups must be created for
high availability using the add shar dgr oup command

Verify the shardspace and shardgroup configurations.

GDSCTL> confi g shardspace

SHARDSPACE Chunks
cust _anerica 12
cust _europe 12
shar dspaceor a 12

@DSCTL>confi g shardgroup

Shard G oup Chunks Regi on
aneri ca_shgrpl 12 regionl
europe_shgrpl 12 region2

Verify the sharded database configuration.

GDSCTL> config

Regi ons

regi onl
regi on2

sharddirectorl
sharddirector2

Shar ded Dat abase

cust _sdb_conp

Dat abases

anmeri ca_shgrpl
europe_shgrpl

Shard spaces

SHARDSPACE

cust _anerica
cust _europe

8-39

Chapter 8
Creating and Deploying a Composite SDB

cust _anerica
cust _europe
shar dspaceor a

Servi ces

Command hj ect Status

Nane: oradbcl oud
Master GSM sharddirectorl
DDL sequence #: 0

6. Add each shard’s host address to the valid node checking for registration (VNCR)
list in the catalog, then create the shard in either the primary or standby
shardgroup, as shown in the following example.

Note:

The valid node checking for registration (VNCR) feature provides the ability
to configure and dynamically update a set of IP addresses, host names, or
subnets from which registration requests are allowed by the shard
directors. Database instance registration with a shard director succeeds
only when the request originates from a valid node. By default, the shard
management tier (based on Oracle Global Data Services framework)
automatically adds a VNCR entry for the host on which a remote database
is running each time create shard or add shard is executed. The automation
(called auto-VNCR) finds the public IP address of the target host, and
automatically adds a VNCR entry for that IP address. If the host has
multiple public IP addresses, then the address on which the database
registers may not be the same as the address which was added using
auto-VNCR and , as a result, registration many be rejected. If the target
database host has multiple public IP addresses, it is advisable that you
configure VNCR manually for this host using the add i nvi t ednode or add

i nvi t edsubnet commands in GDSCTL.

If there are multiple net-cards on the target host (/ shin/i f confi g returns
more than one public interface), use add i nvi t ednode to be safe (after
finding out which interface will be used to route packets).

If there is any doubt about registration, then use confi g vncr and use add
i nvi t ednode as necessary. There is no harm in doing this, because if the

node is added already, auto-VNCR ignores it, and if you try to add it after
auto-VNCR already added it, you will get a warning stating that it already
exists.

The example shows how to create four shards, two of which are in the America
shardgroup and two in the Europe shardgroup. The os_credential is the operating
system credential you created on each host.

ORACLE 8-40

ORACLE

8.

Chapter 8
Creating and Deploying a Composite SDB

While creating the shards, you can also set the SYS password in the CREATE SHARD
using - sys_passwor d as shown in the following example. This sets the SYS
password after the shards are created when running DEPLOY. There are other
optional parameters for CREATE SHARD that allow you to customize the database
parameters, storage and file locations, listener port numbers, and so on, which are
documented in the Oracle Database Global Data Services Concepts and
Administration Guide appendices.

@DSCTL> add i nvitednode shard_host 1
@DSCTL> create shard -shardgroup america_shgrpl -destination shard_host 1
-credential os_credential-sys_password

GDSCTL> add i nvitednode shard_host 2
@DSCTL> create shard -shardgroup america_shgrpl -destination shard_host 2
-credential os_credential-sys_password

GDSCTL> add i nvitednode shard_host 3
@DSCTL> create shard -shardgroup europe_shgrpl -destination shard_host_3
-credential os_credential-sys_password

GDSCTL> add i nvitednode shard_host 4
@DSCTL> create shard -shardgroup europe_shgrpl -destination shard_host 4
-credential os_credential-sys_password

If you are using the ADD SHARD method described in Introduction to SDB
Deployment, use the following command instead of the CREATE SHARD commands in
the example above. If the shard database to be added is a pluggable database
(PDB), you must use the - cdb option to ADD SHARD to specify which container
database (CDB) the PDB shard is in. In addition, ADD CDB must be used before the
ADD SHARD command to add the CDB to the catalog. See Oracle Database Global
Data Services Concepts and Administration Guide for the syntax for ADD CDB and
ADD SHARD. Note that in Oracle Database 18c, only one PDB in each CDB is
allowed to be a shard.

GDSCTL> add shard —shardgroup anerica_shgrpl
—connect shard_host: TNS | i stener_port/shard_dat abase_nane
—pwd GSMUSER _passwor d

Check the configuration from a shard director.

Note that the shard names, shl, sh2, sh3, and sh4, are system generated shard
names.

GDSCTL> config shard

Name Shard G oup Status State Regi on Avail ability
shl anerica_shgrpl U none regionl
sh2 anerica_shgrpl U none regionl
sh3 europe_shgrpl U none regi on2
sh4 europe_shgrpl U none regi on2

GDSCTL> config vner
Name Goup ID

shard_host _2
shard_host _3
shard_host 4
shard_catal og_host _| P

Run the DEPLOY command to create the shards.

8-41

ORACLE

10.

11.

12.

Chapter 8
Creating and Deploying a Composite SDB

GDSCTL> depl oy

The DEPLOY command takes some time to run, approximately 15 to 30 minutes.
The DEPLOY command creates the shards using DBCA.
Verify that all of the shards are deployed.

@DSCTL> config shard

Nare Shard G oup Status State Regi on Availability
shl aneri ca_shgrpl & Depl oyed regionl ONLINE
sh2 aneri ca_shgrpl & Depl oyed regionl ONLINE
sh3 europe_shgrpl & Depl oyed region2 ONLINE
sh4 europe_shgrpl & Depl oyed region2 ONLINE

Verify that all of the shards are registered.

@DSCTL> dat abases
Dat abase: "shl" Registered: Y State: Ok ONS: N. Role: PRI MARY Instances: 1
Regi on: regionl
Regi stered instances:
cust _sdb_comp%
Dat abase: "sh2" Registered: Y State: Ok ONS: N. Role: PRI MARY Instances: 1
Regi on: regionl
Regi stered instances:
cust _sdb_conmp9d 1
Dat abase: "sh3" Registered: Y State: Ok ONS: N. Role: PRI MARY Instances: 1
Regi on: region2
Regi stered instances:
cust _sdb_conmp921
Dat abase: "sh4" Registered: Y State: Ok ONS: N. Role: PRI MARY Instances: 1
Regi on: region2
Regi stered instances:
cust _sdb_conmp9%31

Check the configuration of a shard.

@DSCTL> config shard -shard shl

Narme: shl

Shard G oup: anerica_shgrpl
Status:

State: Depl oyed

Regi on: regionl

Connection string: shardl: 1521/ shl: dedi cat ed
SCAN addr ess:

ONS renote port: 0

Di sk Threshold, ns: 20

CPU Threshold, % 75
Version: 18.0.0.0

Last Failed DDL:

DDL Error: ---

Failed DDL id:

Avail ability: ONLINE

Supported services

Nane Preferred
Status

Add a global service that runs on all of the primary shards.

8-42

13.

Chapter 8
Creating and Deploying a Composite SDB

The oltp_rw_srvc global service is the global data services listener that helps route
a connection from the client to the actual database. The oltp_rw_srvc service runs
the OLTP transactions on the primary shards.

GDSCTL> add service -service ol tp_rw.srvc
GDSCTL> config service

Nane Net wor k nane Pool Started Preferred
al |

oltp_rwsrvc oltp_rwsrvc.cust_sdb_conp.or cust_sdb_conp No
Yes
adbcl oud

Start the oltp_rw_srvc global service.

GDSCTL> start service -service ol tp_rwsrvc

GDSCTL> status service
Service "oltp_rw srvc. cust_sdb_conp. oradbcl oud" has 4 instance(s).
Affinity: ANYWHERE

Instance "cust_sdb_conp%d", name: "shl", db: "shl", region: "regionl",
status: ready.

Instance "cust_sdb_conp%d 1", name: "sh2", db: "sh2", region: "regionl",
status: ready.

I nstance "cust_sdb_conp%®1", name: "sh3", db: "sh3", region: "region2",
status: ready.

Instance "cust_sdb_conp¥81", name: "sh4", db: "sh4", region: "region2",
status: ready.

" See Also:

Oracle Database Global Data Services Concepts and Administration Guide

8.9.2 Creating a Schema for a Composite SDB

Create the schema user, tablespace set, sharded tables, and duplicated tables for the
SDB. Verify that the DDLs are propagated to all of the shards, and, while connected to
the shards, verify the automatic Data Guard Broker configuration with Fast-Start
Failover.

ORACLE

1.

Connect to the shard catalog host, and set the ORACLE_SID to the shard catalog
name.

Connect to the shard catalog database, create the application schema user, and
grant privileges and roles to the user.

In this example, the application schema user is called app_schema.

$ sqlplus / as sysdba

SQ> connect / as sysdba

SQL> al ter session enable shard ddl;

SQL> create user app_schema identified by app_schema_password;
SQ.> grant connect, resource, alter session to app_scheng;
SQ.> grant execute on dbms_crypto to app_schens,;

SQ> grant create table, create procedure, create tablespace,

8-43

ORACLE

Chapter 8
Creating and Deploying a Composite SDB

create materialized viewto app_schens,

SQ> grant unlimted tabl espace to app_scheng;
SQL> grant select_catal og_role to app_schens;
SQ.> grant all privileges to app_schens,;

SQ.> grant gsmadmin_role to app_scheng;

SQ.> grant dba to app_schens;

Create tablespace sets for the sharded tables.

SQL> CREATE TABLESPACE SET
TSP_SET 1 in shardspace cust_anerica using tenplate
(datafile size 100m aut oextend on next 10M maxsize
unlimted extent managenent
| ocal segnment space management auto);

SQL> CREATE TABLESPACE SET
TSP_SET 2 in shardspace cust_europe using tenplate
(datafile size 100m aut oextend on next 10M maxsize
unlimted extent managenent
| ocal segnment space management auto);

Specifying the shardspace is optional when creating the tablespace set. If the
shardspace is not specified in the command, the default shardspace is used.

If you use LOBs in any columns, you can specify tablespace sets for the LOBs.

SQL> CREATE TABLESPACE SET LOBTSL in shardspace cust_america ...

SQ.> CREATE TABLESPACE SET LOBTS2 in shardspace cust_europe ...

Note:

Tablespace sets for LOBs cannot be specified at the subpartitition level in
composite sharding.

Create a tablespace for the duplicated tables.

In this example the duplicated table is the Products table in the sample
Customers-Orders-Products schema.

CREATE TABLESPACE products_tsp datafile size 100m aut oextend on next 10M
maxsize unlimted extent management |ocal uniformsize 1m

Create a sharded table for the root table.

In this example, the root table is the Customers table in the sample Customers-
Orders-Products schema.

connect app_schema/ app_schena_password
al ter session enable shard ddl;

CREATE SHARDED TABLE Cust omers
(

Custld VARCHAR2(60) NOT NULL,
FirstName VARCHAR2(60),

Last Nane VARCHAR2(60) ,

C ass VARCHAR2(10) ,

Geo VARCHAR2(8) ,

Cust Profile VARCHAR2(4000),

Passwd RAW 60) ,

CONSTRAINT pk_cust oners PRI MARY KEY (Custld),

8-44

ORACLE

7.

Chapter 8
Creating and Deploying a Composite SDB

CONSTRAINT json_customers CHECK (CustProfile IS JSON)
) partitionset by list(GEQ
partition by consistent hash(Custld)
partitions auto
(partitionset anerica values ("AMERICA') tablespace set tsp_set 1,
partitionset europe values ('EUROPE) tabl espace set tsp_set 2

)s

Note:

If any columns in the sharded tables contain LOBs, the CREATE
SHARDED TABLE statement can include the LOB tablespace set, as
shown here.

CREATE SHARDED TABLE Cust oners
(

Custld VARCHAR2(60) NOT NULL,
FirstName VARCHAR2(60),

Last Nane VARCHAR2(60) ,

C ass VARCHAR2(10) ,

Ceo VARCHAR2(8) NOT NULL,
Cust Profile VARCHAR2(4000),

Passwd RAW 60) ,

image BLOB,

CONSTRAI NT pk_cust oners PRI MARY KEY (Custld),
CONSTRAINT j son_customers CHECK (CustProfile I'S JSON)

) partitionset by list(GEOQ

partition by consistent hash(Custld)

partitions auto

(partitionset anerica values (' AMERICA') tabl espace set tsp_set_1
lob(image) store as (tablespace set lobtsl),

partitionset europe values ('EUROPE) tabl espace set tsp_set 2
lob(image) store as (tablespace set lobts2));

Create a sharded table for the other tables in the table family.

In this example, sharded tables are created for the Orders and Lineltems tables in
the sample Customers-Orders-Products schema.

Create the sequence used for the Orderld column.

CREATE SEQUENCE Orders_Seq;

The Orders sharded table is created first:

CREATE SHARDED TABLE Orders
(
Orderld I NTEGER NOT NULL,
Custld VARCHAR2(60) NOT NULL,
OrderDate TIMESTAMP NOT NULL,
Suniot al NUVBER(19, 4) ,
Status CHAR(4),
constraint pk_orders primary key (Custld, Oderld),
constraint fk_orders_parent foreign key (Custld)
references Custoners on del ete cascade
) partition by reference (fk_orders_parent);

Create a sharded table for Lineltems

8-45

ORACLE

10.

Chapter 8
Creating and Deploying a Composite SDB

CREATE SHARDED TABLE Li nel t ens
(

Orderld | NTEGER NOT NULL,
Custld VARCHAR2(60) NOT NULL,
Product I d | NTEGER NOT NULL,
Price NUVBER(19, 4),

Qy NUMBER,

constraint pk_itens primary key (Custld, Oderld, Productld),
constraint fk_items_parent foreign key (Custld, Orderld)
references Orders on del ete cascade
) partition by reference (fk_itens_parent);

Create any required duplicated tables.
In this example, the Products table is a duplicated object.

CREATE DUPLI CATED TABLE Products

(
Productd | NTEGER GENERATED BY DEFAULT AS | DENTITY PRI MARY KEY,

Nane VARCHAR2(128) ,
DescrUri VARCHAR2(128),
LastPrice NUMBER(19, 4)

) tabl espace products_tsp;

From the shard director host, verify that there were no failures during the creation
of the tablespaces.

@DSCTL> show ddl

id DDL Text Fai |l ed shards
11 CREATE TABLESPACE SET TSP_SET 2 in s...
12 CREATE TABLESPACE products_tsp datafi...
13 CREATE SHARDED TABLE Customers (Cu...
14 CREATE SEQUENCE Orders_Seq;

15 CREATE SHARDED TABLE Orders (Order. ..
16 CREATE SHARDED TABLE Lineltens (O...
17 create database |ink "PRODUCTSDBLI NK@ . .
18 CREATE MATERI ALI ZED VI EW " PRODUCTS" ..
19 CREATE OR REPLACE FUNCTI ON PasswCreat. . .
20 CREATE OR REPLACE FUNCTI ON PasswCheck. . .

Verify that there were no DDL errors on each of the shards.

Run the confi g shardand config chunks commands on each shard in your
configuration.

GDSCTL> config shard -shard shl

Name: shl

Shard G oup: anerica_shgrpl
Status: Ok

State: Depl oyed

Regi on: regionl

Connection string: shardl: 1521/ shl: dedi cat ed
SCAN addr ess:

ONS renote port: O

Di sk Threshold, ms: 20

CPU Threshold, % 75
Version: 18.0.0.0

Last Failed DDL:

DDL Error: ---

Failed DDL id:

Avai l ability: ONLINE

8-46

ORACLE

11.

12.

Chapter 8
Creating and Deploying a Composite SDB

Supported services

Narre Preferred
Status

ol tp_rw.srvc Yes

Enabl ed

GDSCTL> config chunks

Chunks

Dat abase From To
shl 1 6
sh2 7 12
sh3 1 6
sh4 7 12

Verify that the tablespaces of the tablespace set you created for the sharded table
family and the tablespaces you created for the duplicated tables are created on all
of the shards.

The number of tablespaces in the tablespace set is based on the number of
chunks you specified in the cr eat e shar dcat al og command.

The tablespace set with the first 6 chunks of the 12 that were specified in the
shard catalog creation example, and the duplicated Products tablespace is shown
in the following example on the shard_host 1.

$ sqlplus / as sysdba

SQ> sel ect TABLESPACE_NAME, BYTES/ 1024/ 1024 MB
fromsys. dba_data_files
order by tabl espace_nane;

TABLESPACE_NAVE VB
C001TSP_SET 1 100
C002TSP_SET 1 100
C003TSP_SET 1 100
C004TSP_SET 1 100
C005TSP_SET 1 100
C006TSP_SET 1 100
PRODUCTS_TSP 100
SYSAUX 650
SYSTEM 890
SYS_SHARD TS 100
TSP_SET 1 100
TABLESPACE_NAVE VB
TSP_SET 2 100
UNDOTBSL 110
USERS 5

14 rows sel ected.

Repeat this step on all of the shards in your configuration.

Verify that the chunks and chunk tablespaces were created on all of the shards.

8-47

ORACLE

13.

14.

Chapter 8
Creating and Deploying a Composite SDB

SQ> set |inesize 140

SQ.> col umm tabl e_nanme formt a20

SQ.> col um tabl espace_nane format a20
SQ.> col um partition_nane format a20
SQ> show par aneter db_uni que_nane

NAMVE TYPE VALUE

db_uni que_nane string sh2

SQL> sel ect table_nane, partition_nane, tablespace_nane
fromdba_tab_partitions

where tabl espace_nane |ike ' COFSP_SET_1'

order by tabl espace_nane;

TABLE_NAME PARTI TI ON_NAME TABLESPACE_NAVE
LI NEI TEMB CUSTOMERS_P7 C007TSP_SET 1
CUSTOVERS CUSTOMERS_P7 C007TSP_SET 1
ORDERS CUSTOMERS_P7 C007TSP_SET 1
CUSTOVERS CUSTOMERS_P8 C008TSP_SET 1

LI NEI TEMB CUSTOMERS_P8 C008TSP_SET 1
ORDERS CUSTOMERS_P8 C008TSP_SET 1

LI NEI TEMB CUSTOMERS_P9 C009TSP_SET 1
CUSTOVERS CUSTOMERS_P9 C009TSP_SET 1
ORDERS CUSTOMERS_P9 C009TSP_SET 1
CUSTOVERS CUSTOMERS_P10 CO0ATSP_SET 1

LI NEI TEMB CUSTOMERS_P10 CO0ATSP_SET 1
TABLE_NAME PARTI TI ON_NAME TABLESPACE_NAVE
ORDERS CUSTOMERS_P10 CO0ATSP_SET 1
CUSTOVERS CUSTOMERS_P11 CO0BTSP_SET 1

LI NEI TEMB CUSTOMERS_P11 CO0BTSP_SET 1
ORDERS CUSTOMERS_P11 CO0BTSP_SET 1
CUSTOVERS CUSTOMERS_P12 C00CTSP_SET 1

LI NEI TEMB CUSTOMVERS_P12 C00CTSP_SET 1
ORDERS CUSTOMERS_P12 C00CTSP_SET 1

18 rows sel ected.

Repeat this step on all of the shards in your configuration.

Connect to the shard catalog database and verify that the chunks are uniformly
distributed.

$ sqglplus / as sysdha

SQ> set echo of f

SQ.> sel ect a.nane Shard, count(b.chunk_number) Nunber_of _Chunks
fromgsmadmi n_internal . dat abase a, gsmadmi n_internal.chunk_loc b
wher e a. dat abase_nuneb. dat abase_num group by a.nane;

SHARD NUMBER_OF _CHUNKS
shl 6
sh2 6
sh3 6
sh4 6

Verify that the sharded and duplicated tables were created.

8-48

Chapter 8
Creating and Deploying a Composite SDB

Log in as the application schema user on the shard catalog database and each of
the shards.

The following example shows querying the tables on a database shard as the
app_schema user.

$ sql pl us app_schena/ app_schema_passwor d
Connect ed.
SQ> sel ect table_nanme from user_tables;

TABLE_NAME

ORDERS
LI NEI TEMS
PRODUCTS

4 rows selected.

ORACLE 8-49

Sharded Database Lifecycle Management

Oracle Sharding provides tools and some automation for lifecycle management of a
sharded database.

The following topics describe sharded database lifecycle management in detail:

Managing the Sharding-Enabled Stack

Monitoring a Sharded Database
Sharded databases can be monitored using Enterprise Manager Cloud Control or
GDSCTL.

Backing Up and Recovering a Sharded Database
Because shards are hosted on individual Oracle databases, you can use Oracle
Maximum Availability best practices to back up and restore shards individually.

Modifying a Sharded Database Schema
When making changes to duplicated tables or sharded tables in a sharded
database, these changes should be done from the shard catalog database.

Managing Sharded Database Software Versions

Shard Management
You can manage shards in your Oracle Sharding deployment with Oracle
Enterprise Manager Cloud Control and GDSCTL.

Chunk Management
You can manage chunks in your Oracle Sharding deployment with Oracle
Enterprise Manager Cloud Control and GDSCTL.

Shard Director Management
You can add, edit, and remove shard directors in your Oracle Sharding
deployment with Oracle Enterprise Manager Cloud Control.

Region Management
You can add, edit, and remove regions in your Oracle Sharding deployment with
Oracle Enterprise Manager Cloud Control.

Shardspace Management
You can add, edit, and remove shardspaces in your Oracle Sharding deployment
with Oracle Enterprise Manager Cloud Control.

Shardgroup Management
You can add, edit, and remove shardgroups in your Oracle Sharding deployment
with Oracle Enterprise Manager Cloud Control.

Services Management
You can manage services in your Oracle Sharding deployment with Oracle
Enterprise Manager Cloud Control.

9.1 Managing the Sharding-Enabled Stack

This section describes the startup and shutdown of components in the sharded
database configuration. It contains the following topics:

ORACLE

9-1

Chapter 9
Monitoring a Sharded Database

Starting Up the Sharding-Enabled Stack
Shutting Down the Sharding-Enabled Stack

9.1.1 Starting Up the Sharding-Enabled Stack

The following is the recommended startup sequence of the sharding-enabled stack:

Start the shard catalog database and local listener.
Start the shard directors (GSMs).

Start up the shard databases and local listeners.
Start the global services.

Start the connection pools and clients.

9.1.2 Shutting Down the Sharding-Enabled Stack

The following is the recommended shutdown sequence of the sharding-enabled stack:

Shut down the connection pools and clients.

Stop the global services.

Shut down the shard databases and local listeners.
Stop the shard directors (GSMs).

Stop the shard catalog database and local listener.

9.2 Monitoring a Sharded Database

Sharded databases can be monitored using Enterprise Manager Cloud Control or
GDSCTL.

See the following topics to use Enterprise Manager Cloud Control or GDSCTL to
monitor sharded databases.

Monitoring a Sharded Database with GDSCTL
There are numerous GDSCTL CONFI Gcommands that you can use to obtain the
health status of individual shards, shardgroups, shardspaces, and shard directors.

Monitoring a Sharded Database with Enterprise Manager Cloud Control
Oracle Enterprise Manager Cloud Control lets you discover, monitor, and manage
the components of a sharded database.

Querying System Objects Across Shards
Use the SHARDS() clause to query Oracle-supplied tables to gather performance,
diagnostic, and audit data from V$ views and DBA_* views.

9.2.1 Monitoring a Sharded Database with GDSCTL

There are numerous GDSCTL CONFI Gcommands that you can use to obtain the health
status of individual shards, shardgroups, shardspaces, and shard directors.

ORACLE

Monitoring a shard is just like monitoring a normal database, and standard Oracle best
practices should be used to monitor the individual health of a single shard. However, it
is also important to monitor the overall health of the entire sharded environment. The

9-2

Chapter 9
Monitoring a Sharded Database

GDSCTL commands can also be scripted and through the use of a scheduler and can
be done at regular intervals to help ensure that everything is running smoothly. When
using Oracle GoldenGate for replication it is also important to monitor the lag of each

replication stream.

¢ See Also:

Oracle Database Global Data Services Concepts and Administration Guide for
information about using the GDSCTL CONFI G commands

9.2.2 Monitoring a Sharded Database with Enterprise Manager Cloud

Control

ORACLE

Oracle Enterprise Manager Cloud Control lets you discover, monitor, and manage the
components of a sharded database.

Sharded database targets are found in the All Targets page.

Figure 9-1 Sharded Databases in the All Targets Refine Search pane

ORACLE’ Enterprise Manager

All Targets

Refine Search

A Target Type

4 Cloud
Cloud (1)

4 Databases

Database Instance (20)
Shard Director (4)

Sharded Database (4)

A Groups, Systems and Services

Database System (15)

The target home page for a sharded database shows you a summary of the sharded
database components and their statuses.

To monitor sharded database components you must first discover them. See

Discovering Sharded Database Components for more information.

9-3

Chapter 9
Monitoring a Sharded Database

Summary

The Summary pane, in the top left of the page, shows the following information:
* Sharded database name

* Sharded database domain name

* Shard catalog name. You can click the name to view more information about the
shard catalog.

e Shard catalog database version

* Sharding method used to shard the database

* Replication technology used for high availability
* Number and status of the shard directors

* Master shard director name. You can click the name to view more information
about the master shard director.

Figure 9-2 Sharded Database Summary pane

A Summary

Sharded Database Name employees_sdb
Sharded Database Domain Name oraclecorp
Catalog Database sdbcats
Catalog Version 12201.0
Sharding Type System-managed
Replication Type Data Guard
Shard Directors 1 (1)

Master Shard Director sharddirectors

Shard Load Map

The Shard Load Map, in the upper right of the page, shows a pictorial graph illustrating
how transactions are distributed among the shards.

ORACLE 9-4

Chapter 9
Monitoring a Sharded Database

Figure 9-3 Sharded Database Shard Load Map

4 Shard Load Map

Instance: shard2nqu.us.oracle.com

Total Active Sessions - 0.01 Total Active Load: 0.005 active sessions View Ly
Load Summary
CPU:0.001
10: 0.001
WAIT: 0.003
shardZngu.us.oracle.com : 0.00 =shard1ngu.us.oracle.:

)

You can select different View Levels above the graph.

e Database

The database view aggregates database instances in Oracle RAC cluster
databases into a single cell labeled with the Oracle RAC cluster database target
name. This enables you to easily compare the total database load in Oracle RAC
environments.

e |nstance

The instance view displays all database instances separately, but Oracle RAC
instances are grouped together as sub-cells of the Oracle RAC database target.
This view is essentially a two-level tree map, where the database level is the
primary division, and the instance within the database is the secondary division.
This allows load comparison of instances within Oracle RAC databases; for
instance, to easily spot load imbalances across instances.

* Pluggable Database

Although the PDB option is shown, PDB is not supported for Oracle Sharding in
the current release.

Notice that the cells of the graph are not identical in size. Each cell corresponds to a
shard target, either an instance or a cluster database. The cell size (its area) is
proportional to the target database's load measured in average active sessions, so
that targets with a higher load have larger cell sizes. Cells are ordered by size from left
to right and top to bottom. Therefore, the target with the highest load always appears
as the upper leftmost cell in the graph.

You can hover your mouse pointer over a particular cell of the graph to view the total
active load (I/0 to CPU ration), CPU, I/O, and wait times. Segments of the graph are
colored to indicate the dominant load:

e Green indicates that CPU time dominates the load
e Blue indicates that /O dominates the load

* Yellow indicates that WAIT dominates the load

ORACLE 9-5

ORACLE

Chapter 9
Monitoring a Sharded Database

Members

The Members pane, in the lower left of the page, shows some relevant information
about each of the components.

Figure 9-4 Sharded Database Members pane

4 Members

Shardspaces Shardgroups Shard Directors | Shards

Name Status Shardspace Shardgroup Data Guard Role Region
4 shardinqu.us.oracle.com ﬁ} shardspaceora shardgroup_east Primary
shardZnqu.us.oracle.co ﬁ} shardspaceora shardgroup_west Standby

The pane is divided into tabs for each component: Shardspaces, Shardgroups, Shard
Directors, and Shards. Click on a tab to view the information about each type of
component

Shardspaces

The Shardspaces tab displays the shardspace names, status, hnumber of chunks,
and Data Guard protection mode. The shardspace names can be clicked to reveal
more details about the selected shardspace.

Shardgroups

The Shardgroups tab displays the shardgroup names, status, the shardspace to
which it belongs, the number of chunks, Data Guard role, and the region to which
it belongs. You can click the shardgroup and shardspace names to reveal more
details about the selected component.

Shard Directors

The Shard Directors tab displays the shard director names, status, region, host,
and Oracle home. You can click the shard director names can be clicked to reveal
more details about the selected shard director.

Shards

The Shards tab displays the shard names, deploy status, status, the shardspaces
and shardgroups to which they belong, Data Guard roles, and the regions to which
they belong. In the Names column, you can expand the Primary shards to display
the information about its corresponding Standby shard. You can hover the mouse
over the Deployed column icon and the deployment status details are displayed.
You can click on the shard, shardspace, and shardgroup names to reveal more
details about the selected component.

9-6

%

Refresh Configura

east

west

Deplo
v
v

Chapter 9
Monitoring a Sharded Database

Services

The Services pane, in the lower right of the page, shows the names, status, and Data
Guard role of the sharded database services. Above the list is shown the total number
of services and an icon showing how many services are in a particular status. You can
hover your mouse pointer over the icon to read a description of the status icon.

Figure 9-5 Sharded Database Services pane

4 Services

Services 2 (4F2)

Name Status Lrfiere
Role
employees_repart_year_2015 ﬁ Physical Stan_..
employees_repor_year_2016 ‘ﬁ* Primary
Incidents

The Incidents pane displays messages and warnings about the various components in
the sharded database environment. More information about how to use this pane is in
the Cloud Control online help.

Sharded Database Menu

The Sharded Database menu, located in the top left corner, provides you with access
to administrate the sharded database components.

Target Navigation

The Target Navigation pane gives you easy access to more details about any of the
components in the sharded database.

|
E=

Clicking the navigation tree icon on the upper left corner of the page opens the Target
Navigation pane. This pane shows all of the discovered components in the sharded
database in tree form.

Expanding a shardspace reveals the shardgroups in them. Expanding a shardgroup
reveals the shards in that shardgroup.

Any of the component names can be clicked to view more details about them.

ORACLE o

Chapter 9
Monitoring a Sharded Database

Discovering Sharded Database Components

In Enterprise Manager Cloud Control, you can discover the shard catalog and
shard databases, then add the shard directors, sharded databases, shardspaces,
and shardgroups using guided discovery.

9.2.2.1 Discovering Sharded Database Components

In Enterprise Manager Cloud Control, you can discover the shard catalog and shard
databases, then add the shard directors, sharded databases, shardspaces, and
shardgroups using guided discovery.

ORACLE

As a prerequisite, you must use Cloud Control to discover the shard director hosts and
the.shard catalog database. Because the catalog database and each of the shards is a
database itself, you can use standard database discovery procedures.

Monitoring the shards is only possible when the individual shards are discovered using
database discovery. Discovering the shards is optional to discovering a sharded
database, because you can have a sharded database configuration without the

shards.

1. In Enterprise Manager Cloud Control, select Setup, choose Add Target, then
choose Add Target Manually.

2. Inthe Add Targets Manually page, click Add Using Guided Process in the Add
Non-Host Target Using Guided Process panel.

3. Inthe Add Using Guided Process dialog, locate and select Sharded Database,
and click Add.

4. Inthe Add Sharded Database: Catalog Database page, click the browse icon next
to Catalog Database to locate the SDB catalog database.

5. Inthe Select Targets dialog, click the target name corresponding to the catalog
database and click Select.
The Catalog Database and Monitoring Credentials fields are filled in if they exist.
The monitoring credential is used to query the catalog database to get the
configuration information. The monitoring user is granted
GDS_CATALOG_SELECT role and has read only privileges on the catalog
repository tables.
Click Next to proceed to the next step.
In the Add Sharded Database: Components page you are shown information
about the sharded database that is managed by the catalog database, including
the sharded database name, its domain name, the sharding method employed on
the sharded database, and a list of discovered shard directors.

6. To set monitoring credentials on a shard director, click the plus sign icon on the
right side of the list entry.
A dialog opens allowing you to set the credentials.
Click OK to close the dialog, and click Next to proceed to the next step.

7. Inthe Add Sharded Database: Review page, verify that all of the shard directors,
shardspaces, and shardgroups were discovered.

8. Click Submit to finalize the steps.

An Enterprise Manager Deployment Procedure is submitted and yo