
Oracle® Database
Using Oracle Sharding

18c
E87087-01
February 2018

Oracle Database Using Oracle Sharding, 18c

E87087-01

Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Primary Author: Virginia Beecher

Contributors: Nagesh Battula, Mark Dilman, Joseph Meeks, Nick Wagner

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

1 Overview of Oracle Sharding

1.1 About Sharding 1-1

1.2 Benefits of Sharding 1-2

1.3 Components of the Oracle Sharding Architecture 1-3

1.4 Application Suitability for Sharding 1-7

2 Sharded Database Schema Design

2.1 Sharded Tables 2-1

2.2 Sharded Table Family 2-3

2.3 Duplicated Tables 2-7

2.4 Non-Table Objects Created on All Shards 2-9

2.5 DDL Execution in a Sharded Database 2-10

2.6 DDL Syntax Extensions for the Sharded Database 2-15

2.7 Using Transparent Data Encryption with Oracle Sharding 2-19

2.7.1 Creating a Single Encryption Key on All Shards 2-20

3 Physical Organization of a Sharded Database

3.1 Sharding as Distributed Partitioning 3-1

3.2 Partitions, Tablespaces, and Chunks 3-2

4 Sharding Methods

4.1 System-Managed Sharding 4-1

4.2 User-Defined Sharding 4-4

4.3 Composite Sharding 4-6

4.4 Using Subpartitions with Sharding 4-8

5 Design Considerations for Sharded Database Applications

5.1 Considerations for Sharded Database Schema Design 5-1

iii

5.2 Developing Applications for Oracle Sharding 5-1

6 Routing in an SDB Environment

6.1 Direct Routing to a Shard 6-1

6.1.1 About Direct Routing to a Shard 6-1

6.1.2 Sharding APIs 6-2

6.2 Queries and DMLs with Proxy Routing in an SDB 6-6

6.2.1 About Proxy Routing in a Sharded Database 6-7

6.2.2 Oracle Sharding Coordinator 6-8

6.2.2.1 Resiliency of Proxy Routing 6-8

6.2.3 Querying and DMLs Using Proxy Routing 6-9

6.2.4 Proxy Routing for Single-Shard Queries 6-10

6.2.5 Proxy Routing for Multi-Shard Queries 6-10

6.2.5.1 Specifying Consistency Levels in a Multi-Shard Query 6-11

6.2.6 Supported Query Shapes in Proxy Routing 6-11

6.2.7 Execution Plans for Proxy Routing 6-14

7 Shard-Level High Availability

7.1 About Sharding and Replication 7-1

7.1.1 When To Choose Oracle GoldenGate for Shard High Availability 7-2

7.2 Using Oracle Data Guard with an SDB 7-2

7.3 Using Oracle GoldenGate with a Sharded Database 7-7

8 Sharded Database Deployment

8.1 Introduction to SDB Deployment 8-1

8.1.1 Choosing a Deployment Method 8-2

8.1.2 Using Oracle Multitenant with Oracle Sharding 8-3

8.2 Oracle Sharding Prerequisites 8-5

8.3 Installing Oracle Database Software 8-5

8.4 Installing the Shard Director Software 8-7

8.5 Creating the Shard Catalog Database 8-7

8.6 Setting Up the Oracle Sharding Management and Routing Tier 8-8

8.7 Creating and Deploying a System-Managed SDB 8-12

8.7.1 Deploying a System-Managed SDB 8-12

8.7.2 Creating a Schema for a System-Managed SDB 8-19

8.7.3 System-Managed SDB Demo Application 8-26

8.8 Creating and Deploying a User-Defined SDB 8-26

8.8.1 Deploying a User-Defined SDB 8-26

8.8.2 Creating a Schema for a User-Defined SDB 8-32

iv

8.9 Creating and Deploying a Composite SDB 8-38

8.9.1 Deploying a Composite SDB 8-38

8.9.2 Creating a Schema for a Composite SDB 8-43

9 Sharded Database Lifecycle Management

9.1 Managing the Sharding-Enabled Stack 9-1

9.1.1 Starting Up the Sharding-Enabled Stack 9-2

9.1.2 Shutting Down the Sharding-Enabled Stack 9-2

9.2 Monitoring a Sharded Database 9-2

9.2.1 Monitoring a Sharded Database with GDSCTL 9-2

9.2.2 Monitoring a Sharded Database with Enterprise Manager Cloud Control 9-3

9.2.2.1 Discovering Sharded Database Components 9-8

9.2.3 Querying System Objects Across Shards 9-9

9.3 Backing Up and Recovering a Sharded Database 9-10

9.4 Modifying a Sharded Database Schema 9-10

9.5 Managing Sharded Database Software Versions 9-11

9.5.1 Patching and Upgrading a Sharded Database 9-11

9.5.2 Upgrading Sharded Database Components 9-12

9.5.3 Downgrading a Sharded Database 9-13

9.6 Shard Management 9-13

9.6.1 About Adding Shards 9-14

9.6.2 Resharding and Hot Spot Elimination 9-14

9.6.3 Removing a Shard From the Pool 9-16

9.6.4 Adding Standby Shards 9-16

9.6.5 Managing Shards with Oracle Enterprise Manager Cloud Control 9-17

9.6.5.1 Validating a Shard 9-17

9.6.5.2 Adding Primary Shards 9-18

9.6.5.3 Adding Standby Shards 9-19

9.6.5.4 Deploying Shards 9-20

9.6.6 Managing Shards with GDSCTL 9-20

9.6.6.1 Validating a Shard 9-20

9.6.6.2 Adding Shards to a System-Managed SDB 9-21

9.6.6.3 Replacing a Shard 9-25

9.7 Chunk Management 9-28

9.7.1 About Moving Chunks 9-28

9.7.2 Moving Chunks 9-29

9.7.3 About Splitting Chunks 9-29

9.7.4 Splitting Chunks 9-30

9.8 Shard Director Management 9-30

9.8.1 Creating a Shard Director 9-31

v

9.8.2 Editing a Shard Director Configuration 9-32

9.8.3 Removing a Shard Director 9-32

9.9 Region Management 9-32

9.9.1 Creating a Region 9-33

9.9.2 Editing a Region Configuration 9-33

9.9.3 Removing a Region 9-34

9.10 Shardspace Management 9-34

9.10.1 Creating a Shardspace 9-34

9.11 Shardgroup Management 9-35

9.11.1 Creating a Shardgroup 9-35

9.12 Services Management 9-35

9.12.1 Creating a Service 9-36

10

Troubleshooting Oracle Sharding

10.1 Oracle Sharding Tracing and Debug Information 10-1

10.1.1 Enabling Tracing for Oracle Sharding 10-1

10.1.2 Where to Find Oracle Sharding Alert Logs and Trace Files 10-1

10.2 Troubleshooting Common Errors in Oracle Sharding 10-3

10.2.1 Errors During Deployment 10-3

10.2.1.1 Issues Starting Remote Scheduler Agent 10-3

10.2.1.2 Shard Director Fails to Start 10-3

10.2.1.3 Errors From Shards Created with CREATE SHARD 10-4

10.2.1.4 Issues Using Create Shard 10-4

10.2.1.5 Issues Using Deploy Command 10-5

Index

vi

Preface

This book provides information about using Oracle Sharding to create and maintain
sharded databases. It also provides information about designing applications for a
sharded database.

• Audience

• Documentation Accessibility

• Related Documents

• Conventions

Audience
This book is intended for database administrators and application developers who
work with sharded databases.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents
For more information, see the Oracle database documentation set. These books may
be of particular interest:

• Oracle Database Administrator's Guide

• Oracle Data Guard Concepts and Administration

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

7

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Convention Meaning

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Conventions

8

Changes in This Release for Oracle
Sharding

This preface contains:

• Changes in Oracle Database 18c

Changes in Oracle Database 18c
The following are changes in Using Oracle Sharding for Oracle Database 18c.

• New Features

• Other Changes

New Features
The following features are new in this release:

• User-Defined Sharding Method

• Support for PDBs as Shards

• Support for Oracle GoldenGate Replication

• Centralized Diagnostics

• Multi-Shard Query Consistency Level

• Sharding Support for JSON, LOBs and Spatial Objects

• Optimizer Enhancements for Multi-Shard Queries

• Shard Replacement

• Oracle RAC Sharding

User-Defined Sharding Method
User-defined sharding allows you to explicitly specify mapping of data to individual
shards. It is used when, because of performance, regulatory, or other reasons, certain
data needs to be stored on a particular shard and you must have full control moving
data between shards. This method allows you to define LIST or RANGE based
sharding.

See

• User-Defined Sharding for a conceptual overview of user-defined sharding

• Using Oracle Data Guard with an SDB for information about replicating a user-
defined sharded database Oracle Data Guard

• Creating and Deploying a User-Defined SDB for tasks related to configuring,
creating and deploying a user-defined sharded database

9

Support for PDBs as Shards
Use a PDB in a CDB for shards or a shard catalog database. In this release Oracle
Sharding supports a shard or shard catalog as a single PDB in a CDB. The GDSCTL
command ADD SHARD is extended and new commands ADD CDB, MODIFY CDB,
CONFIG CDB, and REMOVE CDB are implemented so that Oracle Sharding can
support a multitenant architecture.

See

• Using Oracle Multitenant with Oracle Sharding for information about how to use
PDBs as shards

• Oracle Database Global Data Services Concepts and Administration Guide for
information about the new commands

Support for Oracle GoldenGate Replication
Oracle GoldenGate is used for fine-grained multi-master replication where all shards
are writable, and each shard can be partially replicated to other shards within a
shardgroup.

See Shard-Level High Availability

Centralized Diagnostics
The SQL SHARDS() clause lets you query Oracle supplied objects, such as V$, DBA/
USER/ALL views, dictionary tables, and so on, across all shards.

See Querying System Objects Across Shards

Multi-Shard Query Consistency Level
You can use the initialization parameter MULTISHARD_QUERY_DATA_CONSISTENCY to set
different consistency levels when executing multi-shard queries.

See Specifying Consistency Levels in a Multi-Shard Query

Sharding Support for JSON, LOBs and Spatial Objects
This release enables JSON operators that generate temporary LOBs, large JSON
documents (those that require LOB Storage), Spatial Objects, Index and Operators
and Persistent LOBs to be used in a sharded environment.

The following interfaces are new or changed as part of this feature.

• Query and DML statements

Cross shard queries involving LOBs are supported.

DMLs involving more than one shard are not supported. This behavior is similar to
scalar columns.

DMLs involving a single shard are supported from coordinator.

Locator selected from a shard can be passed as bind value to the same shard.

• OCILob

Changes in Oracle Database 18c

10

All non-BFILE related OCILob APIs in a sharding environment are supported. with
some restrictions.

On the coordinator, the OCI_ATTR_LOB_REMOTE attribute of a LOB descriptor
returns TRUE if the LOB was obtained from a sharded table.

Restrictions: For APIs that take two locators as input, OCILobAppend,
OCILobCompare for example, both of the locators should be obtained from the
same shard. If locators are from different shards an error is given.

• DBMS_LOB

All non-BFILE related DBMS_LOB APIs in a sharding environment are supported,
with some restrictions. On the coordinator, DBMS_LOB.isremote returns TRUE if
the LOB was obtained from a sharded table.

Restrictions: For APIs that take two locators as input, DBMS_LOB.append and
DBMS_LOB.compare for example, both of the locators should be obtained from
the same shard. If the locators are from different shards an error given.

See Creating a Schema for a System-Managed SDB, Creating a Schema for a User-
Defined SDB, and Creating a Schema for a Composite SDB for examples of using
LOBs in sharded database deployment.

Optimizer Enhancements for Multi-Shard Queries
Various enhancements were made to improve the robustness and fault tolerance of
shard queries. The query explain plan is enhanced to display information for all shards
participating in the query.

See Supported Query Shapes in Proxy Routing and Execution Plans for Proxy Routing
for updated information about these topics.

Shard Replacement
If a shard fails and is unrecoverable, you can replace it using the ADD SHARD -REPLACE
command in GDSCTL. You can also use the -replace command option to move a
shard to new equipment for any reason.

See Replacing a Shard

Oracle RAC Sharding
Oracle RAC Sharding creates an affinity for table partitions to particular Oracle RAC
instances, and routes database requests that specify a partitioning key to the instance
that logically holds the corresponding partition. This provides better cache utilization
and dramatically reduces block pings across instances. The partitioning key can only
be added to the most performance critical requests. Requests that don’t specify the
key still work transparently and can be routed to any instance. No changes to the
database schema are required to enable this feature.

See Oracle Real Application Clusters Administration and Deployment Guide

Other Changes
The following are additional changes in the release:

• Sharding Content Moved to New Book

Changes in Oracle Database 18c

11

In Oracle Database 12c Release 2 (12.2.0.2) the Oracle Sharding content was
part of the Oracle Database Administrator’s Guide. Starting in Oracle Database
18c the Oracle Sharding content is contained in its own book, Oracle Sharding
Guide.

Changes in Oracle Database 18c

12

1
Overview of Oracle Sharding

Become familiar with the concepts related to managing a sharded database with
Oracle Sharding.

Oracle Sharding terminology, concepts, and benefits are described in the following
topics:

• About Sharding
Sharding is a data tier architecture in which data is horizontally partitioned across
independent databases.

• Benefits of Sharding
Sharding provides linear scalability and complete fault isolation for the most
demanding OLTP applications.

• Components of the Oracle Sharding Architecture
Oracle Sharding is a scalability and availability feature for suitable OLTP
applications. It enables distribution and replication of data across a pool of Oracle
databases that share no hardware or software.

• Application Suitability for Sharding
Oracle Sharding is for OLTP applications that are suitable for a sharded database.

1.1 About Sharding
Sharding is a data tier architecture in which data is horizontally partitioned across
independent databases.

Each database is hosted on dedicated server with its own local resources - CPU,
memory, flash, or disk. Each database in such configuration is called a shard. All of
the shards together make up a single logical database, which is referred to as a
sharded database (SDB).

Horizontal partitioning involves splitting a database table across shards so that each
shard contains the table with the same columns but a different subset of rows. A table
split up in this manner is also known as a sharded table.

The following figure shows a table horizontally partitioned across three shards.

1-1

Figure 1-1 Horizontal Partitioning of a Table Across Shards

Sharded Table in Three Databases

Server B Server CServer A

Server

Unsharded Table in

 One Database

Sharding is based on shared-nothing hardware infrastructure and it eliminates single
points of failure because shards do not share physical resources such as CPU,
memory, or storage devices. Shards are also loosely coupled in terms of software;
they do not run clusterware.

Shards are typically hosted on dedicated servers. These servers can be commodity
hardware or engineered systems. The shards can run on single instance or Oracle
RAC databases. They can be placed on-premises, in a cloud, or in a hybrid on-
premises and cloud configuration.

From the perspective of a database administrator, an SDB consists of multiple
databases that can be managed either collectively or individually. However, from the
perspective of the application, an SDB looks like a single database: the number of
shards and distribution of data across those shards are completely transparent to
database applications.

Sharding is intended for custom OLTP applications that are suitable for a sharded
database architecture. Applications that use sharding must have a well-defined data
model and data distribution strategy (consistent hash, range, list, or composite) that
primarily accesses data using a sharding key. Examples of a sharding key include
customer_id, account_no, or country_id.

1.2 Benefits of Sharding
Sharding provides linear scalability and complete fault isolation for the most
demanding OLTP applications.

Key benefits of sharding include:

• Linear Scalability. Sharding eliminates performance bottlenecks and makes it
possible to linearly scale performance and capacity by adding shards.

• Fault Containment. Sharding is a shared nothing hardware infrastructure that
eliminates single points of failure, such as shared disk, SAN, and clusterware, and
provides strong fault isolation—the failure or slow-down of one shard does not
affect the performance or availability of other shards.

• Geographical Distribution of Data. Sharding makes it possible to store particular
data close to its consumers and satisfy regulatory requirements when data must
be located in a particular jurisdiction.

Chapter 1
Benefits of Sharding

1-2

• Rolling Upgrades. Applying configuration changes on one shard at a time does
not affect other shards, and allows administrators to first test the changes on a
small subset of data.

• Simplicity of Cloud Deployment. Sharding is well suited to deployment in the
cloud. Shards may be sized as required to accommodate whatever cloud
infrastructure is available and still achieve required service levels. Oracle Sharding
supports on-premises, cloud, and hybrid deployment models.

Unlike NoSQL data stores that implement sharding, Oracle Sharding provides the
benefits of sharding without sacrificing the capabilities of an enterprise RDBMS. For
example, Oracle Sharding supports:

• Relational schemas

• Database partitioning

• ACID properties and read consistency

• SQL and other programmatic interfaces

• Complex data types

• Online schema changes

• Multi-core scalability

• Advanced security

• Compression

• High Availability features

• Enterprise-scale backup and recovery

1.3 Components of the Oracle Sharding Architecture
Oracle Sharding is a scalability and availability feature for suitable OLTP applications.
It enables distribution and replication of data across a pool of Oracle databases that
share no hardware or software.

Applications perceive the pool of databases as a single logical database. Applications
can elastically scale data, transactions, and users to any level, on any platform, by
adding databases (shards) to the pool. Oracle Database supports scaling up to 1000
shards.

The following figure illustrates the major architectural components of Oracle Sharding:

• Sharded database (SDB) – a single logical Oracle Database that is horizontally
partitioned across a pool of physical Oracle Databases (shards) that share no
hardware or software

• Shards - independent physical Oracle databases that host a subset of the sharded
database

• Global service - database services that provide access to data in an SDB

• Shard catalog – an Oracle Database that supports automated shard deployment,
centralized management of a sharded database, and multi-shard queries

• Shard directors – network listeners that enable high performance connection
routing based on a sharding key

Chapter 1
Components of the Oracle Sharding Architecture

1-3

• Connection pools - at runtime, act as shard directors by routing database requests
across pooled connections

• Management interfaces - GDSCTL (command-line utility) and Oracle Enterprise
Manager (GUI)

Figure 1-2 Oracle Sharding Architecture

Connection
Pools

. . .

Sharded
Database

Shard

Shard
Catalog

Shard
Directors

Sharding Key
CustomerID=28459361

Sharded Database and Shards

Shards are independent Oracle databases that are hosted on database servers which
have their own local resources: CPU, memory, and disk. No shared storage is required
across the shards.

A sharded database is a collection of shards. Shards can all be placed in one region or
can be placed in different regions. A region in the context of Oracle Sharding
represents a data center or multiple data centers that are in close network proximity.

Shards are replicated for High Availability (HA) and Disaster Recovery (DR) with
Oracle replication technologies such as Data Guard. For HA, the standby shards can
be placed in the same region where the primary shards are placed. For DR, the
standby shards are located in another region.

Global Service

A global service is an extension to the notion of the traditional database service. All of
the properties of traditional database services are supported for global services. For
sharded databases additional properties are set for global services — for example,
database role, replication lag tolerance, region affinity between clients and shards, and
so on. For a read-write transactional workload, a single global service is created

Chapter 1
Components of the Oracle Sharding Architecture

1-4

to access data from any primary shard in an SDB. For highly available shards using
Active Data Guard, a separate read-only global service can be created.

Shard Catalog

The shard catalog is a special-purpose Oracle Database that is a persistent store for
SDB configuration data and plays a key role in centralized management of a sharded
database. All configuration changes, such as adding and removing shards and global
services, are initiated on the shard catalog. All DDLs in an SDB are executed by
connecting to the shard catalog.

The shard catalog also contains the master copy of all duplicated tables in an
SDB. The shard catalog uses materialized views to automatically replicate changes to
duplicated tables in all shards. The shard catalog database also acts as a query
coordinator used to process multi-shard queries and queries that do not specify a
sharding key.

Using Oracle Data Guard for shard catalog high availability is a recommended best
practice. The availability of the shard catalog has no impact on the availability of the
SDB. An outage of the shard catalog only affects the ability to perform maintenance
operations or multi-shard queries during the brief period required to complete an
automatic failover to a standby shard catalog. OLTP transactions continue to be routed
and executed by the SDB and are unaffected by a catalog outage.

Shard Director

Oracle Database 12c introduced the global service manager to route connections
based on database role, load, replication lag, and locality. In support of Oracle
Sharding, global service managers support routing of connections based on data
location. A global service manager, in the context of Oracle Sharding, is known as a
shard director.

A shard director is a specific implementation of a global service manager that acts as a
regional listener for clients that connect to an SDB. The director maintains a current
topology map of the SDB. Based on the sharding key passed during a connection
request, the director routes the connections to the appropriate shard.

For a typical SDB, a set of shard directors are installed on dedicated low-end
commodity servers in each region. To achieve high availability, deploy multiple shard
directors. In Oracle Database 12c Release 2, you can deploy up to 5 shard directors in
a given region.

The following are the key capabilities of shard directors:

• Maintain runtime data about SDB configuration and availability of shards

• Measure network latency between its own and other regions

• Act as a regional listener for clients to connect to an SDB

• Manage global services

• Perform connection load balancing

Connection Pools

Oracle Database supports connection-pooling in data access drivers such as OCI,
JDBC, and ODP.NET. In Oracle 12c Release 2, these drivers can recognize sharding
keys specified as part of a connection request. Similarly, the Oracle Universal
Connection Pool (UCP) for JDBC clients can recognize sharding keys specified in a

Chapter 1
Components of the Oracle Sharding Architecture

1-5

connection URL. Oracle UCP also enables non-Oracle application clients such as
Apache Tomcat and WebSphere to work with Oracle Sharding.

Oracle clients use UCP cache routing information to directly route a database request
to the appropriate shard, based on the sharding keys provided by the
application. Such data-dependent routing of database requests eliminates an extra
network hop, decreasing the transactional latency for high volume OLTP applications.

Routing information is cached during an initial connection to a shard, which is
established using a shard director. Subsequent database requests for sharding keys
within the cached range are routed directly to the shard, bypassing the shard director.

Like UCP, a shard director can process a sharding key specified in a connect string
and cache routing information. However, UCP routes database requests using an
already established connection, while a shard director routes connection requests to a
shard. The routing cache automatically refreshes when a shard becomes unavailable
or changes occur to the sharding topology. For high-performance, data-dependent
routing, Oracle recommends using a connection pool when accessing data in the SDB.

Management Interfaces for an SDB

You can deploy, manage, and monitor Oracle Sharded databases with two interfaces:
Oracle Enterprise Manager Cloud Control and GDSCTL.

Cloud Control enables life cycle management of a sharded database with a graphical
user interface. You can manage and monitor an SDB for availability and performance,
and you can do tasks such as add and deploy shards, services, shard directors, and
other sharding components.

GDSCTL is a command-line interface that provides a simple declarative way of
specifying the configuration of an SDB and automating its deployment. Only a few
GDSCTL commands are required to create an SDB, for example:

• CREATE SHARDCATALOG

• ADD GSM and START GSM (create and start shard directors)

• CREATE SHARD (for each shard)

• DEPLOY

The GDSCTL DEPLOY command automatically creates the shards and their respective
listeners. In addition, this command automatically deploys the replication configuration
used for shard-level high availability specified by the administrator.

See Also:

• Oracle Database Global Data Services Concepts and Administration Guide
for information about global service managers, global services, and the
GDSCTL commands used with Oracle Sharding

• Oracle Sharding best practices white papers in the Oracle Database
section of the Oracle MAA web page

Chapter 1
Components of the Oracle Sharding Architecture

1-6

http://www.oracle.com/goto/maa

1.4 Application Suitability for Sharding
Oracle Sharding is for OLTP applications that are suitable for a sharded database.

Existing applications that were never intended to be sharded will require some level of
redesign to achieve the benefits of a sharded architecture. In some cases it may be as
simple as providing the sharding key, in other cases it may be impossible to
horizontally partition data and workload as required by a sharded database.

Many customer-facing web applications, such as e-commerce, mobile, and social
media are well suited to sharding. Such applications have a well defined data model
and data distribution strategy (hash, range, list, or composite) and primarily access
data using a sharding key. Examples of sharding keys include customer ID, account
number, and country_id. Applications will also usually require partial de-normalization
of data to perform well with sharding.

OLTP transactions that access data associated with a single value of the sharding key
are the primary use-case for a sharded database. For example, lookup and update of
a customer’s records, subscriber documents, financial transactions, e-commerce
transactions, and the like. Because all of the rows that have the same value of the
sharding key are guaranteed to be on the same shard, such transactions are always
single-shard and executed with the highest performance and provide the highest level
of consistency. Multi-shard operations are supported, but with a reduced level of
performance and consistency. Such transactions include simple aggregations,
reporting, and the like, and play a minor role in a sharded application relative to
workloads dominated by single-shard OLTP transactions.

See Also:

Design Considerations for Sharded Database Applications

Chapter 1
Application Suitability for Sharding

1-7

2
Sharded Database Schema Design

To obtain the benefits of sharding, the schema of a sharded database should be
designed in a way that maximizes the number of database requests executed on a
single shard.

The following topics describe the objects used for this purpose:

• Sharded Tables
A sharded table is a table that is partitioned into smaller and more manageable
pieces among multiple databases, called shards.

• Sharded Table Family
A sharded table family is a set of tables that are sharded in the same way.

• Duplicated Tables
In addition to sharded tables, an SDB can contain tables that are duplicated on all
shards.

• Non-Table Objects Created on All Shards
In addition to duplicated tables, other schema objects, such as users, roles, views,
indexes, synonyms, functions, procedures, and packages, and non-schema
database objects, such as tablespaces, tablespace sets, directories, and contexts,
can be created on all shards.

• DDL Execution in a Sharded Database

• DDL Syntax Extensions for the Sharded Database
Oracle Sharding introduces changes to the SQL DDL statements. DDL statements
with this syntax can only be executed against a sharded database.

• Using Transparent Data Encryption with Oracle Sharding
Oracle Sharding supports Transparent Data Encryption (TDE), but in order to
successfully move chunks in a sharded database with TDE enabled, all of the
shards must share and use the same encryption key for the encrypted
tablespaces.

2.1 Sharded Tables
A sharded table is a table that is partitioned into smaller and more manageable
pieces among multiple databases, called shards.

Oracle Sharding is implemented based on the Oracle Database partitioning feature.
Oracle Sharding is essentially distributed partitioning because it extends partitioning by
supporting the distribution of table partitions across shards.

Partitions are distributed across shards at the tablespace level, based on a sharding
key. Examples of keys include customer ID, account number, and country ID. The
following data types are supported for the sharding key:

• NUMBER

• INTEGER

2-1

• SMALLINT

• RAW

• (N)VARCHAR

• (N)CHAR

• DATE

• TIMESTAMP

Each partition of a sharded table resides in a separate tablespace, and each
tablespace is associated with a specific shard. Depending on the sharding method, the
association can be established automatically or defined by the administrator.

Even though the partitions of a sharded table reside in multiple shards, to the
application the table looks and behaves exactly the same as a partitioned table in a
single database. SQL statements issued by an application never have to refer to
shards or depend on the number of shards and their configuration.

Example 2-1 Sharded Table

The familiar SQL syntax for table partitioning specifies how rows should be partitioned
across shards. For example, the following SQL statement creates a sharded table,
horizontally partitioning the table across shards based on sharding key cust_id:

CREATE SHARDED TABLE customers
(cust_id NUMBER NOT NULL
, name VARCHAR2(50)
, address VARCHAR2(250)
, region VARCHAR2(20)
, class VARCHAR2(3)
, signup DATE
CONSTRAINT cust_pk PRIMARY KEY(cust_id)
)
PARTITION BY CONSISTENT HASH (cust_id)
PARTITIONS AUTO
TABLESPACE SET ts1
;

The preceding table is partitioned by consistent hash, a special type of hash
partitioning commonly used in scalable distributed systems. This technique
automatically spreads tablespaces across shards to provide an even distribution of
data and workload. Note that global indexes on sharded tables are not supported, but
local indexes are supported.

Tablespace Sets

Oracle Sharding creates and manages tablespaces as a unit called a tablespace set.
The PARTITIONS AUTO clause specifies that the number of partitions should be
automatically determined. This type of hashing provides more flexibility and efficiency
in migrating data between shards, which is important for elastic scalability.

A tablespace is a logical unit of data distribution in an SDB. The distribution of
partitions across shards is achieved by automatically creating partitions in tablespaces
that reside on different shards. To minimize the number of multi-shard joins, the
corresponding partitions of related tables are always stored in the same shard. Each
partition of a sharded table is stored in a separate tablespace.

Chapter 2
Sharded Tables

2-2

Note:

Only Oracle Managed Files are supported by tablespace sets.

Individual chunk tablespaces cannot be dropped or altered independently of the
entire tablespace set.

TABLESPACE SET cannot be used with the user-defined sharding method.

Chunks

The unit of data migration between shards is a chunk. A chunk is a set of tablespaces
that store corresponding partitions of all tables in a table family. A chunk contains a
single partition from each table of a set of related tables. This guarantees that related
data from different sharded tables can be moved together. The number of chunks
within each shard is specified when the SDB is created.

2.2 Sharded Table Family
A sharded table family is a set of tables that are sharded in the same way.

Often there is a parent-child relationship between database tables with a referential
constraint in a child table (foreign key) referring to the primary key of the parent table.
Multiple tables linked by such relationships typically form a tree-like structure where
every child has a single parent. A set of such tables is referred to as a table family. A
table in a table family that has no parent is called the root table. There can be only one
root table in a table family.

Note:

In Oracle Database 12c Release 2, only a single table family is supported in an
SDB.

How a Table Family Is Sharded

To illustrate sharding of a table family, consider the example of the Customers–
Orders–LineItems schema. The tables in this schema may look as shown in the
examples below. The three tables have a parent-child relationship, with customers
being the root table.

Customers table:

CustNo Name Address Location Class
--------- ---------- -------------- --------- ------
123 Brown 100 Main St us3 Gold
456 Jones 300 Pine Ave us1 Silver
999 Smith 453 Cherry St us2 Bronze

Orders table:

OrderNo CustNo OrderDate
--------- -------- -----------
4001 123 14-FEB-2013

Chapter 2
Sharded Table Family

2-3

4002 456 09-MAR-2013
4003 456 05-APR-2013
4004 123 27-MAY-2013
4005 999 01-SEP-2013

LineItems table:

LineNo OrderNo CustNo StockNo Quantity
------ ------- ------ ------- --------
40011 4001 123 05683022 1
40012 4001 123 45423609 4
40013 4001 123 68584904 1
40021 4002 456 05683022 1
40022 4002 456 45423509 3
40022 4003 456 80345330 16
40041 4004 123 45423509 1
40042 4004 123 68584904 2
40051 4005 999 80345330 12

The tables can be sharded by the customer number, CustNo, in the Customers table,
which is the root. The shard containing data pertaining to customer 123 is shown in the
following example tables.

Customers table:

CustNo Name Address Location Class
--------- ---------- -------------- ---------- ------
123 Brown 100 Main St us3 Gold

Orders table:

OrderNo CustNo OrderDate
--------- -------- -----------
4001 123 14-FEB-2013
4004 123 27-MAY-2013

LineItems table:

LineNo OrderNo CustNo StockNo Quantity
------ ------- ------ ------- --------
40011 4001 123 05683022 1
40012 4001 123 45423609 4
40013 4001 123 68584904 1
40041 4004 123 45423509 1
40042 4004 123 68584904 2

Creating a Sharded Table Family Using CREATE TABLE

The recommended way to create a sharded table family is to specify parent-child
relationships between tables using reference partitioning.

The appropriate CREATE TABLE statements for Customers–Orders–LineItems schema
are shown below. The first statement creates the root table of the table family –
Customers.

CREATE SHARDED TABLE Customers
(CustNo NUMBER NOT NULL
, Name VARCHAR2(50)
, Address VARCHAR2(250)
, CONSTRAINT RootPK PRIMARY KEY(CustNo)
)
PARTITION BY CONSISTENT HASH (CustNo)

Chapter 2
Sharded Table Family

2-4

PARTITIONS AUTO
TABLESPACE SET ts1
;

The following two statements create Orders and LineItems tables which are a child and
grandchild of Customers.

CREATE SHARDED TABLE Orders
(OrderNo NUMBER NOT NULL
, CustNo NUMBER NOT NULL
, OrderDate DATE
, CONSTRAINT OrderPK PRIMARY KEY (CustNo, OrderNo)
, CONSTRAINT CustFK FOREIGN KEY (CustNo) REFERENCES Customers(CustNo)
)
PARTITION BY REFERENCE (CustFK)
;

CREATE SHARDED TABLE LineItems
(CustNo NUMBER NOT NULL
, LineNo NUMBER(2) NOT NULL
, OrderNo NUMBER(5) NOT NULL
, StockNo NUMBER(4)
, Quantity NUMBER(2)
, CONSTRAINT LinePK PRIMARY KEY (CustNo, OrderNo, LineNo)
, CONSTRAINT LineFK FOREIGN KEY (CustNo, OrderNo) REFERENCES Orders(CustNo, OrderNo)
)
PARTITION BY REFERENCE (LineFK)
;

In the example statements above, corresponding partitions of all tables in the family
are stored in the same tablespace set – TS1. However, it is possible to specify
separate tablespace sets for each table.

Partitioning by reference simplifies the syntax since the partitioning scheme is only
specified for the root table. Also, partition management operations that are performed
on the root table are automatically propagated to its descendents. For example, when
adding a partition to the root table, a new partition is created on all its descendents.

Note that in the example statements above, the partitioning column CustNo used as
the sharding key is present in all three tables. This is despite the fact that reference
partitioning, in general, allows a child table to be equi-partitioned with the parent table
without having to duplicate the key columns in the child table. The reason for this is
that reference partitioning requires a primary key in a parent table because the primary
key must be specified in the foreign key constraint of a child table used to link the child
to its parent. However, a primary key on a sharded table must either be the same as
the sharding key, or contain the sharding key as the leading column. This makes it
possible to enforce global uniqueness of a primary key without coordination with other
shards – a critical requirement for linear scalability.

To summarize, the use of reference-partitioned tables in a sharded database requires
adhering to the following rules:

• A primary key on a sharded table must either be the same as the sharding key, or
another column(s) prefixed by the sharding key. This is required to enforce global
uniqueness of a primary key without coordination with other shards.

• Reference partitioning requires a primary key in a parent table, because the
primary key must be specified in the foreign key constraint of a child table to link
the child to its parent. For example, to link the LineItems (child) table to the Orders
(parent) table, you need a primary key in Orders. The second rule implies that the

Chapter 2
Sharded Table Family

2-5

primary key in Orders is prefixed by the CustNo value. (This is an existing
partitioning rule not specific to Oracle Sharding.)

In some cases it is impossible or undesirable to create primary and foreign key
constraints that are required for reference partitioning. For such cases, specifying
parent-child relationships in a table family requires that all tables are explicitly equi-
partitioned and each child table is created with the PARENT clause in CREATE SHARDED
TABLE that contains the name of its parent. An example of the syntax is shown below.

 CREATE SHARDED TABLE Customers
(CustNo NUMBER NOT NULL
, Name VARCHAR2(50)
, Address VARCHAR2(250)
, region VARCHAR2(20)
, class VARCHAR2(3)
, signup DATE
)
PARTITION BY CONSISTENT HASH (CustNo)
PARTITIONS AUTO
TABLESPACE SET ts1
;

CREATE SHARDED TABLE Orders
(OrderNo NUMBER
, CustNo NUMBER NOT NULL
, OrderDate DATE
)
PARENT Customers
PARTITION BY CONSISTENT HASH (CustNo)
PARTITIONS AUTO
TABLESPACE SET ts1
;

CREATE SHARDED TABLE LineItems
(LineNo NUMBER
, OrderNo NUMBER
, CustNo NUMBER NOT NULL
, StockNo NUMBER
, Quantity NUMBER
)
)
PARENT Customers
PARTITION BY CONSISTENT HASH (CustNo)
PARTITIONS AUTO
TABLESPACE SET ts1
;

Because the partitioning scheme is fully specified in all of the CREATE SHARDED TABLE
statements, any table can be independently subpartitioned. This is not permitted with
reference partitioning where subpartitions can only be specified for the root table and
the subpartitioning scheme is the same for all tables in a table family.

Note that this method only supports two-level table families, that is, all children must
have the same parent and grandchildren cannot exist. This is not a limitation as long
as the partitioning column from the parent table exists in all of the child tables.

Chapter 2
Sharded Table Family

2-6

Note:

In Oracle Database 12c Release 2, only a single table family is supported in an
SDB.

See Also:

Oracle Database VLDB and Partitioning Guide

2.3 Duplicated Tables
In addition to sharded tables, an SDB can contain tables that are duplicated on all
shards.

For many applications, the number of database requests handled by a single shard
can be maximized by duplicating read-only or read-mostly tables across all shards.
This strategy is a good choice for relatively small tables that are often accessed
together with sharded tables. A table with the same contents in each shard is called a
duplicated table.

An SDB includes both sharded tables that are horizontally partitioned across shards,
and duplicated tables that are replicated to all shards. Duplicated tables contain
reference information, for example, a Stock Items table that is common to each shard.
The combination of sharded and duplicated tables enables all transactions associated
with a sharding key to be processed by a single shard. This technique enables linear
scalability and fault isolation.

As an example of the need for a duplicated table, consider the table family that is
described in Sharded Table Family. The database schema might also include a
Products table which contains data that is shared by all the customers in the shards
that were created for this table family, and it cannot be sharded by the customer
number. To prevent multi-shard queries during order processing, the entire table must
be duplicated on all shards.

The difference between sharded tables (Customers, Orders, and LineItems) and a
duplicated table (Products) is shown in the following figure.

Chapter 2
Duplicated Tables

2-7

Figure 2-1 Sharded Tables and a Duplicated Table in an SDB

Line Items

Customer Order

123 4001

999 4003

123 4001

456 4004

999 4003

999

Line

40011

40012

40013

40014

40015

400164003

Orders

OrderCustomer

4001123

4002456

4003999

4004456

4005456

Customers

Customer Name

123 Mary

456 John

999 Peter

Sharded by Customer

Duplicated

Products

SKU Product

100 Coll

101 Piston

102 Belt

Creating a Duplicated Table Using CREATE TABLE

The duplicated Products table can be created using the following statement.

CREATE DUPLICATED TABLE Products
(StockNo NUMBER PRIMARY KEY
, Description VARCHAR2(20)
, Price NUMBER(6,2))
)
;

Updating Duplicated Table and Synchronizing Their Contents

Oracle Sharding synchronizes the contents of duplicated tables using Materialized
View Replication. A duplicated table on each shard is represented by a materialized
view. The master table for the materialized views is located in the shard catalog. The
CREATE DUPLICATED TABLE statement automatically creates the master table,
materialized views, and other objects required for materialized view replication.

Chapter 2
Duplicated Tables

2-8

Note:

In Oracle Database 12c Release 2, the client must connect to the shard catalog
database to update a duplicated table. In Oracle Database 18c, an update to a
duplicated table can be executed on a shard or the shard catalog. An update is
first propagated to the master table on the shard catalog and then to all of the
shards.

The materialized views on all of the shards are automatically refreshed at a
configurable frequency. The refresh frequency of all duplicated tables is controlled by
the database initialization parameter SHRD_DUPL_TABLE_REFRESH_RATE. The default value
for the parameter is 60 seconds.

See Also:

Oracle Database Administrator’s Guide

2.4 Non-Table Objects Created on All Shards
In addition to duplicated tables, other schema objects, such as users, roles, views,
indexes, synonyms, functions, procedures, and packages, and non-schema database
objects, such as tablespaces, tablespace sets, directories, and contexts, can be
created on all shards.

Unlike tables, which require an extra keyword in the CREATE statement—SHARDED or
DUPLICATED—other objects are created on all shards using existing syntax. The only
requirement is that the SHARD DDL session property must be enabled.

Note that automatic creation on all shards of the following objects is not supported in
this release. These objects can be created by connecting to individual shards.

• Cluster

• Control file

• Database link

• Disk group

• Edition

• Flashback archive

• Materialized zone map

• Outline

• Pfile

• Profile

• Restore point

• Rollback segment

• Summary

Chapter 2
Non-Table Objects Created on All Shards

2-9

Materialized views and view logs are supported starting in Oracle Database 18c, with
the following restrictions:

• Materialized views created on sharded tables remain empty on the catalog
database, while the corresponding materialized views on shards contain data from
each of the individual shards.

• Only the REFRESH COMPLETE ON DEMAND USING TRUSTED CONSTRAINTS option is
supported for materialized views on sharded tables.

2.5 DDL Execution in a Sharded Database
To create a schema in an SDB, you must issue DDL commands on the shard catalog
database, which validates the DDLs and executes them locally first. Therefore, the
shard catalog database contains local copies of all of the objects that exist in the
sharded database, and serves as the master copy of the SDB schema. If the catalog
validation and execution of DDLs are successful, the DDLs are automatically
propagated to all of the shards and applied in the order in which they were issued on
the shard catalog.
If a shard is down or not accessible during DDL propagation, the catalog keeps track
of DDLs that could not be applied to the shard, and then applies them when the shard
is back up. When a new shard is added to an SDB, all of the DDLs that have been
executed in the SDB are applied in the same order to the shard before it becomes
accessible to clients.

There are two ways you can issue DDLs in an SDB:

• Use the GDSCTL sql command.

When you issue a DDL this way, GDSCTL waits until all of the shards have
finished executing the DDL and returns the status of the execution. For example

GDSCTL> sql “create tablespace set tbsset”

• Connect to the shard catalog database using SQL*Plus using the
GDS$CATALOG.sdbname service. For example

SQL> create tablespace set tbsset;

When you issue a DDL command on the shard catalog database, it returns the
status when it finishes executing locally, but the propagation of the DDL to all of
the shards happens in the background asynchronously.

Verifying DDL Propagation

You can check the status of the DDL propagation to the shards by using the GDSCTL
show ddl and config shard commands. This check is mandatory when a DDL is
executed using SQL*Plus on the shard catalog, because SQL*Plus does not return the
execution status on all of the shards. When a DDL fails on a shard, all further DDLs on
that shard are blocked until the failure is resolved and the GDSCTL recover shard
command is executed. Note that the user must have GSM_ADMIN privileges to
execute these GDSCTL commands.

Creating Objects Locally and Globally

When a DDL to create an object is issued using the GDSCTL sql command, the object
is created on all of the shards. A master copy of the object is also created in the shard
catalog database. An object that exists on all shards, and the catalog database, is
called an SDB object.

Chapter 2
DDL Execution in a Sharded Database

2-10

When connecting to the shard catalog using SQL*Plus, two types of objects can be
created: SDB objects and local objects. Local objects are traditional objects that exist
only in the shard catalog. Local objects can be used for administrative purposes, or
they can be used by multi-shard queries originated from the catalog database, to
generate and store a report, for example.

The type of object (SDB or local) that is created in a SQL*Plus session depends on
whether the SHARD DDL mode is enabled in the session. This mode is enabled by default
on the shard catalog database for the SDB user – a user that exists on all of the
shards and the shard catalog database. All of the objects created while SHARD DDL is
enabled in a session are SDB objects. To create a local object, the SDB user must first
run alter session disable shard ddl. All of the objects created while SHARD DDL is
disabled are local objects. To enable SHARD DDL in the session, the SDB user must run
alter session enable shard ddl.

See ALTER SESSION for more information about the SHARD DDL session parameter.

Creating the SDB User to Create Schema Objects

Local users that only exist in the shard catalog database do not have the privileges to
create schema objects in the SDB. Therefore, the first step of creating the SDB
schema is to create the SDB user, by connecting to the shard catalog database as
SYSDBA, enabling SHARD DDL, and executing the CREATE USER command. When the
SDB user connects to the catalog database, the SHARD DDL mode is enabled by default.

Note:

Local users can create non-schema SDB objects, such as tablespaces,
directories, and contexts, if they enable SHARD DDL mode; however, they cannot
create schema SDB objects, such as tables, views, indexes, functions,
procedures, and so on.

Sharded objects cannot have any dependency on local objects. For example,
you cannot create an all shard view on a local table.

DDL Execution Examples

The following examples demonstrate the steps to issue a DDL, check its execution
status, and what to do when errors are encountered. The examples are given for the
case when a DDL is issued using SQL*Plus, but the same status checking and
corrective actions apply when using the GDSCTL sql command.

Example 2-2 A DDL execution error on the shard catalog

In this example the user makes a typo in the CREATE USER command.

SQL> alter session enable shard ddl;
Session altered.

SQL> CREATE USER example_user IDENTRIFIED BY out_standing1;
CREATE USER example_user IDENTRIFIED BY out_Standing1
 *
ERROR at line 1:
ORA-00922: missing or invalid option

Chapter 2
DDL Execution in a Sharded Database

2-11

The DDL fails to execute on the shard catalog and, as expected, the GDSCTL show
ddl command shows that no DDL was executed on any of the shards:

GDSCTL> show ddl
id DDL Text Failed shards
-- -------- -------------

Then the user repeats the command with the correct spelling. Note that there is no
need to run alter session enable shard ddlagain because the same session is used.

SQL> CREATE USER example_user IDENTIFIED BY out_Standing1;
User created.

Now show ddl shows that the DDL has been successfully executed on the shard
catalog database and it did not fail on any shards that are online.

GDSCTL> show ddl
id DDL Text Failed shards
-- -------- -------------
1 create user example_user identified by *****

Note:

For any shard that is down at the time of the DDL execution, the DDL is
automatically applied when the shard is back up.

Example 2-3 Recovery from an error on a shard by executing a corrective
action on that shard

In this example, the user attempts to create a tablespace set for system-managed
sharded tables. But the datafile directory on one of the shards is not writable, so the
DDL is successfully executed on the catalog, but fails on the shard.

SQL> connect example_user/ out_Standing1
Connected

SQL> create tablespace set tbsset;
Tablespace created.

Note that there is no need to run alter session enable shard ddl because the user
example_user was created as the SDB user and shard ddl is enabled by default.

Check status using GDSCTL show ddl:

GDSCTL> show ddl
id DDL Text Failed shards
-- -------- -------------
1 create user example_user identified by *****
2 create tablespace set tbsset shard01

The command output shows that the DDL failed on the shard shard01. Run the
GDSCTL config shard command to get detailed information:

GDSCTL> config shard -shard shard01

Conversion = ':'Name: shard01
Shard Group: dbs1
Status: Ok

Chapter 2
DDL Execution in a Sharded Database

2-12

State: Deployed
Region: east
Connection string: (DESCRIPTION=(ADDRESS=(HOST=shard01-host)(PORT=1521)
(PROTOCOL=tcp))
(CONNECT_DATA=(SID=shard01)))
SCAN address:
ONS remote port: 0
Disk Threshold, ms: 20
CPU Threshold, %: 75
Version: 18.0.0.0
Failed DDL: create tablespace set tbsset
DDL Error: ORA-02585: create tablepsace set failure, one of its tablespaces not
created
ORA-01119: error in creating database file \'/ade/b/3667445372/oracle/rdbms/dbs/
SHARD01/datafile/o1_mf_tbsset_%u_.dbf\'
ORA-27040: file create error, unable to create file
Linux-x86_64 Error: 13: Permission denied
Additional information: 1 \(ngsmoci_execute\)
Failed DDL id: 2
Availability: ONLINE

The text beginning with “Failed DDL:” indicates the problem. To resolve it, the user
must log in to the shard database host and make the directory writable.

Display the permissions on the directory:

cd $ORACLE_HOME/rdbms/dbs
 ls –l ../ | grep dbs
dr-xr-xr-x 4 oracle dba 102400 Jul 20 15:41 dbs/

Change the directory to writable:

chmod +w .
ls –l ../ | grep dbs
drwxrwxr-x 4 oracle dba 102400 Jul 20 15:41 dbs/

Go back to the GDSCTL console and issue the recover shard command:

GDSCTL> recover shard -shard shard01

Check the status again:

GDSCTL> show ddl
id DDL Text Failed shards
-- -------- -------------
1 create user example_user identified by *****
2 create tablespace set tbsset

GDSCTL> config shard -shard shard01

Conversion = ':'Name: shard01
Shard Group: dbs1
Status: Ok
State: Deployed
Region: east
Connection string: (DESCRIPTION=(ADDRESS=(HOST=shard01-host)(PORT=1521)
(PROTOCOL=tcp))
(CONNECT_DATA=(SID=shard01)))
SCAN address:
ONS remote port: 0
Disk Threshold, ms: 20
CPU Threshold, %: 75

Chapter 2
DDL Execution in a Sharded Database

2-13

Version: 18.0.0.0
Last Failed DDL:
DDL Error: ---
DDL id:
Availability: ONLINE

As shown above, the failed DDL error no longer appears.

Example 2-4 Recovery from an error on a shard by executing a corrective
action on all other shards

In this example, the user attempts to create another tablespace set, tbs_set, but the
DDL fails on a shard because there is already an existing local tablespace with the
same name.

On the shard catalog:

SQL> create tablespace set tbs_set;
Tablespace created.

Check status using the GDSCTL show ddl command:

GDSCTL> show ddl
id DDL Text Failed shards
-- -------- -------------
1 create user example_user identified by *****
2 create tablespace set tbsset
3 create tablespace set tbs_set shard01

GDSCTL> config shard -shard shard01
Conversion = ':'Name: shard01
……
Failed DDL: create tablespace set tbs_set
DDL Error: ORA-02585: create tablespace set failure, one of its tablespaces not
created
ORA-01543: tablespace \'TBS_SET\' already exists \(ngsmoci_execute\)

A solution to this problem is to login to shard01 as a local database administrator, drop
the tablespace TBS_SET, and then run GDSCTL recover shard -shard shard01. But
suppose you want to keep this tablespace, and instead choose to drop the newly
created tablespace set that has the name conflict and create another tablespace set
with a different name, such as tbsset2. The following example shows how to do that on
the shard catalog:

SQL> drop tablespace set tbs_set;
SQL> create tablespace set tbs_set2;

Check status using GDSCTL:

GDSCTL> show ddl
id DDL Text Failed shards
-- -------- -------------
1 create user example_user identified by *****
2 create tablespace set tbsset
3 create tablespace set tbs_set shard01
4 drop tablespace set tbs_set
5 create tablespace set tbsset2

You can see that DDLs 4 and 5 are not attempted on shard01 because DDL 3 failed
there. To make this shard consistent with the shard catalog, you must run the
GDSCTL recover shard command. However, it does not make sense to execute DDL 3

Chapter 2
DDL Execution in a Sharded Database

2-14

on this shard because it will fail again and you actually do not want to create
tablespace set tbs_set anymore. To skip DDL 3 run recover shard with the –
ignore_first option:

GDSCTL> recover shard -shard shard01 –ignore_first
GSM Errors: dbs1 shard01:ORA-00959: tablespace \'TBS_SET\' does not exist
 (ngsmoci_execute)

GDSCTL> show ddl
id DDL Text Failed shards
-- -------- -------------
1 create user sidney identified by *****
2 create tablespace set tbsset
3 create tablespace set tbs_set
4 drop tablespace set tbs_set shard01
5 create tablespace set tbsset2

There is no failure with DDL 3 this time because it was skipped. However, the next
DDL (4 - drop tablespace set tbs_set) was applied and resulted in the error because
the tablespace set to be dropped does not exist on the shard.

Because the –ignore_first option only skips the first DDL, you need to execute
recover shard again to skip the drop statement as well:

GDSCTL> recover shard -shard shard01 –ignore_first

GDSCTL> show ddl
id DDL Text Failed shards
-- -------- -------------
1 create user sidney identified by *****
2 create tablespace set tbsset
3 create tablespace set tbs_set
4 drop tablespace set tbs_set
5 create tablespace set tbsset2

Note that there are no longer any failures shown, and all of the DDLs were applied
successfully on the shards.

When recover shard is run with the –ignore_first option, the failed DDL is marked to
be ignored during incremental deployment. Therefore, DDL numbers 3 and 4 are
skipped when a new shard is added to the SDB, and only DDL numbers 1 and 5 are
applied.

2.6 DDL Syntax Extensions for the Sharded Database
Oracle Sharding introduces changes to the SQL DDL statements. DDL statements
with this syntax can only be executed against a sharded database.

Note that no changes to query and DML statements are required to support Oracle
Sharding, and the changes to the DDL statement are very limited. Most existing DDL
statements will work the same way on a sharded database with the same syntax and
semantics as they do on a regular Oracle Database.

CREATE TABLESPACE SET

This is a new statement introduced for Oracle Sharding. Its syntax is similar to CREATE
TABLESPACE.

Chapter 2
DDL Syntax Extensions for the Sharded Database

2-15

CREATE TABLESPACE SET tablespace_set
 [IN SHARDSPACE shardspace]
 [USING TEMPLATE (
 { MINIMUM EXTENT size_clause
 | BLOCKSIZE integer [K]
 | logging_clause
 | FORCE LOGGING
 | ENCRYPTION tablespace_encryption_spec
 | DEFAULT [table_compression] storage_clause
 | { ONLINE | OFFLINE }
 | extent_management_clause
 | segment_management_clause
 | flashback_mode_clause
 }...
)];

The statement creates a tablespace set that can be used as a logical storage unit for
one or more sharded tables and indexes. A tablespace set consists of multiple Oracle
tablespaces distributed across shards in a shardspace.

Note that in system-managed sharding there is only one default shardspace in the
sharded database. The number of tablespaces in a tablespace set is determined
automatically and is equal to the number of chunks in the corresponding shardspace.

All tablespaces in a tablespace set are bigfile and have the same properties. The
properties are specified in the USING TEMPLATE clause. This clause is the same as
permanent_tablespace_clause for a typical tablespace, with the exception that a datafile
name cannot be specified in the datafile_tempfile_spec clause. The datafile name for
each tablespace in a tablespace set is generated automatically.

Note that a tablespace set can only consist of permanent tablespaces, there is no
system, undo, or temporary tablespace set.

Example

CREATE TABLESPACE SET TSP_SET_1 IN SHARDSPACE sgr1
USING TEMPLATE
(DATAFILE SIZE 100m
 EXTEND MANAGEMENT LOCAL
 SEGMENT SPACE MANAGEMENT AUTO
);

ALTER TABLESPACE SET

The shardspace property of a tablespace set cannot be modified. All other attributes of
a tablespace set can be altered just as for a regular permanent tablespace. Because
tablespaces in a tablespace set are bigfile, the ADD DATAFILE and DROP DATAFILE clauses
are not supported.

DROP TABLESPACE SET and PURGE TABLESPACE SET

The syntax and semantics for these statements are similar to DROP and PURGE
TABLESPACE statements.

CREATE TABLE

This statement has been extended to allow for creation of sharded and duplicated
tables and specification of a table family.

Syntax

Chapter 2
DDL Syntax Extensions for the Sharded Database

2-16

CREATE [{ GLOBAL TEMPORARY | SHARDED | DUPLICATED}]
 TABLE [schema.] table
 { relational_table | object_table | XMLType_table }
 [PARENT [schema.] table] ;

The following parts of the CREATE TABLE statement are intended to support Oracle
Sharding:

• The SHARDED and DUPLICATED keywords indicate that the table content is either
partitioned across shards or duplicated on all shards respectively. The DUPLICATED
keyword is the only syntax change to create duplicated tables. All other changes
described below apply only to sharded tables.

• The PARENT clause links a sharded table to the root table of its table family.

• To create a sharded table, TABLESPACE SET is used instead of TABLESPACE. All
clauses that contain TABLESPACE are extended to contain TABLESPACE SET.

• Three clauses: consistent_hash_partitions, consistent_hash_with_subpartitions,
and partition_set_clause in the table_partitioning_clauses.

table_partitioning_clauses ::=
{range_partitions
| hash_partitions
| list_partitions
| composite_range_partitions
| composite_hash_partitions
| composite_list_partitions
| reference_partitioning
| system_partitioning
| consistent_hash_partitions
| consistent_hash_with_subpartitions
| partition_set_clause
}

Limitations for sharded tables in the current release:

• There is no default tablespace set for sharded tables.

• A temporary table cannot be sharded or duplicated.

• Index-organized sharded tables are not supported.

• A sharded table cannot contain a nested table column or an identity column.

• A primary key constraint defined on a sharded table must contain the sharding
column(s). A foreign key constraint on a column of a sharded table referencing a
duplicated table column is not supported.

• System partitioning and interval range partitioning are not supported for sharded
tables. Specification of individual hash partitions is not supported for partitioning by
consistent hash.

• A column in a sharded table used in PARTITION BY or PARTITIONSET BY clauses
cannot be a virtual column.

Duplicated tables in the current release are not supported with the following:

• System and reference partitioned tables

• LONG, abstract (MDSYS datatypes are supported), REF data types

• Maximum number of columns without primary key is 999

• The nologging, parallel, inmemory options

Chapter 2
DDL Syntax Extensions for the Sharded Database

2-17

• XMLType column in a duplicated table cannot be used in non-ASSM tablespace

Example

CREATE SHARDED TABLE customers
(cust_id NUMBER NOT NULL
, name VARCHAR2(50)
, address VARCHAR2(250)
, location_id VARCHAR2(20)
, class VARCHAR2(3)
, signup_date DATE
,
CONSTRAINT cust_pk PRIMARY KEY(cust_id, class)
)
PARTITIONSET BY LIST (class)
PARTITION BY CONSISTENT HASH (cust_id)
PARTITIONS AUTO
(PARTITIONSET gold VALUES (‘gld’) TABLESPACE SET ts2,
 PARTITIONSET silver VALUES (‘slv’) TABLESPACE SET ts1)
;

ALTER TABLE

The following options are not supported for a sharded table in a system-managed or
composite sharded database:

• Rename

• Add foreign key constraint

• All operations on individual partitions and subpartitions

• All partition-related operations on the shard, except TRUNCATE partition,
UNUSABLE LOCAL INDEXES, and REBUILD UNUSABLE LOCAL INDEXES

The following are not supported for duplicated tables:

• Data types: long, abstract (MDSYS datatypes are supported), REF

• Column options: vector encode, invisible column, nested tables

• Object types

• Clustered table

• External table

• ILM policy

• PARENT clause

• Flashback table operation

• System and Reference partitioning

• Enable nologging option

• Truncate table

• Drop duplicated table materialized view log

• Drop duplicated table materialized views on shards

• Alter materialized views (of duplicated tables) on shards

Chapter 2
DDL Syntax Extensions for the Sharded Database

2-18

ALTER SESSION

The session-level SHARD DDL parameter sets the scope for DDLs issued against the
shard catalog database.

ALTER SESSION { ENABLE | DISABLE } SHARD DDL

When SHARD DDL is enabled, all DDLs issued in the session are executed on the shard
catalog and all shards. When SHARD DDL is disabled, a DDL is executed only against the
shard catalog database. SHARD DDL is enabled by default for an SDB user (the user that
exists on all shards and the catalog). To create an SDB user, the SHARD DDL parameter
must be enabled before running CREATE USER.

2.7 Using Transparent Data Encryption with Oracle
Sharding

Oracle Sharding supports Transparent Data Encryption (TDE), but in order to
successfully move chunks in a sharded database with TDE enabled, all of the shards
must share and use the same encryption key for the encrypted tablespaces.

A sharded database consists of multiple independent databases and a catalog
database. For TDE to work properly, especially when data is moved between shards,
certain restrictions apply. In order for chunk movement between shards to work when
data is encrypted, you must ensure that all of the shards use the same encryption key.

There are two ways to accomplish this:

• Create and export an encryption key from the shard catalog, and then import and
activate the key on all of the shards individually.

• Store the wallet in a shared location and have the shard catalog and all of the
shards use the same wallet.

The following TDE statements are automatically propagated to shards when executed
on the shard catalog with shard DDL enabled:

• alter system set encryption wallet open/close identified by password

• alter system set encryption key

• administer key management set keystore [open|close] identified by password

• administer key management set key identified by password

• administer key management use key identified by password

• administer key management create key store identified by password

Limitations

The following limitations apply to using TDE with Oracle Sharding.

• For MOVE CHUNK to work, all shard database hosts must be on the same platform.

• MOVE CHUNK cannot use compression during data transfer, which may impact
performance.

• Only encryption on the tablespace level is supported. Encryption on specific
columns is not supported.

Chapter 2
Using Transparent Data Encryption with Oracle Sharding

2-19

• Creating a Single Encryption Key on All Shards
To propagate a single encryption key to all of the databases in the sharded
database configuration, you must create a master encryption key on the shard
catalog, then use wallet export, followed by wallet import onto the shards, and
activate the keys.

See Also:

Oracle Database Advanced Security Guide for more information about TDE

2.7.1 Creating a Single Encryption Key on All Shards
To propagate a single encryption key to all of the databases in the sharded database
configuration, you must create a master encryption key on the shard catalog, then use
wallet export, followed by wallet import onto the shards, and activate the keys.

Note:

This procedure assumes that the keystore password and wallet directory path
are the same for the shard catalog and all of the shards. If you require different
passwords and directory paths, all of the commands should be issued
individually on each shard and the shard catalog with shard DDL disabled using
the shard’s own password and path.

These steps should be done before any data encryption is performed.

1. Create an encryption key on the shard catalog.

With shard DDL enabled, issue the following statements.

ADMINISTER KEY MANAGEMENT CREATE KEYSTORE wallet_directory_path IDENTIFIED BY
 keystore_password;
ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY keystore_password;

The keystore_password should be the same if you prefer to issue wallet open and
close commands centrally from the catalog.

Note:

The wallet directory path should match the ENCRYPTION_WALLET_LOCATION in
the corresponding sqlnet.ora.

With shard DDL disabled, issue the following statement.

ADMINISTER KEY MANAGEMENT SET KEY IDENTIFIED BY keystore_password WITH BACKUP;

An encryption key is created and activated in the shard catalog database’s wallet.

Chapter 2
Using Transparent Data Encryption with Oracle Sharding

2-20

If you issue this statement with DDL enabled, it will also create encryption keys in
each of the shards’ wallets, which are different keys from that of the catalog. In
order for data movement to work, you cannot use different encryption keys on
each shard.

2. Get the master key ID from the shard catalog keystore.

SELECT KEY_ID FROM V$ENCRYPTION_KEYS
WHERE ACTIVATION_TIME =
 (SELECT MAX(ACTIVATION_TIME) FROM V$ENCRYPTION_KEYS
 WHERE ACTIVATING_DBID = (SELECT DBID FROM V$DATABASE));

3. With shard DDL disabled, export the catalog wallet containing the encryption key.

ADMINISTER KEY MANAGEMENT EXPORT ENCRYPTION KEYS WITH SECRET secret_phrase TO
 wallet_export_file IDENTIFIED BY keystore_password;

(Optional) Enter the result of the step here.

4. Physically copy the wallet file to each of the shard hosts, into their corresponding
wallet export file location, or put the wallet file on a shared disk to which all of the
shards have access.

5. With shard DDL disabled, log on to each shard and import the wallet containing
the key.

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY keystore_password;
ADMINISTER KEY MANAGEMENT IMPORT ENCRYPTION KEYS WITH SECRET secret_phrase FROM
 wallet_export_file IDENTIFIED BY keystore_password WITH BACKUP;

6. Restart the shard databases.

7. Activate the key on all of the shards.

On the catalog with shard DDL enabled

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY keystore_password;
ADMINISTER KEY MANAGEMENT USE KEY master_key_id IDENTIFIED BY keystore_password
 WITH BACKUP;

All of the shards and the shard catalog database now have the same encryption key
activated and ready to use for data encryption. On the shard catalog, you can issue
TDE DDLs (with shard DDL enabled) such as:

• Create encrypted tablespaces and tablespace sets.

• Create sharded tables using encrypted tablespaces.

• Create sharded tables containing encrypted columns (with limitations).

Validate that the key IDs on all of the shards match the ID on the shard catalog.

SELECT KEY_ID FROM V$ENCRYPTION_KEYS
WHERE ACTIVATION_TIME =
 (SELECT MAX(ACTIVATION_TIME) FROM V$ENCRYPTION_KEYS
 WHERE ACTIVATING_DBID = (SELECT DBID FROM V$DATABASE));

Chapter 2
Using Transparent Data Encryption with Oracle Sharding

2-21

3
Physical Organization of a Sharded
Database

Learn about the physical organization of a sharded database.

The following topics describe the physical organization of a sharded database:

• Sharding as Distributed Partitioning
Sharding is a database scaling technique based on horizontal partitioning of data
across multiple independent physical databases. Each physical database in such
a configuration is called a shard.

• Partitions, Tablespaces, and Chunks
Distribution of partitions across shards is achieved by creating partitions in
tablespaces that reside on different shards.

3.1 Sharding as Distributed Partitioning
Sharding is a database scaling technique based on horizontal partitioning of data
across multiple independent physical databases. Each physical database in such a
configuration is called a shard.

Even though a sharded database (SDB) looks like a single database to applications
and application developers, from the perspective of a database administrator, it is a
set of discrete Oracle databases, each of which is called a shard. A sharded table is
partitioned across all shards of the SDB. Table partitions on each shard are not
different from partitions that could be used in an Oracle database that is not sharded.

The following figure shows the difference between partitioning on a single logical
database and partitions distributed across multiple shards.

Figure 3-1 Sharding as Distributed Partitioning

Single Logical Database Multiple Physical Shards

1 2 3

Partitions

4 5

6 7 8 9 10

9 10

11 12

11 12 13 14 15

16 17 18 19 20

Partitions

13 14

15 16

Partitions

17 18

19 20

Partitions

1 2

3 4

Partitions

5 6

7 8

Partitions

3-1

Oracle Sharding automatically distributes the partitions across shards when you
execute the CREATE SHARDED TABLE statement, and the distribution of partitions is
transparent to applications. The figure above shows the logical view of a sharded table
and its physical implementation.

3.2 Partitions, Tablespaces, and Chunks
Distribution of partitions across shards is achieved by creating partitions in
tablespaces that reside on different shards.

Each partition of a sharded table is stored in a separate tablespace, making the
tablespace the unit of data distribution in an SDB.

As described in Sharded Table Family, to minimize the number of multi-shard joins,
corresponding partitions of all tables in a table family are always stored in the same
shard. This is guaranteed when tables in a table family are created in the same set of
distributed tablespaces as shown in the syntax examples where tablespace set ts1 is
used for all tables.

However, it is possible to create different tables from a table family in different
tablespace sets, for example the Customers table in tablespace set ts1 and Orders in
tablespace set ts2. In this case, it must be guaranteed that the tablespace that stores
partition 1 of Customers always resides in the same shard as the tablespace that
stores partition 1 of Orders. To support this functionality, a set of corresponding
partitions from all of the tables in a table family, called a chunk, is formed. A chunk
contains a single partition from each table of a table family.

A chunk that contains corresponding partitions from the tables of Cutomers-Orders-
LineItems schema is shown in the following figure.

Figure 3-2 Chunk as a Set of Partitions

Customers_P1 (1-1000000) Orders_P1 Lineitems_P1
Chunk #1

Sharded
Tables

Each shard contains multiple chunks as shown in the following figure.

Chapter 3
Partitions, Tablespaces, and Chunks

3-2

Figure 3-3 Contents of a Shard

Customers_P1 (1-1M) Orders_P1 Lineitems_P1
Chunk #1

Sharded
Tables

Customers_P6 (5000001-6M) Orders_P6 Lineitems_P6
Chunk #6

Sharded
Tables

Customers_P11(10000001-11M) Orders_P11 Lineitems_P11
Chunk #11

Sharded
Tables

Stockitems (Duplicated Table)

Shard

In addition to sharded tables, a shard can also contain one or more duplicated tables.
Duplicated tables cannot be stored in tablespaces that are used for sharded tables.

Chapter 3
Partitions, Tablespaces, and Chunks

3-3

4
Sharding Methods

This chapter discusses the sharding methods supported by Oracle Sharding, how to
choose a method, and how to use subpartitioning.

The following topics describe the sharding methods supported by Oracle Sharding:

• System-Managed Sharding
System-managed sharding is a sharding method which does not require the user
to specify mapping of data to shards. Data is automatically distributed across
shards using partitioning by consistent hash. The partitioning algorithm evenly and
randomly distributes data across shards.

• User-Defined Sharding
User-defined sharding lets you explicitly specify the mapping of data to individual
shards. It is used when, because of performance, regulatory, or other reasons,
certain data needs to be stored on a particular shard, and the administrator needs
to have full control over moving data between shards.

• Composite Sharding
The composite sharding method allows you to create multiple shardspaces for
different subsets of data in a table partitioned by consistent hash. A shardspace is
set of shards that store data that corresponds to a range or list of key values.

• Using Subpartitions with Sharding
Because Oracle Sharding is based on table partitioning, all of the subpartitioning
methods provided by Oracle Database are also supported for sharding.

4.1 System-Managed Sharding
System-managed sharding is a sharding method which does not require the user to
specify mapping of data to shards. Data is automatically distributed across shards
using partitioning by consistent hash. The partitioning algorithm evenly and randomly
distributes data across shards.

The distribution used in system-managed sharding is intended to eliminate hot spots
and provide uniform performance across shards. Oracle Sharding automatically
maintains the balanced distribution of chunks when shards are added to or removed
from an SDB.

Consistent hash is a partitioning strategy commonly used in scalable distributed
systems. It is different from traditional hash partitioning. With traditional hashing, the
bucket number is calculated as HF(key) % N where HF is a hash function and N is the
number of buckets. This approach works fine if N is constant, but requires reshuffling
of all data when N changes.

More advanced algorithms, such as linear hashing, do not require rehashing of the
entire table to add a hash bucket, but they impose restrictions on the number of
buckets, such as the number of buckets can only be a power of 2, and on the order in
which the buckets can be split.

4-1

The implementation of consistent hashing used in Oracle Sharding avoids these
limitations by dividing the possible range of values of the hash function (for example.
from 0 to 232) into a set of N adjacent intervals, and assigning each interval to a
chunk , as shown in the figure below. In this example, the SDB contains 1024 chunks,
and each chunk gets assigned a range of 222 hash values. Therefore partitioning by
consistent hash is essentially partitioning by the range of hash values.

Figure 4-1 Ranges of Hash Values Assigned to Chunks

Chunk #1024

429496672964290772992 41943040

...

8388608

...Chunk #2...Chunk #1

Assuming that all of the shards have the same computing power, an equal number of
chunks is assigned to each shard in the SDB. For example, if 1024 chunks are created
in an SDB that contains 16 shards, each shard will contain 64 chunks.

In the event of resharding, when shards are added to or removed from an SDB, some
of the chunks are relocated among the shards to maintain an even distribution of
chunks across the shards. The contents of the chunks does not change during this
process; no rehashing takes place.

When a chunk is split, its range of hash values is divided into two ranges, but nothing
needs to be done for the rest of the chunks. Any chunk can be independently split at
any time.

All of the components of an SDB that are involved in directing connection requests to
shards maintain a routing table that contains a list of chunks hosted by each shard and
ranges of hash values associated with each chunk. To determine where to route a
particular database request, the routing algorithm applies the hash function to the
provided value of the sharding key, and maps the calculated hash value to the
appropriate chunk, and then to a shard that contains the chunk.

The number of chunks in an SDB with system-managed sharding can be specified in
the CREATE SHARDCATALOG command. If not specified, the default value, 120 chunks per
shard, is used. Once an SDB is deployed, the number of chunks can only be changed
by splitting chunks.

Before creating a sharded table partitioned by consistent hash, a set of tablespaces
(one tablespace per chunk) has to be created to store the table partitions. The
tablespaces are automatically created by executing the SQL statement, CREATE
TABLESPACE SET.

All of the tablespaces in a tablespace set have the same physical attributes and can
only contain Oracle Managed Files (OMF). In its simplest form, the CREATE TABLESPACE
SET statement has only one parameter, the name of the tablespace set, for example:

CREATE TABLESPACE SET ts1;

In this case each tablespace in the set contains a single OMF file with default
attributes. To customize tablespace attributes, the USING TEMPLATE clause (shown in the
example below) is added to the statement. The USING TEMPLATE clause specifies
attributes that apply to each tablespace in the set.

Chapter 4
System-Managed Sharding

4-2

CREATE TABLESPACE SET ts1
USING TEMPLATE
(
 DATAFILE SIZE 10M
 EXTENT MANAGEMENT LOCAL UNIFORM SIZE 256K
 SEGMENT SPACE MANAGEMENT AUTO
 ONLINE
)
;

After a tablespace set has been created, a table partitioned by consistent hash can be
created with partitions stored in the tablespaces that belong to the set. The CREATE
TABLE statement might look as follows:

CREATE SHARDED TABLE customers
(cust_id NUMBER NOT NULL
, name VARCHAR2(50)
, address VARCHAR2(250)
, location_id VARCHAR2(20)
, class VARCHAR2(3)
, signup DATE
, CONSTRAINT cust_pk PRIMARY KEY(cust_id)
)
PARTITION BY CONSISTENT HASH (cust_id)
PARTITIONS AUTO
TABLESPACE SET ts1
;

PARTITIONS AUTO in this statement means that the number of partitions is automatically
set to the number of tablespaces in the tablespace set ts1 (which is equal to the
number of chunks) and each partition will be stored in a separate tablespace.

Each tablespace in a tablespace set belongs to a distinct chunk. In the other words, a
chunk can contain only one tablespace from a given tablespace set. However, the
same tablespace set can be used for multiple tables that belong to the same table
family. In this case, each tablespace in the set will store multiple partitions, one from
each table.

Alternatively, each table in a table family can be stored in a separate tablespace set. In
this case, a chunk contains multiple tablespaces, one from each tablespace set with
each tablespace storing a single partition.

The following figure illustrates the relationship between partitions, tablespaces, and
shards for a use case with a single sharded table. In this case, each chunk contains a
single tablespace, and each tablespace stores a single partition.

Chapter 4
System-Managed Sharding

4-3

Figure 4-2 System-Managed Sharding

Shard 1 Shard 2 Shard 3 Shard 4

P_1

tbs_1-1

P_120

tbs1-120

P_121

tbs1_121

P_240

tbs1-240

P_241

tbs1-241
.
.
.

.

.

.

.

.

.

.

.

.

P_360

tbs1-360

P_361

tbs1-361

P_480

tbs1-480

Tablespace Set tbs1

Note:

The sharding method is specified in the GDSCTL CREATE SHARDCATALOG command
and cannot be changed later.

4.2 User-Defined Sharding
User-defined sharding lets you explicitly specify the mapping of data to individual
shards. It is used when, because of performance, regulatory, or other reasons, certain
data needs to be stored on a particular shard, and the administrator needs to have full
control over moving data between shards.

User-defined sharding is not supported where Oracle GoldenGate is used as the
replication method.

Another advantage of user-defined sharding is that, in case of planned or unplanned
outage of a shard, the user knows exactly what data is not available. The
disadvantage of user-defined sharding is the need for the database administrator to
monitor and maintain balanced distribution of data and workload across shards.

With user-defined sharding, a sharded table can be partitioned by range or list. The
CREATE TABLE syntax for a sharded table is not very different from the syntax for a
regular table, except for the requirement that each partition should be stored in a
separate tablespace.

 CREATE SHARDED TABLE accounts
(id NUMBER
, account_number NUMBER
, customer_id NUMBER
, branch_id NUMBER
, state VARCHAR(2) NOT NULL
, status VARCHAR2(1)
)
PARTITION BY LIST (state)
(PARTITION p_northwest VALUES ('OR', 'WA') TABLESPACE ts1
, PARTITION p_southwest VALUES ('AZ', 'UT', 'NM') TABLESPACE ts2
, PARTITION p_northcentral VALUES ('SD', 'WI') TABLESPACE ts3
, PARTITION p_southcentral VALUES ('OK', 'TX') TABLESPACE ts4
, PARTITION p_northeast VALUES ('NY', 'VM', 'NJ') TABLESPACE ts5

Chapter 4
User-Defined Sharding

4-4

, PARTITION p_southeast VALUES ('FL', 'GA') TABLESPACE ts6
)
;

There is no tablespace set for user-defined sharding. Each tablespace has to be
created individually and explicitly associated with a shardspace. A shardspace is set of
shards that store data that corresponds to a range or list of key values.

In user-defined sharding, a shardspace consists of a shard or a set of fully replicated
shards. See Shard-Level High Availability for details about replication with user-
defined sharding. For simplicity, assume that each shardspace consists of a single
shard.

The following statements can be used to create the tablespaces for the accounts table
in the example above.

CREATE TABLESPACE tbs1 IN SHARDSPACE west;
CREATE TABLESPACE tbs2 IN SHARDSPACE west;

CREATE TABLESPACE tbs3 IN SHARDSPACE central;
CREATE TABLESPACE tbs4 IN SHARDSPACE central;

CREATE TABLESPACE tbs5 IN SHARDSPACE east;
CREATE TABLESPACE tbs6 IN SHARDSPACE east;

Before executing the CREATE TABLESPACE statements, the shardspaces must be created
and populated with shards using the following GDSCTL commands:

ADD SHARDSPACE –SHARDSPACE west, central, east;
ADD SHARD –CONNECT shard-1 –SHARDSPACE west;
ADD SHARD –CONNECT shard-2 –SHARDSPACE central;
ADD SHARD –CONNECT shard-3 –SHARDSPACE east;

The following figure shows the mapping of partitions to tablespaces, and tablespaces
to shards, for the accounts table in the previous examples.

Figure 4-3 User-Defined Sharding

Shard 1 Shard 2 Shard 3

P_NorthWest

Tablespace tbs1

P_SouthWest

Tablespace tbs2

P_NorthCentral

Tablespace tbs3

P_SouthCentral

Shardspace Central

Tablespace tbs4

P_NorthEast

Tablespace tbs5

P_SouthEast

Tablespace tbs6

Shardspace EastShardspace West

As with system-managed sharding, tablespaces created for user-defined sharding are
assigned to chunks. However, no chunk migration is automatically started when a
shard is added to the SDB. The user needs to execute the MOVE CHUNK command for
each chunk that needs to be migrated.

Chapter 4
User-Defined Sharding

4-5

The SPLIT CHUNK command, which is used to split a chunk in the middle of the hash
range for system-managed sharding, is not supported for user-defined sharding. You
must use the ALTER TABLE SPLIT PARTITION statement to split a chunk.

Note:

The sharding method is specified in the GDSCTL CREATE SHARDCATALOG command
and cannot be changed later.

For a user-defined sharded database, two replication schemes are supported: Oracle
Data Guard or Oracle Active Data Guard.

4.3 Composite Sharding
The composite sharding method allows you to create multiple shardspaces for
different subsets of data in a table partitioned by consistent hash. A shardspace is set
of shards that store data that corresponds to a range or list of key values.

System-managed sharding uses partitioning by consistent hash to randomly distribute
data across shards. This provides better load balancing compared to user-defined
sharding that uses partitioning by range or list. However, system-managed sharding
does not give the user any control on assignment of data to shards.

When sharding by consistent hash on a primary key, there is often a requirement to
differentiate subsets of data within an SDB in order to store them in different
geographic locations, allocate to them different hardware resources, or configure high
availability and disaster recovery differently. Usually this differentiation is done based
on the value of another (non-primary) column, for example, customer location or a
class of service.

Composite sharding is a combination of user-defined and system-managed sharding
which, when required, provides benefits of both methods. With composite sharding,
data is first partitioned by list or range across multiple shardspaces, and then further
partitioned by consistent hash across multiple shards in each shardspace.

The two levels of sharding make it possible to automatically maintain balanced
distribution of data across shards in each shardspace, and, at the same time, partition
data across shardspaces.

For example, suppose you want to allocate three shards hosted on faster servers to
“gold” customers and four shards hosted on slower machines to “silver” customers.
Within each set of shards, customers have to be distributed using partitioning by
consistent hash on customer ID.

Chapter 4
Composite Sharding

4-6

Figure 4-4 Composite Sharding

Tablespace

Set tbs1

SHARD1

P_1

tbs1-1

P_120

tbs1-120

.

.

.

SHARD2

P_121

tbs1-121

P_240

tbs1-240

.

.

.

SHARD3

P_241

tbs1-241

P_360

tbs1-360

.

.

.

Shardspace for GOLD customers - shspace1

SHARD4

P_1

tbs2-1

P_120

tbs2-120

.

.

.

SHARD5

P_121

tbs2-121

P_240

tbs1-240

.

.

.

SHARD6

P_241

tbs2-241

P_360

tbs2-360

.

.

.

SHARD7

P_361

tbs2-361

P_480

tbs2-480

.

.

.

Shardspace for SILVER customers - shspace2

Tablespace

Set tbs2

Two shardspaces need to be created for such a configuration, using the following
GDSCTL commands:

ADD SHARDSPACE –SHARDSPACE shspace1;
ADD SHARDSPACE –SHARDSPACE shspace2;

ADD SHARD –CONNECT shard1 –SHARDSPACE shspace1;
ADD SHARD –CONNECT shard2 –SHARDSPACE shspace1;
ADD SHARD –CONNECT shard3 –SHARDSPACE shspace1;

ADD SHARD –CONNECT shard4 –SHARDSPACE shspace2;
ADD SHARD –CONNECT shard5 –SHARDSPACE shspace2;
ADD SHARD –CONNECT shard6 –SHARDSPACE shspace2;
ADD SHARD –CONNECT shard7 –SHARDSPACE shspace2;

With composite sharding, as with the other sharding methods, tablespaces are used to
specify the mapping of partitions to shards. To place subsets of data in a sharded
table into different shardspaces, a separate tablespace set must be created in each
shardspace as shown in the following example.

CREATE TABLESPACE SET tbs1 IN SHARDSPACE shspace1;
CREATE TABLESPACE SET tbs2 IN SHARDSPACE shspace2;

To store user-defined subsets of data in different tablespaces, Oracle Sharding
provides syntax to group partitions into sets and associate each set of partitions with a
tablespace set. Support for partition sets can be considered a logical equivalent of a
higher level of partitioning which is implemented on top of partitioning by consistent
hash.

Chapter 4
Composite Sharding

4-7

The statement in the following example partitions a sharded table into two partition
sets: gold and silver, based on class of service. Each partition set is stored in a
separate tablespace. Then data in each partition set is further partitioned by consistent
hash on customer ID.

CREATE SHARDED TABLE customers
(cust_id NUMBER NOT NULL
, name VARCHAR2(50)
, address VARCHAR2(250)
, location_id VARCHAR2(20)
, class VARCHAR2(3)
, signup_date DATE
, CONSTRAINT cust_pk PRIMARY KEY(cust_id, class)
)
PARTITIONSET BY LIST (class)
 PARTITION BY CONSISTENT HASH (cust_id)
 PARTITIONS AUTO
(PARTITIONSET gold VALUES (‘gld’) TABLESPACE SET tbs1,
 PARTITIONSET silver VALUES (‘slv’) TABLESPACE SET tbs2)
;

Note:

In Oracle Database 12c Release 2 only a single partition set from a table can
be stored in a shardspace.
The sharding method is specified in the GDSCTL CREATE SHARDCATALOG command
and cannot be changed later.

4.4 Using Subpartitions with Sharding
Because Oracle Sharding is based on table partitioning, all of the subpartitioning
methods provided by Oracle Database are also supported for sharding.

Subpartitioning splits each partition into smaller parts and may be beneficial for
efficient parallel execution within a shard, especially in the case of sharding by range
or list when the number of partitions per shard may be small.

From a manageability perspective, subpartitioning makes it possible to support the
tiered storage approach by putting subpartitions into separate tablespaces and moving
them between storage tiers. Migration of subpartitions between storage tiers can be
done without sacrificing the scalability and availability benefits of sharding and the
ability to perform partition pruning and partition-wise joins on a primary key.

The following example shows system-managed sharding by consistent hash combined
with subpartitioning by range.

CREATE SHARDED TABLE customers
(cust_id NUMBER NOT NULL
, name VARCHAR2(50)
, address VARCHAR2(250)
, location_id VARCHAR2(20)
, class VARCHAR2(3)
, signup_date DATE
, CONSTRAINT cust_pk PRIMARY KEY(cust_id, signup_date)
)
TABLESPACE SET ts1

Chapter 4
Using Subpartitions with Sharding

4-8

PARTITION BY CONSISTENT HASH (cust_id)
SUBPARTITION BY RANGE (signup_date)
SUBPARTITION TEMPLATE
(SUBPARTITION per1 VALUES LESS THAN (TO_DATE('01/01/2000','DD/MM/YYYY')),
 SUBPARTITION per2 VALUES LESS THAN (TO_DATE('01/01/2010','DD/MM/YYYY')),
 SUBPARTITION per3 VALUES LESS THAN (TO_DATE('01/01/2020','DD/MM/YYYY')),
 SUBPARTITION future VALUES LESS THAN (MAXVALUE))
)
PARTITIONS AUTO
;

The following figure offers a graphical view of the table created by this statement.

Figure 4-5 Subpartitions Stored in the Tablespace of the Parent Partition

Shard 1 Shard 2 Shard 3

Partition 1

Sub-Partitions

Partition 2

Sub-Partitions

Partition 3

Sub-Partitions

Partition 4

Sub-Partitions

Partition 5

Sub-Partitions

Partition 6

Sub-Partitions

tbs1-1

tbs1-2

tbs1-3

tbs1-4

tbs1-5

tbs1-6

2 3 41 2 3 41 2 3 41

2 3 41 2 3 41 2 3 41

Tablespace

Set tbs1

In this example each subpartition is stored in the parent partition’s tablespace.
Because subpartitioning is done by date, it makes more sense to store subpartitions in
separate tablespaces to provide the ability to archive older data or move it to a read-
only storage. The appropriate syntax is shown here.

CREATE SHARDED TABLE customers
(cust_id NUMBER NOT NULL
, name VARCHAR2(50)
, address VARCHAR2(250)
, location_id VARCHAR2(20)
, class VARCHAR2(3)
, signup_date DATE NOT NULL
 , CONSTRAINT cust_pk PRIMARY KEY(cust_id, signup_date)
)
PARTITION BY CONSISTENT HASH (cust_id)
SUBPARTITION BY RANGE(signup_date)
SUBPARTITION TEMPLATE
(SUBPARTITION per1 VALUES LESS THAN (TO_DATE('01/01/2000','DD/MM/YYYY'))
 TABLESPACE SET ts1,
 SUBPARTITION per2 VALUES LESS THAN (TO_DATE('01/01/2010','DD/MM/YYYY'))
 TABLESPACE SET ts2,
 SUBPARTITION per3 VALUES LESS THAN (TO_DATE('01/01/2020','DD/MM/YYYY'))
 TABLESPACE SET ts3,
 SUBPARTITION future VALUES LESS THAN (MAXVALUE))
 TABLESPACE SET ts4
)
PARTITIONS AUTO
;

Note that in the case of a database that is not sharded, when tablespaces are
specified in the subpartition template it means that subpartition N from every partition

Chapter 4
Using Subpartitions with Sharding

4-9

is stored in the same tablespace. This is different in case of sharding when
subpartitions that belong to the different partitions must be stored in separate
tablespaces so that they can be moved in the event of resharding.

Subpartitioning can be used with composite sharding, too. In this case data in a table
is organized in three levels: partition sets, partitions, and subpartitions. Examples of
the three levels of data organization are shown below.

Specifying subpartition templates per partitionset is not supported to ensure that there
is uniformity in the number and bounds of subpartitions across partitionsets. If you
need to specify tablespaces for subpartitions per partitionset, you can use the
SUBPARTITIONS STORE IN clause.

CREATE SHARDED TABLE customers
(cust_id NUMBER NOT NULL
, name VARCHAR2(50)
, address VARCHAR2(250)
, location_id VARCHAR2(20)
, class VARCHAR2(3) NOT NULL
, signup_date DATE NOT NULL
, CONSTRAINT cust_pk PRIMARY KEY(cust_id, class, signup_date)
)
PARTITIONSET BY LIST (class)
PARTITION BY CONSISTENT HASH (cust_id)
SUBPARTITION BY RANGE (signup_date)
 SUBPARTITION TEMPLATE /* applies to both SHARDSPACEs */
 (SUBPARTITION per1 VALUES LESS THAN (TO_DATE('01/01/2000','DD/MM/YYYY'))
 , SUBPARTITION per2 VALUES LESS THAN (TO_DATE('01/01/2010','DD/MM/YYYY'))
 , SUBPARTITION per3 VALUES LESS THAN (TO_DATE('01/01/2020','DD/MM/YYYY'))
 , SUBPARTITION future VALUES LESS THAN (MAXVALUE)
)
PARTITIONS AUTO
(
 PARTITIONSET gold VALUES (‘gld’) TABLESPACE SET tbs1
 subpartitions store in(tbs1)
, PARTITIONSET silver VALUES (‘slv’) TABLESPACE SET tbs2
 subpartitions store in(tbs2)
)
;

In this example, subpartitions are stored in the tablespace of the parent partition, and
the subpartition template is the same for each PARTITIONSET. To store subpartitions in
separate tablespaces the following syntax can be used.

CREATE SHARDED TABLE customers
(cust_id NUMBER NOT NULL
, name VARCHAR2(50)
, address VARCHAR2(250)
, location_id VARCHAR2(20)
, class VARCHAR2(3) NOT NULL
, signup_date DATE NOT NULL
, CONSTRAINT cust_pk PRIMARY KEY(class, cust_id, signup_date)
)
PARTITIONSET BY LIST (class)
PARTITION BY CONSISTENT HASH (cust_id)
SUBPARTITION BY RANGE (signup_date)
PARTITIONS AUTO
 (
 PARTITIONSET gold VALUES (‘gld’)
 SUBPARTITION TEMPLATE
 (SUBPARTITION per1 VALUES LESS THAN (TO_DATE('01/01/2000','DD/MM/YYYY'))

Chapter 4
Using Subpartitions with Sharding

4-10

 TABLESPACE SET tbs1
 , SUBPARTITION per2 VALUES LESS THAN (TO_DATE('01/01/2010','DD/MM/YYYY'))
 TABLESPACE SET tbs2
 , SUBPARTITION per3 VALUES LESS THAN (TO_DATE('01/01/2020','DD/MM/YYYY'))
 TABLESPACE SET tbs3
 , SUBPARTITION future VALUES LESS THAN (MAXVALUE))
 TABLESPACE SET tbs4
)
, PARTITIONSET silver VALUES (‘slv’) TABLESPACE SET ts1
 SUBPARTITION TEMPLATE
 (SUBPARTITION per1 VALUES LESS THAN (TO_DATE('01/01/2000','DD/MM/YYYY'))
 TABLESPACE SET tbs5
 , SUBPARTITION per2 VALUES LESS THAN (TO_DATE('01/01/2010','DD/MM/YYYY'))
 TABLESPACE SET tbs6
 , SUBPARTITION per3 VALUES LESS THAN (TO_DATE('01/01/2020','DD/MM/YYYY'))
 TABLESPACE SET tbs7
 , SUBPARTITION future VALUES LESS THAN (MAXVALUE))
 TABLESPACE SET tbs8
)
)
;

Chapter 4
Using Subpartitions with Sharding

4-11

5
Design Considerations for Sharded
Database Applications

To obtain the benefits of sharding, a schema of an SDB should be designed in a way
that maximizes the number of database requests executed on a single shard.

The following topics describe the terminology and concepts you will need to manage a
sharded database schema:

• Considerations for Sharded Database Schema Design
Design of the database schema has a big impact on the performance and
scalability of a sharded database (SDB). An improperly designed schema can lead
to unbalanced distribution of data and workload across shards and large
percentage of multi-shard operations.

• Developing Applications for Oracle Sharding
Sharding provides linear scalability and complete fault isolation for the most
demanding OLTP applications without compromising on the enterprise qualities of
Oracle Database: strict consistency, the full power of SQL, developer agility with
JSON, security, high availability, backup and recovery, life-cycle management,
and more.

5.1 Considerations for Sharded Database Schema Design
Design of the database schema has a big impact on the performance and scalability of
a sharded database (SDB). An improperly designed schema can lead to unbalanced
distribution of data and workload across shards and large percentage of multi-shard
operations.

Once the SDB is populated with data, it is impossible to change many attributes of the
schema, such as whether a table is sharded or duplicated, sharding key, and so on.
Therefore, the following points should be carefully considered before deploying an
SDB:

• Which tables should be sharded?

• Which tables should be duplicated?

• Which sharded table should be the root table?

• What method should be used to link other tables to the root table?

• Which sharding method should be used?

• Which sharding key should be used?

• Which super sharding key should be used (if the sharding method is composite)?

5.2 Developing Applications for Oracle Sharding
Sharding provides linear scalability and complete fault isolation for the most
demanding OLTP applications without compromising on the enterprise qualities of

5-1

Oracle Database: strict consistency, the full power of SQL, developer agility with
JSON, security, high availability, backup and recovery, life-cycle management, and
more.

Sharding is a data tier architecture in which data is horizontally partitioned across
independent databases. Each database in such a configuration is called a shard. All of
the shards together make up a single logical database, which is referred to as a
sharded database (SDB).

There are three methods of sharding available to developers.

• System-managed sharding does not require the user to specify mapping of data to
shards. Data is automatically distributed across shards using partitioning by
consistent hash. The partitioning algorithm evenly and randomly distributes data
across shards for linear scalability.

• Composite sharding allows the creation of multiple shardspaces for different
subsets of data in a table partitioned by consistent hash. Composite sharding is
unique to Oracle and offers developers the ability to differentiate subsets of data
within an SDB in order to store them in different geographic locations, allocate to
them different hardware resources, etc, and then elastically scale performance
within each subset.

• User-defined sharding lets you explicitly specify the mapping of data to individual
shards. It is used when, because of performance, regulatory, or other reasons,
certain data needs to be stored on a particular shard, and the administrator needs
to have full control over moving data between shards.

Oracle Sharding is based on table partitioning; all of the subpartitioning methods
provided by Oracle Database are also supported for sharding.

Sharding is intended for OLTP applications that are suitable for a sharded database
architecture. Specifically:

• Applications must have a well-defined data model and data distribution strategy,
system-managed (consistent hash) or composite, and must primarily accesses
data using a sharding key. Examples of sharding keys include customer ID,
account number, country_id, and so on.

• The data model should be a hierarchical tree structure with a single root table.
Oracle Sharding supports any number of levels within the hierarchy.

• For the system-managed sharding method, the sharding key must be based on a
column that has high cardinality; the number of unique values in this column must
be much bigger than the number of shards. Customer ID, for example, is a good
candidate for the sharding key, while a United States state name is not.

• The sharding key should be very stable; its value should almost never change.

• The sharding key must be present in all of the sharded tables. This allows the
creation of a family of equi-partitioned tables based on the sharding key. The
sharding key must be the leading column of the primary key of the root table.

• Joins between tables in a table family should be performed using the sharding key.

• Composite sharding enables two levels of sharding - one by list or range and
another by consistent hash. This is accomplished by the application providing two
keys: a super sharding key and a sharding key.

• All database requests that require high performance and fault isolation must only
access data associated with a single value of the sharding key. The application

Chapter 5
Developing Applications for Oracle Sharding

5-2

must provide the sharding key when establishing a database connection. If this is
the case, the request is routed directly to the appropriate shard.

Multiple requests can be executed in the same session as long as they all are
related to the same sharding key. Such transactions typically access 10s or 100s
of rows. Examples of single-shard transactions include order entry, lookup and
update of a customer’s billing record, and lookup and update of a subscriber’s
documents.

• Database requests that must access data associated with multiple values of the
sharding key, or for which the value of the sharding key is unknown, must be
executed from the query coordinator which orchestrates parallel execution of the
query across multiple shards.

• Applications use Oracle integrated connection pools (UCP, OCI, ODP.NET, JDBC)
to connect to a sharded database.

• Separate connection pools must be used for direct routing and proxy routing. For
direct routing, separate global services must be created for read-write and read-
only workloads. This is true only if Data Guard replication is used. For proxy
routing, use the GDS$CATALOG service on the shard catalog database.

See Also:

• Direct Routing to a Shard

• Queries and DMLs with Proxy Routing in an SDB

Chapter 5
Developing Applications for Oracle Sharding

5-3

6
Routing in an SDB Environment

Oracle Sharding supports direct, key-based, routing to a shard, routing by proxy, and
routing to mid-tiers.

The following topics describe routing in an SDB environment.

• Direct Routing to a Shard
Oracle clients and connections pools are able to recognize sharding keys specified
in the connection string for high performance data dependent routing. A shard
routing cache in the connection layer is used to route database requests directly to
the shard where the data resides.

• Queries and DMLs with Proxy Routing in an SDB
Sharding supports routing for queries that do not specify a sharding key. This
allows the flexibility for any database application to execute SQL statements
(including SELECT and DML) in a system where tables are sharded or duplicated
without the need to specify the shards where the query should be executed.

6.1 Direct Routing to a Shard
Oracle clients and connections pools are able to recognize sharding keys specified in
the connection string for high performance data dependent routing. A shard routing
cache in the connection layer is used to route database requests directly to the shard
where the data resides.

The following topics describe direct, key-based, routing to a shard:

• About Direct Routing to a Shard
In direct, key-based, routing to a shard, a connection is established to a single,
relevant shard which contains the data pertinent to the required transaction using
a sharding key.

• Sharding APIs
Oracle connection pools and drivers support Oracle Sharding.

6.1.1 About Direct Routing to a Shard
In direct, key-based, routing to a shard, a connection is established to a single,
relevant shard which contains the data pertinent to the required transaction using a
sharding key.

A sharding key is used to route database connection requests at a user session level
during connection checkout. The composite sharding method requires both a sharding
key and a super sharding key. Direct, key-based, routing requires the sharding key (or
super sharding key) be passed as part of the connection. Based on this information, a
connection is established to the relevant shard which contains the data pertinent to the
given sharding key or super sharding key.

Once the session is established with a shard, all SQL queries and DMLs are
supported and executed in the scope of the given shard. This routing is fast and is

6-1

used for all OLTP workloads that perform intra-shard transactions. It is recommended
that direct routing be employed for all OLTP workloads that require the highest
performance and availability.

In support of Oracle Sharding, key enhancements have been made to Oracle
connection pools and drivers. Starting in Oracle Database 12c Release 2, JDBC,
Universal Connection Pool (UCP), OCI Session Pool (OCI), and Oracle Data Provider
for .NET (ODP.NET) provide new APIs to pass sharding keys during the connection
creation. Apache Tomcat, IBM Websphere, Oracle WebLogic Server, and JBOSS can
leverage JDBC/UCP support and use sharding. PHP, Python, Perl, and Node.js can
leverage OCI support.

A shard topology cache is a mapping of the sharding key ranges to the shards. Oracle
Integrated Connection Pools maintain this shard topology cache in their memory.
Upon the first connection to a given shard (during pool initialization or when the pool
connects to newer shards), the sharding key range mapping is collected from the
shards to dynamically build the shard topology cache.

Caching the shard topology creates a fast path to the shards and expedites the
process of creating a connection to a shard. When a connection request is made with
a sharding key, the connection pool looks up the corresponding shard on which this
particular sharding key exists (from its topology cache). If a matching connection is
available in the pool then the pool returns a connection to the shard by applying its
internal connection selection algorithm.

A database connection request for a given sharding key that is in any of the cached
topology map, goes directly to the shard (that is, bypassing the shard director).
Connection Pool also subscribes to RLB notifications from the SDB and dispenses the
best connection based on runtime load balancing advisory. Once the connection is
established, the client executes transactions directly on the shard. After all
transactions for the given sharding key have been executed, the application must
return the connection to the pool and obtain a connection for another key.

If a matching connection is not available in the pool, then a new connection is created
by forwarding the connection request with the sharding key to the shard director.

Once the pools are initialized and the shard topology cache is built based on all
shards, a shard director outage has no impact on direct routing.

See Also:

Direct Routing to a Shard

6.1.2 Sharding APIs
Oracle connection pools and drivers support Oracle Sharding.

JDBC, UCP, OCI, and Oracle Data Provider for .NET (ODP.NET) recognize sharding
keys as part of the connection check. Apache Tomcat, Websphere, and WebLogic
leverage UCP support for sharding and PHP, Python, Perl, and Node.js leverage OCI
support.

Chapter 6
Direct Routing to a Shard

6-2

Sharding APIs for Oracle UCP

A shard-aware application gets a connection to a given shard by specifying the
sharding key using the enhanced sharding API calls createShardingKeyBuilder and
createConnectionBuilder.

At a high-level, the following steps have to be followed in making an application work
with a Sharded Database:

1. Update the URL to reflect the Shard Directors and Global Service.

2. Set the pool parameters at the pool level and the shard level:

• Initial number of connections to be created when UCP is started using
setInitialPoolSize

• Minimum number of connections maintained by pool at runtime using
setMinPoolSize

• UCP property to set maximum number of connections allowed on connection
pool using setMaxPoolSize

• Set max connections per shard with setMaxConnectionsPerShard

3. Build a sharding key object with createShardingKeyBuilder.

4. Establish a connection using createConnectionBuilder.

5. Execute transactions within the scope of the given shard.

Example 6-1 Establishing a Connection Using UCP Sharding API

The following is a code fragment which illustrates how the sharding keys are built and
connections established using UCP Sharding API calls.

...

PoolDataSource pds =
 PoolDataSourceFactory.getPoolDataSource();

 // Set Connection Pool properties
pds.setURL(DB_URL);
pds.setUser("hr");
pds.setPassword("****");
pds.setInitialPoolSize(10);
pds.setMinPoolSize(20);
pds.setMaxPoolSize(30);

// build the sharding key object

OracleShardingKey shardingKey =
 pds.createShardingKeyBuilder()
 .subkey("mary.smith@example.com", OracleType.VARCHAR2)
 .build();

 // Get an UCP connection for a shard
Connection conn =
 pds.createConnectionBuilder()
 .shardingKey(shardingKey)
 .build();
...

Chapter 6
Direct Routing to a Shard

6-3

Example 6-2 Sample Shard-Aware Application Code Using UCP Connection
Pool

In this example the pool settings are defined at the pool level and at the shard level.

import java.sql.Connection;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;

import oracle.jdbc.OracleShardingKey;
import oracle.jdbc.OracleType;
import oracle.jdbc.pool.OracleDataSource;
import oracle.ucp.jdbc.PoolDataSource;
import oracle.ucp.jdbc.PoolDataSourceFactory;

public class MaxConnPerShard
{
 public static void main(String[] args) throws SQLException
 {
 String url = "jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(HOST=shard-dir1)
(PORT=3216)
 (PROTOCOL=tcp))(CONNECT_DATA=(SERVICE_NAME=shsvc.shpool.oradbcloud)(REGION=east)))";
 String user="testuser1", pwd = "testuser1";

 int maxPerShard = 100, initPoolSize = 20;

 PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();
 pds.setConnectionFactoryClassName(OracleDataSource.class.getName());
 pds.setURL(url);
 pds.setUser(user);
 pds.setPassword(pwd);
 pds.setConnectionPoolName("testpool");
 pds.setInitialPoolSize(initPoolSize);

 // set max connection per shard
 pds.setMaxConnectionsPerShard(maxPerShard);
 System.out.println("Max-connections per shard is:
"+pds.getMaxConnectionsPerShard());

 // build the sharding key object
 int shardingKeyVal = 123;
 OracleShardingKey sdkey = pds.createShardingKeyBuilder()
 .subkey(shardingKeyVal, OracleType.NUMBER)
 .build();

 // try to build maxPerShard connections with the sharding key
 Connection[] conns = new Connection[maxPerShard];
 for (int i=0; i<maxPerShard; i++)
 {
 conns[i] = pds.createConnectionBuilder()
 .shardingKey(sdkey)
 .build();

Statement stmt = conns[i].createStatement();
 ResultSet rs = stmt.executeQuery("select sys_context('userenv',
'instance_name'),
 sys_context('userenv', 'chunk_id') from dual");
 while (rs.next()) {
 System.out.println((i+1)+" - inst:"+rs.getString(1)+",
chunk:"+rs.getString(2));

Chapter 6
Direct Routing to a Shard

6-4

 }
 rs.close();
 stmt.close();
 }

 System.out.println("Try to build "+(maxPerShard+1)+" connection ...");
 try {
 Connection conn = pds.createConnectionBuilder()
 .shardingKey(sdkey)
 .build();

 Statement stmt = conn.createStatement();
 ResultSet rs = stmt.executeQuery("select sys_context('userenv',
'instance_name'),
 sys_context('userenv', 'chunk_id') from dual");
 while (rs.next()) {
 System.out.println((maxPerShard+1)+" - inst:"+rs.getString(1)+",
 chunk:"+rs.getString(2));
 }
 rs.close();
 stmt.close();

 System.out.println("Problem!!! could not build connection as max-connections
per
 shard exceeded");
 conn.close();
 } catch (SQLException e) {
 System.out.println("Max-connections per shard met, could not build connection
 any more, expected exception: "+e.getMessage());
 }
 for (int i=0; i<conns.length; i++)
 {
 conns[i].close();
 }
 }
}

ODP.NET Sharding APIs

A shard-aware application gets a connection to a given shard by specifying the
sharding key and super sharding key using ODP.NET APIs, such as the
SetShardingKey(OracleShardingKey shardingKey, OracleShardingKey superShardingKey)

instance method on the OracleConnection class.

At a high level, the following steps are necessary for a .NET application to work with a
Sharded Database:

1. Use ODP.NET, Unmanaged Driver.

Sharding is supported with or without ODP.NET connection pooling. Each pool
can maintain connections to different shards of the sharded database.

2. Use an OracleShardingKey class to set the sharding key and another instance for
the super sharding key.

3. Invoke the OracleConnection.SetShardingKey() method prior to calling
OracleConnection.Open() so that ODP.NET can return a connection with the
specified sharding key and super sharding key.

These keys must be set while the OracleConnection is in a Closed state, otherwise
an exception is thrown.

Chapter 6
Direct Routing to a Shard

6-5

Example 6-3 Sample Shard-Aware Application Code Using ODP.NET

using System;
using Oracle.DataAccess.Client;

class Sharding
{
 static void Main()
 {
 OracleConnection con = new OracleConnection
 ("user id=hr;password=hr;Data Source=orcl;");
 //Setting a shard key
 OracleShardingKey shardingKey = new OracleShardingKey(OracleDbType.Int32, 123);
 //Setting a second shard key value for a composite key
 shardingKey.SetShardingKey(OracleDbType.Varchar2, "gold");
 //Creating and setting the super shard key
 OracleShardingKey superShardingKey = new OracleShardingKey();
 superShardingKey.SetShardingKey(OracleDbType.Int32, 1000);

 //Setting super sharding key and sharding key on the connection
 con.SetShardingKey(shardingKey, superShardingKey);
 con.Open();

 //perform SQL query
 }
}

See Also:

Oracle Database JDBC Developer’s Guide for information about JDBC support
for Oracle Sharding

Oracle Universal Connection Pool Developer’s Guide for information about
UCP support for Oracle Sharding

Oracle Data Provider for .NET Developer's Guide for Microsoft Windows for
information about ODP.NET support for Oracle Sharding

Oracle Call Interface Programmer's Guide for information about the OCI
interface for using shards

6.2 Queries and DMLs with Proxy Routing in an SDB
Sharding supports routing for queries that do not specify a sharding key. This allows
the flexibility for any database application to execute SQL statements (including
SELECT and DML) in a system where tables are sharded or duplicated without the
need to specify the shards where the query should be executed.

The following topics describe proxy routing in detail:

• About Proxy Routing in a Sharded Database
Proxy routing is an ancillary usage pattern targeted for developer convenience. It
requires a connection be established to the coordinator.

Chapter 6
Queries and DMLs with Proxy Routing in an SDB

6-6

• Oracle Sharding Coordinator
The Oracle Sharding coordinator database contains the metadata of the sharded
topology and provides query processing support for sharded databases.

• Querying and DMLs Using Proxy Routing
Proxy routing enables aggregation of data and reporting across shards. It also
allows the flexibility for any database application to execute SQL statements
(including SELECT and DML) in a system where tables are sharded or duplicated
without the need to specify the sharding key (during connect) where the query
should execute.

• Proxy Routing for Single-Shard Queries
A single-shard query is a query which needs to scan data from only one shard and
does not need to lookup data from any other shards.

• Proxy Routing for Multi-Shard Queries
A multi-shard query must scan data from more than one shard, and the processing
on each shard is independent of any other shard.

• Supported Query Shapes in Proxy Routing
Oracle Sharding supports single and multi-shard query shapes with some
restrictions.

• Execution Plans for Proxy Routing
In a multi-shard query, each shard produces an independent execution plan that is
potentially different from the plans on the other shards in the query.

6.2.1 About Proxy Routing in a Sharded Database
Proxy routing is an ancillary usage pattern targeted for developer convenience. It
requires a connection be established to the coordinator.

The shard catalog database assumes the role of the coordinator database. The
coordinator uses the metadata of the sharded topology and provides query processing
support for sharded databases. The SQL compiler identifies the relevant shards
automatically and coordinates the query execution across all of the participating
shards. Once the session is made with the coordinator, SQL queries and DMLs are
executed and require no modification.

Proxy routing is suitable for the following scenarios:

• When the application cannot pass the sharding key during connect

• When the application needs to access data from sharded tables residing on
multiple shards

• SQL queries typically used in reporting such as aggregates on sales data

Routing using the coordinator allows your application to submit SQL statements
without a sharding key value passed during connect. The coordinator’s SQL compiler
analyzes and rewrites the query into query fragments that are sent and executed by
the participating shards. The queries are rewritten so that most of the query
processing is done on the participating shards and then aggregated by the
coordinator. In essence, the shards act as compute nodes for the queries executed by
coordinator. Because the computation is pushed to the data, there is reduced
movement of data between shards and the coordinator. This arrangement also
enables the effective use of resources by offloading processing from the coordinator
on to the shards as much as possible.

Chapter 6
Queries and DMLs with Proxy Routing in an SDB

6-7

It is recommended that applications separate their workloads for direct routing and
proxy routing. Separate connection pools must be created for these workloads.

6.2.2 Oracle Sharding Coordinator
The Oracle Sharding coordinator database contains the metadata of the sharded
topology and provides query processing support for sharded databases.

Connecting to the Coordinator

To perform multi-shard queries, connect to the coordinator using the GDS$CATALOG
service on the shard catalog database:

sqlplus app_schema/app_schema@shardcatvm:1521/GDS\$CATALOG.oradbcloud

Coordinator High Availability

The unavailability of the coordinator impacts proxy-routing based workloads, so it is
highly recommended that the coordinator be protected with Data Guard in Maximum
Availability protection mode (zero data loss failover) with fast-start failover enabled.
The coordinator may optionally be Oracle RAC-enabled for additional availability and
scalability.

Unavailability of the coordinator has zero impact on workloads utilizing direct routing.

Coordinator Database Sizing

The shard catalog and coordinator host the following key information:

• Metadata of the sharded database topology

• Schema of the sharded application

• Master copies of the duplicated tables

The size of the metadata and the schema is nominal; however, the number of
duplicated tables and the space they occupy should be planned for when sizing the
coordinator.

In addition to the above, the coordinator should also be sized to handle proxy routing,
which can be CPU, I/O, and memory intensive based on the SQL queries and the
amount of data being processed.

• Resiliency of Proxy Routing
It is highly recommended that the coordinator be protected with Data Guard with
fast-start failover and optionally be Oracle RAC-enabled for availability and
scalability

6.2.2.1 Resiliency of Proxy Routing
It is highly recommended that the coordinator be protected with Data Guard with fast-
start failover and optionally be Oracle RAC-enabled for availability and scalability

Failure of the coordinator affects multi- and single-shard queries that are routed
through the coordinator. The following are failure scenarios while querying and the
expected behavior of proxy routing:

• If a participating shard is down, then the coordinator sends the query to another
shard with same data.

Chapter 6
Queries and DMLs with Proxy Routing in an SDB

6-8

• If failure happens during execution of the query on a participating shard, then the
user will receive an error.

6.2.3 Querying and DMLs Using Proxy Routing
Proxy routing enables aggregation of data and reporting across shards. It also allows
the flexibility for any database application to execute SQL statements (including
SELECT and DML) in a system where tables are sharded or duplicated without the
need to specify the sharding key (during connect) where the query should execute.

In both aggregation and SQL execution without a sharding key use-cases, the user
accepts a reduced level of performance compared to direct, key-based, routing.

In a sharded database (SDB), there are two types of tables: sharded tables and
duplicated tables.

Sharded tables are equi-partitioned on a sharding key.

S=S1 U S2 U … U Sn

Duplicated tables are identical on all shards.

R = R1 = … = Rn

Proxy routing in an SDB provides a transparent mechanism to execute typical SQL
queries that access data from sharded and duplicated tables without requiring the
application to specify the relevant shards The SQL compiler identifies the relevant
shards automatically and coordinates the query execution across all the participating
shards. Database links are used for the communication between the coordinator and
the shards.

At a high level the coordinator rewrites each incoming query, Q, into a distributive form
composed of two queries, CQ and SQ, where SQ (Shard Query) is the portion of Q
that executes on each participating shard and CQ (Coordinator Query) is the portion
that executes on the coordinator shard.

Q => CQ (Shard_Iterator(SQ))

The following is an example of an aggregate query Q1 rewritten into Q1’ for an inter
shard execution:

Q1 : SELECT COUNT(*) FROM customers

Q1’: SELECT SUM(sc) FROM (Shard_Iterator(SELECT COUNT(*) sc FROM s1 (i)))

There are two key elements in this process: (1) identifying the relevant shards (2)
rewriting the query into a distributive form, and shard iteration.

During the compilation of a query on the coordinator database, the query compiler
analyzes the predicates on the sharding key and extracts the ones that can be used to
identify the participating shards, i.e. shards that will contribute rows for the sharded
tables referenced in the query. The rest of the shards are referred to as pruned
shards.

In the case where only one participating shard was identified, the full query is routed to
that shard for full execution. This is termed as a Single Shard Query. If there is more
than one participating shard the query is known as multi-shard query and is rewritten.
The rewriting process takes into account the expressions computed by the query as
well as the query shape.

Chapter 6
Queries and DMLs with Proxy Routing in an SDB

6-9

6.2.4 Proxy Routing for Single-Shard Queries
A single-shard query is a query which needs to scan data from only one shard and
does not need to lookup data from any other shards.

The single-shard query is similar to a client connecting to a specific shard and issuing
a query on that shard. In this scenario, the entire query will be executed on the single
participating shard, and the coordinator just passes processed rows back to the client.
The plan on the coordinator is similar to the remote mapped cursor.

For example, the following query is fully mapped to a single shard because the data
for customer 123 is located only on that shard.

SELECT count(*) FROM customers c, orders o WHERE c.custno = o.custno and c.custno =
123;

The query contains a condition on the shard key that maps to one and only one shard
which is known at query compilation time (literals) or query start time (bind). The query
is fully executed on the qualifying shard. single-shard queries can be SELECT,
UPDATE, DELETE and INSERT. MERGE/UPSERT are not supported.

Single-shard queries are supported for:

• Equality and In-list, such as Area = ‘West’

• Conditions containing literal, bind, or expression of literals and binds, such as

Area = :bind

Area = CASE :bind <10 THEN ‘West’ ELSE ‘East’ END

• SELECT, UPDATE, DELETE and INSERT

6.2.5 Proxy Routing for Multi-Shard Queries
A multi-shard query must scan data from more than one shard, and the processing on
each shard is independent of any other shard.

A multi-shard query maps to more than one shard and the coordinator may need to do
some processing before sending the result to the client. For example, the following
query fetches the number of orders placed by each customer.

SELECT count(*), c.custno FROM customers c, orders o WHERE c.custno = o.custno
 GROUP BY c.custno;

The query is transformed to the following by the coordinator.

SELECT sum(count_col), custno FROM (SELECT count(*) count_col, c.custno
 FROM customers c, orders o
 WHERE c.custno = o.custno GROUP BY c.custno) GROUP BY custno;

The inline query block is mapped to every shard just as a remote mapped query block.
The coordinator performs further aggregation and GROUP BY on top of the result set from
all shards. The unit of execution on every shard is the inline query block.

Multi-shard queries are supported for SELECT statements only. A query can either
access a single shard (in case of equality filter), or ALL shards (in case of no filter
predicate on sharding key).

Chapter 6
Queries and DMLs with Proxy Routing in an SDB

6-10

• Specifying Consistency Levels in a Multi-Shard Query
You can use the initialization parameter
MULTISHARD_QUERY_DATA_CONSISTENCY to set different consistency levels
when executing multi-shard queries across shards.

6.2.5.1 Specifying Consistency Levels in a Multi-Shard Query
You can use the initialization parameter
MULTISHARD_QUERY_DATA_CONSISTENCY to set different consistency levels
when executing multi-shard queries across shards.

You can specify different consistency levels for multi-shard queries. For example, you
might want some queries to avoid the cost of SCN synchronization across shards, and
these shards could be globally distributed. Another use case is when you use
standbys for replication and slightly stale data is acceptable for multi-shard queries, as
the results could be fetched from the primary and its standbys.

The default mode is strong, which performs SCN synchronization across all shards.
Other modes skip SCN synchronization. The delayed_standby_allowed level allows
fetching data from the standbys as well, depending on load balancing and other
factors, and could contain stale data.

This parameter can be set either at the system level or at the session level.

See Also:

Oracle Database Reference for more information about
MULTISHARD_QUERY_DATA_CONSISTENCY usage.

6.2.6 Supported Query Shapes in Proxy Routing
Oracle Sharding supports single and multi-shard query shapes with some restrictions.

Query Involves Only Duplicated Tables

For queries that involve only duplicated tables there are no restrictions on the query
shape. The query is executed on the coordinator.

Query Involves Only Sharded Tables

For a single table query, the query can have an equality filter on the sharding key that
qualifies a shard. For join queries, all of the tables should be joined using equality on
the sharding key. The following are some examples of queries involving sharded
tables.

Inner join where equi-join is only on sharding key.

SELECT … FROM s1 INNER JOIN s2 ON s1.sk=s2.sk
WHERE any_filter(s1) AND any_filter(s2)

Left outer join only on sharding key.

SELECT … FROM s1 LEFT OUTER JOIN s2 ON s1.sk=s2.sk

Right outer join, same as left outer join.

Chapter 6
Queries and DMLs with Proxy Routing in an SDB

6-11

SELECT … FROM s1 RIGHT OUTER JOIN s2 ON s1.sk=s2.sk

Full outer join only on the sharding key, but only if Native is valid which requires equi-
join.

SELECT … FROM s1 FULL OUTER JOIN s2 ON s1.sk=s2.sk
WHERE any_filter(s1) AND any_filter(s2)

Query Involves Sharded and Duplicated Tables

A query involving both sharded and duplicated tables can be either a single-shard or
multi-shard query, based on the predicates on the sharding key. The only difference is
that the query will contain a non sharded table which is duplicated on each shard.

Joins between a sharded table and a duplicated table can be on any column using any
comparison operator (= < > <= >=) or even arbitrary join expression. The following are
examples of join patterns.

Inner join

SELECT … FROM s1 INNER JOIN r1 ON any_join_condition(s1,r1)
WHERE any_filter(s1) AND any_filter(r1)

Left/Right outer join

Where sharded table is the first table in LEFT OUTER JOIN:

SELECT … FROM s1 LEFT OUTER JOIN r1 ON any_join_condition(s1,r1)
WHERE any_filter(s1) AND any_filter(r1)

SELECT … FROM r1 LEFT OUTER JOIN s1 ON any_join_condition(s1,s2)
AND any_filter(r1) AND filter_one_shard(s1)

Where sharded table is second table in RIGHT OUTER JOIN:

SELECT … FROM r1 RIGHT OUTER JOIN s1 ON any_join_condition(s1,r1)
WHERE any_filter(s1) AND any_filter(r1)

SELECT … FROM s1 RIGHT OUTER JOIN r1 ON any_join_condition(s1,s2)
AND filter_one_shard(s1) AND any_filter(r1)

Full outer join

SELECT … FROM s1 FULL OUTER JOIN r1 ON s1.sk=s2.sk
WHERE any_filter(s1) AND any_filter(s2)

Semi-join (EXISTS)

SELECT … FROM s1 EXISTS
(SELECT 1 FROM r1 WHERE r1.anykey=s1.anykey)

SELECT … FROM r1 EXISTS
(SELECT 1 FROM s1 WHERE r1.anykey=s1.anykey and filter_one_shard(s1))

Anti-join (NOT EXISTS)

SELECT … FROM s1 NOT EXISTS
(SELECT 1 FROM r1 WHERE r1.anykey=s1.anykey)

Left/Right outer join

Chapter 6
Queries and DMLs with Proxy Routing in an SDB

6-12

Where the duplicated table is the first table in LEFT OUTER JOIN, or the sharded table is
first and it maps to a single shard based on filter predicate on sharding key:

SELECT … FROM r1 LEFT OUTER JOIN s1 ON any_join_condition(s1,s2)
AND any_filter(r1) AND any_filter(s1)

Where the duplicated table is the second table in RIGHT OUTER JOIN, or the sharded
table is second and it maps to a single shard based on filter predicate on sharding key:

SELECT … FROM s1 RIGHT OUTER JOIN r1 ON any_join_condition(s1,s2)
AND any_filter (s1) AND any_filter(r1)

Full Outer Join

Sharded table requiring access to multiple shards:

SELECT … FROM s1 FULL OUTER JOIN r1 ON s1.non_sk=s2.non_sk
WHERE any_filter(s1) AND any_filter(s2)

Semi-join (EXISTS)

Sharded table is in a subquery that requires access of multiple shards:

SELECT … FROM r1 EXISTS
(SELECT 1 FROM s1 WHERE r1.anykey=s1.anykey)

Anti-join (NOT EXISTS)

Sharded table is in the sub-query:

SELECT … FROM r1 NOT EXISTS
(SELECT 1 FROM s1 WHERE r1.anykey=s1.anykey

Aggregate Functions

The following aggregations are supported by proxy routing:

• COUNT

• SUM

• MIN

• MAX

• AVG

Multi-shard Queries and Global CR

A multi-shard query must maintain global read consistency (CR) by issuing the query
at the highest common SCN across all the shards. See Specifying Consistency Levels
in a Multi-Shard Query for information about how to set consistency levels.

Transactions

A DML statement that affects only one shard is supported. For example,

update S1 set col = … where sk = <constant>;

A DML statement that affects more than one shard is not supported. For example,

update S1 set col = …;

Chapter 6
Queries and DMLs with Proxy Routing in an SDB

6-13

Within a transaction, multiple single shard DMLs can be performed on different shards.
For example,

insert into S1 values (…);
Update S1 set col = … where sk = constant;
Delete S1 where sk = constant;
Commit;

For multi-shard DML, the coordinator uses database link, starts a distributed
transaction and performs two phase commit to guarantee the consistency of the
distributed transaction. In the case of an in-doubt transaction, the database
administrator has to recover it manually.

Passing Hints in Multi-Shard Queries

Any hint specified in the original query on the coordinator is propagated to the shards.

Tracing and Troubleshooting Slow Running Multi-Shard Queries

Set the trace event shard_sql on the coordinator to trace the query rewrite and shard
pruning. One of the common performance issues observed is when the GROUP BY is
not pushed to the shards because of certain limitations of the sharding. Check if all of
the possible operations are pushed to the shards and the coordinator has minimal
work to consolidate the results from shards.

6.2.7 Execution Plans for Proxy Routing
In a multi-shard query, each shard produces an independent execution plan that is
potentially different from the plans on the other shards in the query.

Starting in Oracle Database 18c you no longer need to connect to individual shards to
see the explain plan for SQL fragments. Interfaces provided in
dbms_xplan.display_cursor() display on the coordinator the plans for the SQL
segments executed on the shards, and [V/X]$SHARD_SQL uniquely maps a shard SQL
fragment of a multi-shard query to the target shard database.

SQL segment interfaces for dbms_xplan.display_cursor()

Two interfaces display the plan of a SQL segment executed on shards. The interfaces
take shard IDs as the argument to display the plans from the specified shards . The
ALL_SHARDS format displays the plans from all of the shards.

To print all the plans from shards use the format ALL_SHARDS as shown here.

select * from table(dbms_xplan.display_cursor(sql_id=>:sqlid,
 cursor_child_no=>:childno,
 format=>'BASIC +ALL_SHARDS‘,
 shard_ids=>shard_ids))

To print selective plans from the shards, pass shard IDs in the display_cursor()
function. For plans from multiple shards pass an array of numbers containing shard
IDs of interest in the shard_ids parameter as shown here.

select * from table(dbms_xplan.display_cursor(sql_id=>:sqlid,
 cursor_child_no=>:childno,
 format=>'BASIC',
 shard_ids=>ids))

Chapter 6
Queries and DMLs with Proxy Routing in an SDB

6-14

To return a plan from one shard pass the shard ID directly to the shard_id parameter,
as shown here.

select * from table(dbms_xplan.display_cursor(sql_id=>:sqlid,
 cursor_child_no=>:childno,
 format=>'BASIC',
 shard_id=>1))

[V/X]$SHARD_SQL

[V/X]$SHARD_SQL uniquely maps a shard SQL fragment of a multi-shard query to the
target shard database. This view is relevant only for the shard coordinator database to
store a list of shards accessed for each shard SQL fragment for a given multi-shard
query. Every execution of a multi-shard query can execute a shard SQL fragment on
different set of shards, so every execution updates the shard IDs. This view maintains
the SQL ID of a shard SQL fragment for each REMOTE node and the SHARD IDs on
which the shard SQL fragment was executed.

Name Null? Type
--- -------- ----------------------------
 SQL_ID VARCHAR2(13)
 CHILD_NUMBER NUMBER
 NODE_ID NUMBER
 SHARD_SQL_ID VARCHAR2(13)
 SHARD_ID NUMBER
 SHARD_CHILD_NUMBER NUMBER

• SQL_ID – SQL ID of a multi-shard query on coordinator

• CHILD_NUMBER – cursor child number of a multi-shard query on coordinator

• NODE_ID – ID of REMOTE node for a shard SQL fragment of a multi-shard query

• SHARD_SQL_ID – SQL ID of the shard SQL fragment for given remote NODE ID

• SHARD_ID – IDs of shards where the shard SQL fragment was executed

• SHARD _CHILD_NUMBER– cursor child number of a shard SQL fragment on a
shard (default 0)

The following is an example of a multi-shard query on the sharded database and the
execution plan.

SQL> select count(*) from departments a where exists (select distinct department_id
 from departments b where b.department_id=60);
--
| Id | Operation | Name |
--
0	SELECT STATEMENT	
1	SORT AGGREGATE	
2	FILTER	
3	VIEW	VW_SHARD_377C5901
4	SHARD ITERATOR	
5	REMOTE	
6	VIEW	VW_SHARD_EEC581E4
7	SHARD ITERATOR	
8	REMOTE	
--

A query of SQL_ID on the V$SHARD_SQL view.

SQL> Select * from v$shard_sql where SQL_ID = ‘1m024z033271u’;
SQL_ID NODE_ID SHARD_SQL_ID SHARD_ID

Chapter 6
Queries and DMLs with Proxy Routing in an SDB

6-15

------------- ------- -------------- --------
1m024z033271u 5 5z386yz9suujt 1
1m024z033271u 5 5z386yz9suujt 11
1m024z033271u 5 5z386yz9suujt 21
1m024z033271u 8 8f50ctj1a2tbs 11

See Also:

Oracle Database PL/SQL Packages and Types Reference

Oracle Database Reference

Chapter 6
Queries and DMLs with Proxy Routing in an SDB

6-16

7
Shard-Level High Availability

Oracle Sharding is integrated with Oracle Database replication technologies for high
availability and disaster recovery at the shard level.

The following topics describe how to use Oracle’s replication technologies to make
your sharded databases highly available:

• About Sharding and Replication
Oracle Sharding is tightly integrated with the Oracle replication and disaster
recovery technologies Oracle Data Guard and Oracle GoldenGate.

• Using Oracle Data Guard with an SDB
Oracle Data Guard replication maintains one or more synchronized copies
(standbys) of a shard (the primary) for high availability and data protection.
Standbys may be deployed locally or remotely, and when using Oracle Active Data
Guard can also be open for read-only access.

• Using Oracle GoldenGate with a Sharded Database
Oracle GoldenGate is used for fine-grained multi-master replication where all
shards are writable, and each shard can be partially replicated to other shards
within a shardgroup.

7.1 About Sharding and Replication
Oracle Sharding is tightly integrated with the Oracle replication and disaster recovery
technologies Oracle Data Guard and Oracle GoldenGate.

Replication provides high availability, disaster recovery, and additional scalability for
reads. A unit of replication can be a shard, a part of a shard, or a group of shards.

Replication topology in a sharded database (SDB) is declaratively specified using
GDSCTL command syntax. You can choose one of two technologies—Oracle Data
Guard or Oracle GoldenGate—to replicate your data. Oracle Sharding automatically
deploys the specified replication topology and enables data replication. Note that
Oracle GoldenGate is only supported in system-managed sharded database
environments.

The availability of an SDB is not affected by an outage or slowdown of one or more
shards. Replication is used to provide individual shard-level high availability (Oracle
Active Data Guard or Oracle GoldenGate). Replication is automatically configured and
deployed when the SDB is created. Optionally, you can use Oracle RAC for shard-
level high availability, complemented by replication, to maintain shard-level data
availability in the event of a cluster outage. Oracle Sharding automatically fails over
database connections from a shard to its replica in the event of an unplanned outage.

• When To Choose Oracle GoldenGate for Shard High Availability
When should Oracle GoldenGate be employed as your high availablility solution
for Oracle Sharding?

7-1

7.1.1 When To Choose Oracle GoldenGate for Shard High Availability
When should Oracle GoldenGate be employed as your high availablility solution for
Oracle Sharding?

Oracle GoldenGate should be your preferred high availability solution in the following
cases:

• All shards read-write. With Active Data Guard the DR/backup shards are read-
only.

• More flexibility in deploying shards. Each shard can be on a different operating
system or a different database version.

• More than a single updatable copy of the data. For example, with Oracle
GoldenGate, using the replication factor of 4, you can have 4 read-write copies of
the data that can be updated.

See Also:

Working with Oracle GoldenGate Sharding in the Fusion Middleware Using the
Oracle GoldenGate Microservices Architecture guide for more information
about using Oracle GoldenGate with Oracle Sharding.

7.2 Using Oracle Data Guard with an SDB
Oracle Data Guard replication maintains one or more synchronized copies (standbys)
of a shard (the primary) for high availability and data protection. Standbys may be
deployed locally or remotely, and when using Oracle Active Data Guard can also be
open for read-only access.

Oracle Data Guard can be used as the replication technology for SDBs using the
system-managed or composite method of sharding.

Using Oracle Data Guard with a System-Managed SDB

In system-managed and composite sharding, the logical unit of replication is a group of
shards called a shardgroup. In system-managed sharding, a shardgroup contains all of
the data stored in the SDB. The data is sharded by consistent hash across shards that
make up the shardgroup. Shards that belong to a shardgroup are usually located in
the same data center. An entire shardgroup can be fully replicated to one or more
shardgroups in the same or different data centers.

The following figure illustrates how Data Guard replication is used with system-
managed sharding. In the example in the figure there is a primary shardgroup,
Shardgroup 1, and two standby shardgroups, Shardgroup 2 and Shardgroup 3.
Shardgroup 1 consists of Data Guard primary databases (shards 1-3). Shardgroup 2
consists of local standby databases (shards 4-6) which are located in the same
datacenter and configured for synchronous replication. And Shardgroup 3 consists of
remote standbys (shards 7-9) located in a different datacenter and configured for
asynchronous replication. Oracle Active Data Guard is enabled in this configuration, so
each standby is open read-only.

Chapter 7
Using Oracle Data Guard with an SDB

7-2

Figure 7-1 System-Managed Sharding with Data Guard Replication

Datacenter 1

Datacenter 2

Shardgroup 1

Shardgroup 2

Shardgroup 3

1 2

5

3

4 6

7 8 9

The concept of shardgroup as a logical unit of replication hides from the user the
implementation details of replication. With Data Guard, replication is done at the shard
(database) level. The SDB in the figure above consists of three sets of replicated
shards: {1, 4, 7}, {2, 5, 8} and {3, 6, 9}. Each set of replicated shards is managed as a
Data Guard Broker configuration with fast-start failover (FSFO) enabled.

To deploy replication, specify the properties of the shardgroups (region, role, and so
on) and add shards to them. Oracle Sharding automatically configures Data Guard
and starts an FSFO observer for each set of replicated shards. It also provides load
balancing of the read-only workload, role based global services and replication lag,
and locality based routing.

Run the following GDSCTL commands to deploy the example configuration shown in
the figure above.

CREATE SHARDCATALOG –database host00:1521:shardcat –region dc1, dc2

ADD GSM -gsm gsm1 -listener 1571 –catalog host00:1521:shardcat –region dc1
ADD GSM -gsm gsm2 -listener 1571 –catalog host00:1521:shardcat –region dc2

ADD SHARDGROUP -shardgroup shardgroup1 -region dc1 -deploy_as primary
ADD SHARDGROUP -shardgroup shardgroup2 -region dc1 -deploy_as active_standby
ADD SHARDGROUP -shardgroup shardgroup3 -region dc2 -deploy_as active_standby

CREATE SHARD -shardgroup shardgroup1 -destination host01 -credential oracle_cred
CREATE SHARD -shardgroup shardgroup1 -destination host02 -credential oracle_cred
CREATE SHARD -shardgroup shardgroup1 -destination host03 -credential oracle_cred
...
CREATE SHARD -shardgroup shardgroup3 -destination host09 -credential oracle_cred

DEPLOY

Chapter 7
Using Oracle Data Guard with an SDB

7-3

Using Oracle Data Guard with a User-Defined SDB

With user-defined sharding the logical (and physical) unit of replication is a shard.
Shards are not combined into shardgroups. Each shard and its replicas make up a
shardspace which corresponds to a single Data Guard Broker configuration.
Replication can be configured individually for each shardspace. Shardspaces can
have different numbers of standbys which can be located in different data centers. An
example of user-defined sharding with Data Guard replication is shown in the following
figure.

Figure 7-2 User-Defined Sharding with Data Guard Replication

Datacenter 1

Datacenter 3

Datacenter 2

Shardspace A Shardspace B Shardspace C

1 2 3

4 5

6 7

8 9 10

Run the following GDSCTL commands to deploy the example user-defined SDB with
Data Guard replication shown in the figure above.

CREATE SHARDCATALOG -sharding user –database host00:1521:cat –region dc1, dc2, dc3

ADD GSM -gsm gsm1 -listener 1571 –catalog host00:1521:cat –region dc1
ADD GSM -gsm gsm2 -listener 1571 –catalog host00:1521:cat –region dc2
ADD GSM -gsm gsm3 -listener 1571 –catalog host00:1521:cat –region dc3

ADD SHARDSPACE -shardspace shardspace_a
ADD SHARDSPACE -shardspace shardspace_b

Chapter 7
Using Oracle Data Guard with an SDB

7-4

ADD SHARDSPACE -shardspace shardspace_c

CREATE SHARD shardspace shardspace_a –region dc1 -deploy_as primary -destination
host01 -credential oracle_cred -netparamfile /home/oracle/netca_dbhome.rsp

CREATE SHARD shardspace shardspace_a –region dc1 -deploy_as standby -destination
host04 -credential oracle_cred -netparamfile /home/oracle/netca_dbhome.rsp

CREATE SHARD shardspace shardspace_a –region dc2 -deploy_as standby -destination
host06 -credential oracle_cred -netparamfile /home/oracle/netca_dbhome.rsp

CREATE SHARD shardspace shardspace_a –region dc3 -deploy_as standby -destination
host08 -credential oracle_cred -netparamfile /home/oracle/netca_dbhome.rsp

CREATE SHARD shardspace shardspace_b –region dc1 -deploy_as primary -destination
host08 -credential oracle_cred -netparamfile /home/oracle/netca_dbhome.rs
...

CREATE SHARD shardspace shardspace_c –region dc3 -deploy_as standby -destination
host10 -credential oracle_cred -netparamfile /home/oracle/netca_dbhome.rsp

DEPLOY

Using Oracle Data Guard with a Composite SDB

In composite sharding an SDB consists of multiple shardspaces. However, each
shardspace, instead of replicated shards, contains replicated shardgroups.

Chapter 7
Using Oracle Data Guard with an SDB

7-5

Figure 7-3 Composite Sharding with Data Guard Replication

Shardgroup
A1

Shardgroup
B1

Shardgroup
A2

Shardgroup
B2

Shardgroup
B3

Shardgroup
A3

Shardspace A Shardspace B

Datacenter
1

Datacenter
2

Datacenter
3

Run the following GDSCTL commands to deploy the example configuration shown in
the previous figure.

CREATE SHARDCATALOG -sharding composite –database host00:1521:cat –region dc1,
dc2, dc3

ADD GSM -gsm gsm1 -listener 1571 –catalog host00:1521:cat –region dc1
ADD GSM -gsm gsm2 -listener 1571 –catalog host00:1521:cat –region dc2
ADD GSM -gsm gsm3 -listener 1571 –catalog host00:1521:cat –region dc3

ADD SHARDSPACE -shardspace shardspace_a
ADD SHARDSPACE -shardspace shardspace_b

ADD SHARDGROUP -shardgroup shardgroup_a1 –shardspace shardspace_a -region dc1
-deploy_as primary
ADD SHARDGROUP -shardgroup shardgroup_a2 –shardspace shardspace_a -region dc1
-deploy_as active_standby
ADD SHARDGROUP -shardgroup shardgroup_a3 –shardspace shardspace_a -region dc3
-deploy_as active_standby
ADD SHARDGROUP -shardgroup shardgroup_b1 –shardspace shardspace_b -region dc1
-deploy_as primary
ADD SHARDGROUP -shardgroup shardgroup_b2 –shardspace shardspace_b -region dc1
-deploy_as active_standby
ADD SHARDGROUP -shardgroup shardgroup_b3 –shardspace shardspace_b -region dc2

Chapter 7
Using Oracle Data Guard with an SDB

7-6

-deploy_as active_standby

CREATE SHARD -shardgroup shardgroup_a1 -destination host01 –credential orcl_cred
...

CREATE SHARD -shardgroup shardgroup_b3 -destination host09 -credential orcl_cred

DEPLOY

7.3 Using Oracle GoldenGate with a Sharded Database
Oracle GoldenGate is used for fine-grained multi-master replication where all shards
are writable, and each shard can be partially replicated to other shards within a
shardgroup.

In Oracle GoldenGate, replication is handled at the chunk level. For example, in
Shardgroup 1 in the following figure, half of the data stored in each shard is replicated
to one shard, and the other half to another shard. If any shard becomes unavailable,
its workload is split between two other shards in the shardgroup. The multiple failover
destinations mitigate the impact of a shard failure because there is no single shard that
has to handle all of the workload from the failed shard.

Figure 7-4 System-Managed Sharding with Golden Gate Replication

Datacenter 1

Datacenter 2

Shardgroup 1

2 31

4

Shardgroup 2

5

With Oracle GoldenGate replication, a shardgroup can contain multiple replicas of
each row in a sharded table; therefore, high availability is provided within a
shardgroup, and there is no need to have a local replica of the shardgroup, as there is
in the case of Data Guard replication. The number of times each row is replicated
within a shardgroup is called its replication factor and is a configurable parameter.

Chapter 7
Using Oracle GoldenGate with a Sharded Database

7-7

To provide disaster recovery, a shardgroup can be replicated to one or more data
centers. Each replica of a shardgroup can have a different number of shards,
replication factor, database versions, and hardware platforms. However, all
shardgroup replicas must have the same number of chunks, because replication is
done at the chunk level.

Shardgroup 2 in the figure above contains the same data as Shardgroup 1, but resides
in a different data center. Shards in both data centers are writable. The default
replication factor, 2, is used for both shardgroups.

Note that because Shardgroup 2 contains only two shards and the replication factor is
2, the shards are fully replicated, and each of them contains all of the data stored in
the SDB. This means that any query routed to these shards can be executed without
going across shards. There is only one failover destination in this shardgroup; if a
shard goes down, the load on the other shard doubles.

Oracle Sharding is designed to minimize the number of conflicting updates performed
to the same row on different shards. This is achieved designating a master chunk for
each range of hash values and routing most of requests for the corresponding data to
this chunk.

Sometimes it is impossible to avoid update conflicts because of state transitions, such
as a chunk move or split, or a shard going up or down. The user may also intentionally
allow conflicts in order to minimize transaction latency. For such cases Oracle
GoldenGate provides automatic conflict detection and resolution which handles all
kinds of conflicts including insert-delete conflicts.

Before creating any shards, there are some prerequisites:

• Register with scheduler (when using GDSCTL create shard)

• Prepare site-security wallets or client and server certificates.

• Install Oracle GoldenGate and add at least one secure deployment with sharding
option, and start up GoldenGate services and servers.

• In each Oracle home, make a copy of the client wallets used to add GoldenGate
deployments, and place it at $ORACLE_BASE/admin/ggshd_wallet/.

• Load PL/SQL packages from a GoldenGate install home.

Run the following GDSCTL commands to deploy an example configuration shown in
the figure above.

CREATE SHARDCATALOG -database host00:1521:shardcat -chunks 60
 -user 'gsmcatuser/gsmcatuser_password'
 -repl OGG -sharding system -sdb orasdb
ADD GSM -gsm gsm1 -listener 1571 –catalog shard-dir1:1521:shardcat -localons 3841
ADD GSM -gsm gsm2 -listener 1571 –catalog shard-dir1:1521:shardcat -localons 3841
START GSM -gsm gsm1
START GSM -gsm gsm2
CONFIGURE -timeout 900
ADD REGION -region dc1
ADD REGION -region dc2
MODIFY GSM -gsm gsm1 -region dc1
MODIFY GSM -gsm gsm2 -region dc2
ADD SHARDGROUP -shardgroup shardgroup1 -region dc1 -repfactor 2
ADD SHARDGROUP -shardgroup shardgroup2 -region dc2 -repfactor 2

CREATE SHARD -shardgroup shardgroup1 -destination host01 -credential
oracle_cred

Chapter 7
Using Oracle GoldenGate with a Sharded Database

7-8

 -netparam /home/oracle/netca_dbhome.rsp -gg_service host01:9900/
remote_scheduler_agent
 -gg_password ggadmin_password -dbparamfile /home/oracle/dbparams01.tmp
 -dbtemplatefile /home/oracle/sharddb01.dbt

CREATE SHARD -shardgroup shardgroup1 -destination host02 -credential
oracle_cred
 -netparam /home/oracle/netca_dbhome.rsp -gg_service host02:9900/
remote_scheduler_agent
 -gg_password ggadmin_password -dbparamfile /home/oracle/dbparams02.tmp
 -dbtemplatefile /home/oracle/sharddb02.dbt

CREATE SHARD -shardgroup shardgroup1 -destination host03 -credential
oracle_cred
 -netparam /home/oracle/netca_dbhome.rsp -gg_service host03:9900/
remote_scheduler_agent
 -gg_password ggadmin_password -dbparamfile /home/oracle/dbparams03.tmp
 -dbtemplatefile /home/oracle/sharddb03.dbt

CREATE SHARD -shardgroup shardgroup2 -destination host04 -credential
oracle_cred
-netparam /home/oracle/netca_dbhome.rsp -gg_service host04:9900/
remote_scheduler_agent
 -gg_password ggadmin_password -dbparamfile /home/oracle/dbparams04.tmp
 -dbtemplatefile /home/oracle/sharddb04.dbt

CREATE SHARD -shardgroup shardgroup2 -destination host05 -credential
oracle_cred
-netparam /home/oracle/netca_dbhome.rsp -gg_service host05:9900/
remote_scheduler_agent
 -gg_password ggadmin_password -dbparamfile /home/oracle/dbparams05.tmp
 -dbtemplatefile /home/oracle/sharddb05.dbt

DEPLOY

Note that the above example uses CREATE SHARD to create new shards during
deployment. ADD SHARD is the alternative to CREATE SHARD, and the ADD SHARD method
assumes the pre-existence of clean slate database instances ready to be converted
into database shards.

Note:

Unlike sharding replication with Data Guard or Active Data Guard, you cannot
deploy Oracle GoldenGate manually, it must be done using the DEPLOY
command.

Oracle Goldengate only supports system-managed sharded database
environments.

Chapter 7
Using Oracle GoldenGate with a Sharded Database

7-9

See Also:

Working with Oracle GoldenGate Sharding in the Fusion Middleware Using the
Oracle GoldenGate Services Architecture guide for more information about
using Oracle GoldenGate with Oracle Sharding.

Chapter 7
Using Oracle GoldenGate with a Sharded Database

7-10

8
Sharded Database Deployment

Sharded database deployment includes the prerequisites and instructions for installing
the required software components, creating the catalog, roles, and the sharded
database, configuring replication for high availability, and creating the schema for the
sharded database.

The following topics contain the concepts and tasks you need to deploy a sharded
database:

• Introduction to SDB Deployment
Oracle Sharding provides the capability to automatically deploy the sharded
database (SDB), which includes both the shards and the replicas.

• Oracle Sharding Prerequisites
Before you install any software, review these hardware, network, and operating
system requirements for Oracle Sharding.

• Installing Oracle Database Software
Install Oracle Database on each system that will host the shard catalog or
database shards.

• Installing the Shard Director Software
Install the global service manager software on each system that you want to host a
shard director.

• Creating the Shard Catalog Database
Create an Oracle Database using DBCA to host the shard catalog.

• Setting Up the Oracle Sharding Management and Routing Tier
The shard catalog, shard directors and shards must be configured to communicate
with each other.

• Creating and Deploying a System-Managed SDB

• Creating and Deploying a User-Defined SDB

• Creating and Deploying a Composite SDB
To deploy a composite SDB you must install the required Oracle Sharding
software components, configure the objects for a composite SDB, and create the
schema.

8.1 Introduction to SDB Deployment
Oracle Sharding provides the capability to automatically deploy the sharded database
(SDB), which includes both the shards and the replicas.

The SDB administrator defines the topology (regions, shard hosts, replication
technology) and invokes the DEPLOY command with a declarative specification using
the GDSCTL command-line interface.

At a high level, the deployment steps are:

1. Set up the components.

8-1

• Create a database that hosts the shard catalog.

• Install Oracle Database software on the shard nodes.

• Install shard director (GSM) software on the shard director nodes.

Note:

For production deployments, it is highly recommended that you configure
Data Guard for the shard catalog database.

2. Specify the topology layout using the following commands.

• CREATE SHARDCATALOG

• ADD GSM

• START GSM

• ADD CREDENTIAL (if using CREATE SHARD)

• ADD SHARDGROUP

• ADD INVITEDNODE

• CREATE SHARD (or ADD SHARD) for each shard

3. Run DEPLOY and add the global service to access any shard in the SDB.

• DEPLOY

• ADD SERVICE

• Choosing a Deployment Method
You can deploy a sharded database, by creating the shards at the same time for a
new database, or by adding the shards from a preexisting database.

• Using Oracle Multitenant with Oracle Sharding
You can use a multitenant container database (CDB) containing a single pluggable
database (PDB) as a shard in your Oracle Sharding configuration.

8.1.1 Choosing a Deployment Method
You can deploy a sharded database, by creating the shards at the same time for a
new database, or by adding the shards from a preexisting database.

Oracle Sharding supports two deployment methods. The first method is with the CREATE
SHARD command, where the creation of shards and the replication configuration are
automatically done by the Oracle Sharding management tier. This method cannot be
used in a multitenant architecture where PDBs are used as shards.

The second deployment method is with the ADD SHARD command. If your database
creation standards require that you deploy the SDB using your own pre-created
databases, the ADD SHARD deployment method supports this requirement by simply
adding your prebuilt database shards.

Deployment Method: CREATE SHARD

The DEPLOY command creates the shards. This is done using the DBMS_SCHEDULER
package (executed on the shard catalog), which communicates with the Scheduler
agents on the remote shard hosts.

Chapter 8
Introduction to SDB Deployment

8-2

Agents then invoke DBCA and NETCA, and if Oracle GoldenGate replication is
specified, GoldenGate Creation Assistance (GGCA) , to create the shards and the
local listeners. After the primary shards are created the corresponding standby shards
are built using the RMAN DUPLICATE command.

When Data Guard is used as the high availability solution, once the primary and
standby shards are built, the DEPLOY command configures Data Guard Broker with
Fast-Start Failover (FSFO) enabled. The FSFO observers are automatically started on
the regional shard director.

Note:

The CREATE SHARD method is not supported for PDBs used as shards. Only
the ADD SHARD methods can be used in a multitenant architecture.

Archivelog and flashback are enabled for all of the shards. This is required for
the FSFO observer to perform standby auto-reinstantiation upon failover.

Deployment Method: ADD SHARD

Use the ADD SHARD command to add shards to a sharded database configuration if you
have your own database creation standards and prefer to deploy the sharded
database using your own pre-created databases. This method is recommended for
shards that are Oracle RAC-enabled, Oracle Restart-enabled, or PDB shards. The ADD
SHARD deployment method supports this requirement by adding shards, which already
have database installations deployed on them, rather than creating new instances.

When the ADD SHARD command is used for deployment, and Data Guard is used for
high availability, the DEPLOY command handles the configuration of Oracle GoldenGate,
or Data Guard, Broker and Fast-start Failover. It also handles the scenario where you
have pre-configured Data Guard for the shard that is being added.

Unlike sharding with Data Guard or Active Data Guard, you cannot deploy Oracle
GoldenGate manually, it must be done using the DEPLOY command.

8.1.2 Using Oracle Multitenant with Oracle Sharding
You can use a multitenant container database (CDB) containing a single pluggable
database (PDB) as a shard in your Oracle Sharding configuration.

To support consolidation of databases on under-utilized hardware, for ease of
management, or geographical business requirements, you can use single PDBs in
CDBs as database shards. For example, for database consolidation, you can add
other, non-shard PDBs to the CDB containing a shard PDB.

To add a shard PDB to the sharded database configuration, you should first add the
CDB in which that shard PDB is contained to the shard catalog. The GDSCTL
command ADD CDB is used to add a pre-created CDB to the shard catalog. Then, use
the GDSCTL ADD SHARD command with the -cdb option to add shards which are a PDB
contained within a CDB to the sharded database during deployment.

The following example adds a CDB with unique name db11 to the shard catalog and
then adds it to shardgroup shgrp1 in a sharded database configuration.

Chapter 8
Introduction to SDB Deployment

8-3

GDSCTL> add cdb -connect CDB$ROOT_connect_string -pwd GSMUSER_password
GDSCTL> add shard -cdb db11 -connect PDB_connect_string –shardgroup shgrp1
 -deploy_as active_standby -pwd GSMUSER_password

Use CONFIG CDB to display information about the CDB in the shard catalog.

GDSCTL> config cdb

Name: tstsdbyb
Connection string: (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=cdb1host)(PORT=1521))
(CONNECT_DATA=(SERVICE_NAME=cdb1.example.com)))
SCAN address:
ONS remote port: 0
Disk Threshold, ms: 20
CPU Threshold, %: 75
Version: 18.0.0.0
Rack:

Moving PDB Shards

You can manually unplug a shard PDB from a CDB, and plug it in to a different CDB.
This can be done outside of the sharding interfaces, and then you can update the
shard catalog metadata to indicate that the PDB shard has moved to another CDB.
The GDSCTL command ADD SHARD with the –REPLACE option is used to update the
location of the shard PDB in the shard catalog.

PDB Shard High Availability

Oracle Data Guard supports replication only at the CDB level. The existing sharding
architecture allows replicated copies of the sharded data for high availability, and it can
optionally configure and use Data Guard to create and maintain these copies. Data
Guard does not currently support replication at the PDB level; it can only replicate an
entire container.

Making Changes to CDB in Sharding Configuration

Use MODIFY CDB to change the metadata of the CDB in the shard catalog. Some
parameters cannot be used after the CDB contains shards, or contains shards that
have been deployed.

GDSCTL> modify cdb -shard cdb1 -pwd new_password

Use REMOVE CDB to remove a CDB from the shard catalog. Removing a CDB does not
destroy it.

GDSCTL> remove cdb -cdb cdb1

Upgrading from a Non-PDB Shard to a PDB Shard

When upgrading from a non-PDB sharded environment to one which makes use of
PDBs, you must back up each existing non-PDB shard and then create a new CDB,
and a PDB inside it. The shard is then restored to the PDB inside the CDB, as the
CDB migration guide recommends. At this point, the shard has become a PDB inside
a CDB, and you use the GDSCTL ADD CDB command to add the new CDB, and then
run ADD SHARD -REPLACE, specifying the connect string of the PDB, to tell the sharding
infrastructure to replace the old location of the shard with new PDB location.

Chapter 8
Introduction to SDB Deployment

8-4

See Also:

Oracle Database Global Data Services Concepts and Administration Guide for
information about the GDSCTL commands used with PDB shards

Oracle Multitenant Administrator's Guide for information about Oracle
Multitenant

8.2 Oracle Sharding Prerequisites
Before you install any software, review these hardware, network, and operating
system requirements for Oracle Sharding.

• Hardware and operating system requirements for the shards are the same as
those on which Oracle Database is supported. See your Oracle Database
installation documentation for these requirements.

• Hardware, software, and operating system requirements for the shard catalog and
shard directors are the same as those on which the Global Data Services catalog
and global service manager are supported. See Oracle Database Global Data
Services Concepts and Administration Guide for these requirements.

• Network requirements are Low Latency GigE

• Port communication requirements are listed below. All of the following are required
for using CREATE SHARD. When using ADD SHARD, items 4 and 5 are not
relevant.

1. Each and every shard must be able to reach each and every shard director's
listener and ONS ports. The default listener port of the shard director is 1522,
and the default ONS ports on most platforms are 6123 for the local ONS and
6234 for remote ONS. These shard director listener ports and the ONS ports
must also be opened to the application/client tier, all of the shards, the shard
catalog, and all other shard directors.

2. Each and every shard must be able to reach the TNS Listener port of the
shard catalog (both primary and standby).

3. The TNS Listener port (default 1521) of each shard must be opened to shard
directors and the shard catalog.

4. On the primary and standby shard catalog database, the port used for -
agent_port (default 8080) in the CREATE SHARDCATALOG command must be visible
to all of the shards.

5. The scheduler agent port on all of the shards must be visible to shard catalog
node. Execute schagent -status on each shard to identify the port.

8.3 Installing Oracle Database Software
Install Oracle Database on each system that will host the shard catalog or database
shards.

Before installing Oracle Database, create an operating system user on all of the
systems where you will be hosting the sharded database, shard catalog, and shard

Chapter 8
Oracle Sharding Prerequisites

8-5

directors, and assign them to the DBA group. Allow the user to run su, and make note
of the credentials so that you can use them in later procedures.

See Oracle Database Installation Guide for Linux, or your platform’s installation guide,
for information about configuring operating system users.

1. Download the Oracle Database installer on all of the systems that will host the
shard catalog or the database shards.

2. Install Oracle Database on all of the systems where you intend to host the shard
catalog and sharded database.

a. Run the installer on the first system.

$ cd /u01/stage/database
$./runInstaller

As you step through the Oracle Database installation, be sure to select the
following options on the noted screens:

• On the Installation Option page, select Install database software only.

• On the Grid Installation Options page, select Single instance database
installation. Oracle RAC and Oracle RAC One Node are not supported in
this release.

• On the Database Edition page, select Enterprise Edition.

• On the Installation Location page, use the same Oracle base and
Software location values that you used when creating the environment
scripts in the steps above.

• On the Create Inventory page, accept the defaults.

• On the Operating System Groups page, accept the defaults or make
changes as appropriate for your environment.

• On the Summary page, you can click Save Response File to create a file
for silent installation of the Oracle Database software on the remaining
hosts.

• During installation, execute the orainstRoot.sh and root.sh scripts as root
in a separate terminal when prompted.

b. Optionally, using the response file you created in the first installation, run a
silent install on each of the remaining hosts.

Note that, after performing a silent install using a response file, when you run
the database root.sh script its execution might not prompt you interactively for
any values and uses only default values (for example, for the local user bin
directory). If any non-default values are desired, specify just the -responseFile
location when invoking the Installer and omit the -silent option. Click through
the Installer screens, accepting the response file values, and then run the root
script(s) when prompted. During root script execution, any user prompts are
presented to you and non-default values can be entered.

See Also:

Oracle Database Installation Guide for Linux for more information about using
the response file for silent installation of Oracle Database

Chapter 8
Installing Oracle Database Software

8-6

8.4 Installing the Shard Director Software
Install the global service manager software on each system that you want to host a
shard director.

1. Download the Oracle Global Service Manager installer on all of the systems that
will host the shard directors.

2. See Oracle Database Global Data Services Concepts and Administration Guide
for information about installing a global service manager.

3. Optionally, using the response file you created in the first installation, run a silent
install on each of the remaining shard director hosts.

See Oracle Database Global Data Services Concepts and Administration Guide
for more information about the silent install process.

Note that, after performing a silent install using a response file, when you run the
database root.sh script its execution might not prompt you interactively for any
values and uses only default values (for example, for the local user bin directory).
If any non-default values are desired, specify just the -responseFile location when
invoking the Installer and omit the -silent option. Click through the Installer
screens, accepting the response file values, and then run the root script(s) when
prompted. During root script execution, any user prompts are presented to you
and non-default values can be entered.

8.5 Creating the Shard Catalog Database
Create an Oracle Database using DBCA to host the shard catalog.

1. Connect to the host where you will host the shard catalog, and verify that the
expected environment variables are set to the correct values.

$ env |grep ORA
ORACLE_BASE=/u01/app/oracle
ORACLE_HOME=/u01/app/oracle/product/18.0.0/dbhome_1

2. Create the oradata and fast_recovery_area directories.

$ mkdir /u01/app/oracle/oradata
$ mkdir /u01/app/oracle/fast_recovery_area

3. Run DBCA to create the shard catalog database.

$ dbca

The Database Configuration Assistant opens.

4. On the Database Operation page, select Create a database, and click Next.

5. On the Creation Mode page, select Advanced configuration, and click Next.

6. On the Deployment Type page, select the Oracle Single Instance database
database type, select the General Purpose or Transaction Processing
template, and click Next.

7. On the Database Identification page, enter the Global Database name and the
shard catalog SID that you configured in the shard catalog host environment
script, and click Next.

Chapter 8
Installing the Shard Director Software

8-7

8. On the Storage Option page, select the Use following for the database storage
attributes option, select File System, select the Use Oracle-Managed Files
(OMF) option, and click Next.

9. On the Select Fast Recovery Option page, select Specify Fast Recovery Area,
select Enable archiving, and click Next.

10. On the Specify Network Configuration Details page, select Create a new listener,
set the listener name and port number, and click Next.

Make note of the listener name so that you can connect to the database later.

11. Skip the Data Vault Option page.

12. On the Configuration Options page Memory tab, select Use Automatic Shared
Memory Management.

13. On the Configuration Options page Character sets tab, select Use Unicode
(AL32UTF8), and click Next

14. On the Management Option page, uncheck the Configure Enterprise Manager
(EM) database express option, and click Next.

15. On the User Credentials page, select the appropriate option for your business
needs, enter the passwords, and click Next.

Make a note of the passwords you entered because you will need them later.

16. On the Creation Option page, select Create database, and click Next.

17. On the Summary page, click Finish.

18. After the database has been created, make a note of the Global Database Name,
SID, and spfile values.

19. If you plan to use Oracle Data Guard to protect the shard catalog database, click
Password Management, unlock the SYSDG account, and make a note of the
password you enter for this account.

20. Click Close to exit DBCA.

8.6 Setting Up the Oracle Sharding Management and
Routing Tier

The shard catalog, shard directors and shards must be configured to communicate
with each other.

Before you begin, carefully read through the port requirements prerequisites listed in
Oracle Sharding Prerequisites, and make any changes necessary before proceeding
with the tasks in this section.

1. On the shard catalog host, verify that the expected environment values are set to
the correct values.

$ env |grep ORA
ORACLE_SID=shardcat
ORACLE_BASE=/u01/app/oracle
ORACLE_HOME=/u01/app/oracle/product/18.0.0/dbhome_1

2. If the shard catalog listener is not already started, start the shard catalog listener.

$ lsnrctl start

Chapter 8
Setting Up the Oracle Sharding Management and Routing Tier

8-8

3. Verify that DB_CREATE_FILE_DEST parameter is set on the shard catalog database.

If the parameter is not set, then set it as shown in the following example. Note that
open_links and open_links_per_instance are set to 16 for the purposes of the
Oracle Sharding demo application.

$ sqlplus / as sysdba

SQL> alter system set db_create_file_dest='/u01/app/oracle/oradata' scope=both;
SQL> alter system set open_links=16 scope=spfile;
SQL> alter system set open_links_per_instance=16 scope=spfile;

4. Shut down and restart the shard catalog database.

SQL> shutdown immediate
Datablase closed.
Database dismounted.

SQL> startup
ORACLE instance started.

Total System Global Area 4798283776 bytes
Fixed Size 4430760 bytes
Variable Size 1006634072 bytes
Database Buffers 3774873600 bytes
Redo Buffers 12345344 bytes
Database mounted.
Database opened.

5. Grant roles and privileges on the shard catalog database.

SQL> set echo on
SQL> set termout on
SQL> spool setup_grants_privs.lst

a. Unlock and set the password for the GSMCATUSER schema.

This schema is used by the shard director when connecting to the shard
catalog database.

SQL> alter user gsmcatuser account unlock;
SQL> alter user gsmcatuser identified by gsmcatuser_password;

b. Create the administrator schema and grant privileges to it.

The mysdbadmin account is an account in the shard catalog database which
stores information on the sharding environment. The mysdbadmin account is
the database administrator schema for making administrative changes to the
sharded database environment. GDSCTL connects through this user to the
database when GDSCTL commands are run, and the mysdbadmin user
makes the necessary changes in the database.

SQL> create user mysdbadmin identified by mysdbadmin_password;
SQL> grant connect, create session, gsmadmin_role to mysdbadmin;
SQL> grant inherit privileges on user SYS to GSMADMIN_INTERNAL;
SQL> spool off

6. Connect to a shard director host and start GDSCTL.

The commands in the following steps are executed from a shard director host
because the GDSCTL command line interface is installed there.

The following example includes a sanity check that environment variables have
been set properly.

Chapter 8
Setting Up the Oracle Sharding Management and Routing Tier

8-9

$ env |grep ORA
ORACLE_BASE=/u01/app/oracle
ORACLE_HOME=/u01/app/oracle/product/18.0.0/gsmhome_1

$ gdsctl

7. Create the shard catalog and configure the remote scheduler agent on the shard
catalog.

In this example, the sharded database is given the name cust_sdb, and two
regions are created: region1 and region2. The regions are used as local
availability domains for failover of the shards from the primary to physical standby.
The regions are not meant to represent geographical regions in these examples.

To create shard catalog for system-managed sharding, with Oracle GoldenGate
replication:

GDSCTL> create shardcatalog -database
 shard_catalog_host:port_number:shard_catalog_name
 -user gsm_admin/mysdbadmin_password -repl OGG -repfactor 2 -sdb cust_sdb
 -region region1, region2 -agent_port port_num -agent_password rsa_password

Note:

For production systems, it is a good practice to use the default (120 chunks
per shard) , instead of specifying the -chunks parameter while creating the
shard catalog.

Because system-managed is the default sharding method, it does not need
to be specified with the -sharding parameter.

To create shard catalog for a composite sharded database, with Data Guard
replication:

GDSCTL> create shardcatalog -database
 shard_catalog_host:port_number:shard_catalog_name
 -chunks 60 -shardspace shardspace1 -sharding composite -sdb comp_shpool
 -protectmode maxavailability -user gsm_admin/mysdbadmin_password

To create shard catalog for a user-defined sharded database, with Data Guard
replication:

GDSCTL> create shardcatalog -sdb udef_shpool -sharding user
 -protectmode maxavailability
 -database shard_catalog_host:port_number:shard_catalog_name
 -user gsm_admin/mysdbadmin_password -region region1, region2

Note:

The -agent_port and -agent_password parameters are not necessary if you
are using the ADD SHARD deployment method.

8. While you are connected to the shard director host, create and start the shard
director.

Chapter 8
Setting Up the Oracle Sharding Management and Routing Tier

8-10

GDSCTL> add gsm -gsm sharddirector1 -listener listener_port -pwd
gsmcatuser_password
 -catalog shard_catalog_host:1521:shardcat -region region1

GDSCTL> start gsm -gsm sharddirector1

Repeat steps 6 and 8 on each shard director host. Replace the shard director
name and region name with appropriate values for each host.

9. Using GDSCTL, set the operating system credentials.

GDSCTL> add credential -credential credential_name -osaccount os_account_name
 -ospassword os_password
GDSCTL> exit

Note:

this step is not necessary if you are using the ADD SHARD deployment
method.

These credentials are the operating system user name and password on the shard
hosts (not the catalog host), and the credentials are used by the remote scheduler
agent to run jobs on the hosts to set up the shards using DBCA, NETCA, and the
like.

Repeat this step if a different operating system credential will be used for each
host.

10. Connect to each of the shard hosts, register remote scheduler agents on them,
and create directories for oradata and fast_recovery_area on them.

Note:

This step is only required if you are using the CREATE SHARD method
described in Introduction to SDB Deployment. If you are using the ADD
SHARD method you can skip this step.

Execute the following statements on each of the machines that will host a shard.

Note that the os_account_name is the account used for Oracle software
installation, shard_host is the host name or IP address of the machine hosting the
shard, the shard_catalog_host is the host name or IP address of the shard catalog
host, and port_num is the remote scheduler agent port number as specified in the
-agent_port parameter for create shardcatalog in step 7 above. The remote
scheduler agent prompts you for the agent registration password specified in the -
agent_password parameter of create shardcatalog in step 7 above.

$ ssh os_account_name@shard_host
passwd: os_password

$ schagent -start
$ schagent -status
$ schagent -registerdatabase shard_catalog_host port_num

Chapter 8
Setting Up the Oracle Sharding Management and Routing Tier

8-11

$ mkdir /u01/app/oracle/oradata
$ mkdir /u01/app/oracle/fast_recovery_area

See Also:

Oracle Database Global Data Services Concepts and Administration Guide for
information about usage and options for the GDSCTL commands.

8.7 Creating and Deploying a System-Managed SDB
The following topics describe the tasks for creating and deploying a system-managed
SDB.

• Deploying a System-Managed SDB
To deploy a system-managed SDB you create shardgroups and shards, create
and configure the databases to be used as shards, execute the DEPLOY
command, and create role-based global services.

• Creating a Schema for a System-Managed SDB
Create the schema user, tablespace set, sharded tables, and duplicated tables for
the SDB. Verify that the DDLs are propagated to all of the shards, and, while
connected to the shards, verify the automatic Data Guard Broker configuration
with Fast-Start Failover.

• System-Managed SDB Demo Application
The system-managed sharded database (SDB) demo application simulates the
workload of an online retail store. Use it to validate the setup of any system-
managed (automatic sharding) SDB configuration. The demo application also
provides a practical example of sharding concepts for administrators and
developers new to database sharding.

8.7.1 Deploying a System-Managed SDB
To deploy a system-managed SDB you create shardgroups and shards, create and
configure the databases to be used as shards, execute the DEPLOY command, and
create role-based global services.

System-managed sharding does not require the user to map data to shards. Data is
automatically distributed across shards using partitioning by consistent hash. The
partitioning algorithm evenly and randomly distributes data across shards. For more
conceptual information about the system-managed SDB, see System-Managed
Sharding.

1. If you are using the ADD SHARD method described in Introduction to SDB
Deployment you must first create the databases to be used as shards on their
respective hosts.

The shard databases must have the following characteristics:

• They must have an associated TNS Listener on each host

• The GSMUSER account must be unlocked with a known password

• SYSDG and SYSBACKUP privileges must be granted to GSMUSER

Chapter 8
Creating and Deploying a System-Managed SDB

8-12

• The primary and standby databases must be configured as such

• Redo apply should be set up between the corresponding primary and standby
databases

• Flashback and force logging should be enabled

• The compatible parameter must be set to at least 12.2.0

• A server parameter file (SPFILE) must be in use

• A DATA_PUMP_DIR directory object must be created in each database and must
point to a valid directory

You must then validate that a database is correctly set up for sharding. Run the
following statements against each database, while logged in as SYS, before
adding it to the configuration.

SQL> set serveroutput on
SQL> execute DBMS_GSM_FIX.validateShard

Screen output will include INFO, WARNING, and ERROR information that needs
to be analyzed for any issues. All WARNING and ERROR messages must be
resolved. Re-run validateShard() after making changes to confirm the
configuration.

2. Connect to the shard director host.

$ ssh os_user@shard_director1_host

3. Set the global service manager for the current session, and specify the credentials
to administer it.

$ gdsctl
GDSCTL> set gsm -gsm sharddirector1
GDSCTL> connect mysdbadmin/mysdbadmin_password

4. Add a shardgroup for the primary shards.

In this example the shardgroup is named primary_shardgroup, and is part of a
Data Guard replication solution.

GDSCTL> add shardgroup -shardgroup primary_shardgroup -deploy_as primary
 -region region1

The following example shows the shardgroup creation for an Oracle GoldenGate
replication solution.

GDSCTL> add shardgroup -shardgroup shardgroup1 -region region1 -repfactor 2

5. Add a shardgroup for the standby shards.

In this example the shardgroup is named standby_shardgroup, and is created for
an Active Data Guard active standby using the -deploy_as parameter.

GDSCTL> add shardgroup -shardgroup standby_shardgroup -deploy_as active_standby
 -region region2

Adding a second shardgroup in an Oracle GoldenGate configuration might look
like the following example.

GDSCTL> add shardgroup -shardgroup shardgroup2 -region region2 -repfactor 2

6. Add each shard’s host address to the valid node checking for registration (VNCR)
list in the catalog, then create or add the shard in either the primary or standby
shardgroup, as shown in the following examples.

Chapter 8
Creating and Deploying a System-Managed SDB

8-13

Note:

The valid node checking for registration (VNCR) feature provides the ability
to configure and dynamically update a set of IP addresses, host names, or
subnets from which registration requests are allowed by the shard
directors. Database instance registration with a shard director succeeds
only when the request originates from a valid node. By default, the shard
management tier (based on Oracle Global Data Services framework)
automatically adds a VNCR entry for the host on which a remote database
is running each time create shard or add shard is executed. The automation
(called auto-VNCR) finds the public IP address of the target host, and
automatically adds a VNCR entry for that IP address. If the host has
multiple public IP addresses, then the address on which the database
registers may not be the same as the address which was added using
auto-VNCR and , as a result, registration many be rejected. If the target
database host has multiple public IP addresses, it is advisable that you
configure VNCR manually for this host using the add invitednode or add
invitedsubnet commands in GDSCTL.

If there are multiple net-cards on the target host (/sbin/ifconfig returns
more than one public interface), use add invitednode to be safe (after
finding out which interface will be used to route packets).

If there is any doubt about registration, then use config vncr and use add
invitednode as necessary. There is no harm in doing this, because if the
node is added already, auto-VNCR ignores it, and if you try to add it after
auto-VNCR already added it, you will get a warning stating that it already
exists.

The following example shows how to create four shards using the CREATE SHARD
command, using a Data Guard high availability solution, two of which are in the
primary shardgroup and two in the standby shardgroup. The credential_name is
the operating system credential you created in the shard catalog for the
destination host.

While creating the shards, you can also set the SYS password in the create shard
using -sys_password as shown in the following example. This sets the SYS
password after the shards are created when running DEPLOY.

There are other optional parameters for CREATE SHARD that allow you to customize
the database parameters, storage and file locations, listener port numbers, and so
on, which are documented in the Oracle Database Global Data Services Concepts
and Administration Guide appendices.

GDSCTL> add invitednode shard_host_1
GDSCTL> create shard -shardgroup primary_shardgroup -destination shard_host_1
 -credential credential_name -sys_password sys_password

GDSCTL> add invitednode shard_host_2
GDSCTL> create shard -shardgroup standby_shardgroup -destination shard_host_2
 -credential credential_name -sys_password sys_password
GDSCTL> add invitednode shard_host_3
GDSCTL> create shard -shardgroup primary_shardgroup -destination shard_host_3
 -credential credential_name -sys_password sys_password
GDSCTL> add invitednode shard_host_4

Chapter 8
Creating and Deploying a System-Managed SDB

8-14

GDSCTL> create shard -shardgroup standby_shardgroup -destination shard_host_4
 -credential credential_name -sys_password sys_password

In an Oracle GoldenGate replication solution, the shardgroups would not be
designated as primary and standby because replication is handled at the chunk
level and distributed among the shards within a shardgroup. However, a disaster
recovery best practice is to replicate a shardgroup to one or more data centers.
The following is an example of creating a shard with Oracle GoldenGate
replication.

GDSCTL> create shard -shardgroup shardgroup -destination shard_host
 -credential oracle_cred -netparam /home/oracle/netca_dbhome.rsp
 -gg_service shard_host_1:$ADMINSRVR_PORT/$GGHOME
 -gg_password ggadmin_password
 -dbparamfile /home/oracle/dbparams01.tmp
 -dbtemplatefile /home/oracle/sharddb01.dbt

If you are using the ADD SHARD method described in Introduction to SDB
Deployment, use the following command instead of the CREATE SHARD commands in
the example above. If the shard database to be added is a pluggable database
(PDB), you must use the -cdb option to ADD SHARD to specify which container
database (CDB) the PDB shard is in. In addition, ADD CDB must be used before the
ADD SHARD command to add the CDB to the catalog. See Oracle Database Global
Data Services Concepts and Administration Guide for the syntax for ADD CDB and
ADD SHARD. Note that in Oracle Database 18c, only one PDB in each CDB is
allowed to be a shard.

GDSCTL> add shard –shardgroup shgrp1
 –connect shard_host:TNS_listener_port/shard_database_name
 –pwd GSMUSER_password

7. Check the configuration from a shard director.

Note that the shard names, sh1, sh2, sh3, and sh4, are system generated shard
names when the CREATE SHARD method is used.

GDSCTL> config
Regions

region1
region2

GSMs

sharddirector1
sharddirector2

Sharded Database

cust_sdb

Databases

sh1
sh2
sh3
sh4

Shard Groups

primary_shardgroup

Chapter 8
Creating and Deploying a System-Managed SDB

8-15

standby_shardgroup

Shard spaces

shardspaceora

Services

GDSCTL pending requests

Command Object Status
------- ------ ------

Global properties

Name: oradbcloud
Master GSM: sharddirector1
DDL sequence #: 0

GDSCTL> config shardspace
SHARDSPACE Chunks
---------- ------
shardspaceora 12

GDSCTL> config shardgroup
Shard Group Chunks Region SHARDSPACE
----------- ------ ------ ----------
primary_shardgroup 12 region1 shardspaceora
standby_shardgroup 12 region2 shardspaceora

GDSCTL> config vncr
Name Group ID
---- --------
shard_host_1
shard_host_2
shard_host_3
shard_host_4
shard_catalog_host_IP

GDSCTL> config shard
Name Shard Group Status State Region Availability
---- ----------- ------ ----- ------ ------------
sh1 primary_shardgroup U none region1 -
sh2 standby_shardgroup U none region2 -
sh3 primary_shardgroup U none region1 -
sh4 standby_shardgroup U none region2 -

8. Run the DEPLOY command to create the shards and the replicas.

The DEPLOY command takes some time to run, approximately 15 to 30 minutes.

GDSCTL> deploy

When the CREATE SHARD method is used to create the shards, the DEPLOY
command creates the primary and standby shards using DBCA. Archivelog and
flashback, which is required for the Fast-Start Failover observers to perform
standby reinstantiation, are enabled for all of the shards.

Once the primary and standby shards are built, the DEPLOY command configures
the Data Guard Broker with Fast-Start Failover enabled. The Fast-Start Failover

Chapter 8
Creating and Deploying a System-Managed SDB

8-16

observers are automatically started on the standby group’s shard director
(sharddirector2 in this example).

9. Verify that all of the shards are deployed.

GDSCTL> config shard
Name Shard Group Status State Region Availability
---- ----------- ------ ----- ------ ------------
sh1 primary_shardgroup Ok Deployed region1 ONLINE
sh2 standby_shardgroup Ok Deployed region2 READ_ONLY
sh3 primary_shardgroup Ok Deployed region1 ONLINE
sh4 standby_shardgroup Ok Deployed region2 READ_ONLY

10. Verify that all of the shards are registered.

GDSCTL> databases
Database: "sh1" Registered: Y State: Ok ONS: N. Role: PRIMARY
Instances: 1 Region: region1
 Registered instances:
 cust_sdb%1
Database: "sh2" Registered: Y State: Ok ONS: N. Role: PH_STNDBY
Instances: 1 Region: region2
 Registered instances:
 cust_sdb%11
Database: "sh3" Registered: Y State: Ok ONS: N. Role: PRIMARY
Instances: 1 Region: region1
 Registered instances:
 cust_sdb%21
Database: "sh4" Registered: Y State: Ok ONS: N. Role: PH_STNDBY
Instances: 1 Region: region2
 Registered instances:
 cust_sdb%31

11. Check the configuration of a shard.

GDSCTL> config shard -shard sh1
Name: sh1
Shard Group: primary_shardgroup
Status: Ok
State: Deployed
Region: region1
Connection string: shard_host_1:TNS_listener_port/sh1:dedicated
SCAN address:
ONS remote port: 0
Disk Threshold, ms: 20
CPU Threshold, %: 75
Version: 18.0.0.0
Last Failed DDL:
DDL Error: ---
Failed DDL id:
Availability: ONLINE

Supported services

Name Preferred Status
---- --------- ------

12. Add a global service that runs on all of the primary shards.

The oltp_rw_srvc global service is a global data service that a client can use to
connect to the sharded database. The oltp_rw_srvc service runs the OLTP
transactions on the primary shards. Likewise, the oltp_ro_srvc global service is
created to run read-only workload on the standby shards.

Chapter 8
Creating and Deploying a System-Managed SDB

8-17

GDSCTL> add service -service oltp_rw_srvc -role primary

GDSCTL> config service

Name Network name Pool Started Preferred
all
---- ------------ ---- -------

oltp_rw_srvc oltp_rw_srvc.cust_sdb.oracdbcloud cust_sdb No Yes

13. Start the oltp_rw_srvc global service.

GDSCTL> start service -service oltp_rw_srvc

GDSCTL> status service
Service "oltp_rw_srvc.cust_sdb.oradbcloud" has 2 instance(s). Affinity: ANYWHERE
 Instance "cust_sdb%1", name: "sh1", db: "sh1", region: "region1", status:
ready.
 Instance "cust_sdb%21", name: "sh3", db: "sh3", region: "region1", status:
ready.

14. Add a global service for the read-only workload to run on the standby shards.

GDSCTL> add service -service oltp_ro_srvc -role physical_standby

GDSCTL> config service

Name Network name Pool Started Preferred
all
---- ------------ ---- -------

oltp_rw_srvc oltp_rw_srvc.cust_sdb.oracdbcloud cust_sdb Yes Yes
oltp_ro_srvc oltp_ro_srvc.cust_sdb.oracdbcloud cust_sdb No Yes

15. Start the read-only service, and verify the status of the global services.

GDSCTL> start service -service oltp_ro_srvc

GDSCTL> status service
Service "oltp_ro_srvc.cust_sdb.oradbcloud" has 2 instance(s). Affinity: ANYWHERE
 Instance "cust_sdb%11", name: "sh2", db: "sh2", region: "region2", status:
ready.
 Instance "cust_sdb%31", name: "sh4", db: "sh4", region: "region2", status:
ready.
Service "oltp_rw_srvc.cust_sdb.oradbcloud" has 2 instance(s). Affinity: ANYWHERE
 Instance "cust_sdb%1", name: "sh1", db: "sh1", region: "region1", status:
ready.
 Instance "cust_sdb%21", name: "sh3", db: "sh3", region: "region1", status:
ready.

See Also:

Creating a Schema for a System-Managed SDB

Oracle Database Global Data Services Concepts and Administration Guide for
more information about GDSCTL command usage

Chapter 8
Creating and Deploying a System-Managed SDB

8-18

8.7.2 Creating a Schema for a System-Managed SDB
Create the schema user, tablespace set, sharded tables, and duplicated tables for the
SDB. Verify that the DDLs are propagated to all of the shards, and, while connected to
the shards, verify the automatic Data Guard Broker configuration with Fast-Start
Failover.

1. Connect to the shard catalog database, create the application schema user, and
grant privileges and roles to the user.

In this example, the application schema user is called app_schema.

$ sqlplus / as sysdba

SQL> alter session enable shard ddl;
SQL> create user app_schema identified by app_schema_password;
SQL> grant all privileges to app_schema;
SQL> grant gsmadmin_role to app_schema;
SQL> grant select_catalog_role to app_schema;
SQL> grant connect, resource to app_schema;
SQL> grant dba to app_schema;
SQL> grant execute on dbms_crypto to app_schema;

2. Create a tablespace set for the sharded tables.

SQL> CREATE TABLESPACE SET TSP_SET_1 using template
 (datafile size 100m autoextend on next 10M maxsize unlimited
 extent management local segment space management auto);

Specifying the shardspace is optional when creating the tablespace set. If the
shardspace is not specified in the command, the default shardspace,
shardspaceora, is used.

3. If you use LOBs in a column, you can specify a tablespace set for the LOBs.

SQL> CREATE TABLESPACE SET LOBTS1;

Note:

Tablespace sets for LOBS cannot be specified at the subpartitition level in
system-managed sharding.

4. Create a tablespace for the duplicated tables.

In this example the duplicated table is the Products table in the sample
Customers-Orders-Products schema.

SQL> CREATE TABLESPACE products_tsp datafile size 100m
 autoextend on next 10M maxsize unlimited
 extent management local uniform size 1m;

5. Create a sharded table for the root table.

In this example, the root table is the Customers table in the sample Customers-
Orders-Products schema.

SQL> CONNECT app_schema/app_schema_password

SQL> ALTER SESSION ENABLE SHARD DDL;

Chapter 8
Creating and Deploying a System-Managed SDB

8-19

SQL> CREATE SHARDED TABLE Customers
 (
 CustId VARCHAR2(60) NOT NULL,
 FirstName VARCHAR2(60),
 LastName VARCHAR2(60),
 Class VARCHAR2(10),
 Geo VARCHAR2(8),
 CustProfile VARCHAR2(4000),
 Passwd RAW(60),
 CONSTRAINT pk_customers PRIMARY KEY (CustId),
 CONSTRAINT json_customers CHECK (CustProfile IS JSON)
) TABLESPACE SET TSP_SET_1
 PARTITION BY CONSISTENT HASH (CustId) PARTITIONS AUTO;

Note:

If any columns contain LOBs, you can include the tablespace set in the
parent table creation statement, as shown here.

SQL> CREATE SHARDED TABLE Customers
 (
 CustId VARCHAR2(60) NOT NULL,
 FirstName VARCHAR2(60),
 LastName VARCHAR2(60),
 Class VARCHAR2(10),
 Geo VARCHAR2(8),
 CustProfile VARCHAR2(4000),
 Passwd RAW(60),
 image BLOB,
 CONSTRAINT pk_customers PRIMARY KEY (CustId),
 CONSTRAINT json_customers CHECK (CustProfile IS JSON)
) TABLESPACE SET TSP_SET_1
 LOB(image) store as (TABLESPACE SET LOBTS1)
 PARTITION BY CONSISTENT HASH (CustId) PARTITIONS AUTO;

6. Create a sharded table for the other tables in the table family.

In this example, sharded tables are created for the Orders and LineItems tables in
the sample Customers-Orders-Products schema.

The Orders sharded table is created first:

SQL> CREATE SHARDED TABLE Orders
 (
 OrderId INTEGER NOT NULL,
 CustId VARCHAR2(60) NOT NULL,
 OrderDate TIMESTAMP NOT NULL,
 SumTotal NUMBER(19,4),
 Status CHAR(4),
 CONSTRAINT pk_orders PRIMARY KEY (CustId, OrderId),
 CONSTRAINT fk_orders_parent FOREIGN KEY (CustId)
 REFERENCES Customers ON DELETE CASCADE
) PARTITION BY REFERENCE (fk_orders_parent);

Create the sequence used for the OrderId column.

SQL> CREATE SEQUENCE Orders_Seq;

Chapter 8
Creating and Deploying a System-Managed SDB

8-20

Create a sharded table for LineItems

SQL> CREATE SHARDED TABLE LineItems
 (
 OrderId INTEGER NOT NULL,
 CustId VARCHAR2(60) NOT NULL,
 ProductId INTEGER NOT NULL,
 Price NUMBER(19,4),
 Qty NUMBER,
 CONSTRAINT pk_items PRIMARY KEY (CustId, OrderId, ProductId),
 CONSTRAINT fk_items_parent FOREIGN KEY (CustId, OrderId)
 REFERENCES Orders ON DELETE CASCADE
) PARTITION BY REFERENCE (fk_items_parent);

7. Create any required duplicated tables.

In this example, the Products table is a duplicated object.

SQL> CREATE DUPLICATED TABLE Products
 (
 ProductId INTEGER GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY,
 Name VARCHAR2(128),
 DescrUri VARCHAR2(128),
 LastPrice NUMBER(19,4)
) TABLESPACE products_tsp;

8. From the shard director host, verify that there were no failures during the creation
of the tablespaces.

GDSCTL> show ddl
id DDL Text Failed shards
-- -------- -------------
5 grant connect, resource to app_schema
6 grant dba to app_schema
7 grant execute on dbms_crypto to app_s...
8 CREATE TABLESPACE SET TSP_SET_1 usin...
9 CREATE TABLESPACE products_tsp datafi...
10 CREATE SHARDED TABLE Customers (Cu...
11 CREATE SHARDED TABLE Orders (Order...
12 CREATE SEQUENCE Orders_Seq;
13 CREATE SHARDED TABLE LineItems (Or...
14 CREATE MATERIALIZED VIEW "APP_SCHEMA"...

Note:

The show ddl command output might be truncated. You can run SELECT
ddl_text FROM gsmadmin_internal.ddl_requests on the catalog to see the full
text of the statements.

9. Verify that there were no DDL errors on each of the shards.

Run the config shard and config chunks commands on each shard in your
configuration.

GDSCTL> config shard -shard sh1
Name: sh1
Shard Group: primary_shardgroup
Status: Ok
State: Deployed
Region: region1
Connection string: shard_host_1:1521/sh1_host:dedicated

Chapter 8
Creating and Deploying a System-Managed SDB

8-21

SCAN address:
ONS remote port: 0
Disk Threshold, ms: 20
CPU Threshold, %: 75
Version: 18.0.0.0
Last Failed DDL:
DDL Error: ---
Failed DDL id:
Availability: ONLINE

Supported services

Name Preferred Status
---- --------- ------
oltp_ro_srvc Yes Enabled
oltp_rw_srvc Yes Enabled

GDSCTL> config chunks
Chunks

Database From To
-------- ---- --
sh1 1 6
sh2 1 6
sh3 7 12
sh4 7 12

10. Verify that the tablespaces of the tablespace set you created for the sharded table
family and the tablespaces you created for the duplicated tables are created on all
of the shards.

The number of tablespaces in the tablespace set is based on the number of
chunks you specified in the create shardcatalog command.

The tablespace set with the first 6 chunks of the 12 that were specified in the
shard catalog creation example, and the duplicated Products tablespace is shown
in the following example.

$ sqlplus / as sysdba

SQL> select TABLESPACE_NAME, BYTES/1024/1024 MB from sys.dba_data_files
 order by tablespace_name;

TABLESPACE_NAME MB
----------------------- ----------
C001TSP_SET_1 100
C002TSP_SET_1 100
C003TSP_SET_1 100
C004TSP_SET_1 100
C005TSP_SET_1 100
C006TSP_SET_1 100
PRODUCTS_TSP 100
SYSAUX 650
SYSTEM 890
SYS_SHARD_TS 100
TSP_SET_1 100

TABLESPACE_NAME MB
------------------------ ----------
UNDOTBS1 105
USERS 5

Chapter 8
Creating and Deploying a System-Managed SDB

8-22

13 rows selected.

Repeat this step on all of the shards in your configuration.

11. Verify that the chunks and chunk tablespaces were created on all of the shards.

SQL> set linesize 140
SQL> column table_name format a20
SQL> column tablespace_name format a20
SQL> column partition_name format a20
SQL> show parameter db_unique_name

NAME TYPE VALUE
---------------- ----------- ------------------------------
db_unique_name string sh1

SQL> select table_name, partition_name, tablespace_name
 from dba_tab_partitions
 where tablespace_name like 'C%TSP_SET_1'
 order by tablespace_name;

TABLE_NAME PARTITION_NAME TABLESPACE_NAME
---------------- ---------------- --------------------
ORDERS CUSTOMERS_P1 C001TSP_SET_1
CUSTOMERS CUSTOMERS_P1 C001TSP_SET_1
LINEITEM CUSTOMERS_P1 C001TSP_SET_1
CUSTOMERS CUSTOMERS_P2 C002TSP_SET_1
LINEITEMS CUSTOMERS_P2 C002TSP_SET_1
ORDERS CUSTOMERS_P2 C002TSP_SET_1
CUSTOMERS CUSTOMERS_P3 C003TSP_SET_1
ORDERS CUSTOMERS_P3 C003TSP_SET_1
LINEITEMS CUSTOMERS_P3 C003TSP_SET_1
ORDERS CUSTOMERS_P4 C004TSP_SET_1
CUSTOMERS CUSTOMERS_P4 C004TSP_SET_1

TABLE_NAME PARTITION_NAME TABLESPACE_NAME
---------------- ---------------- --------------------
LINEITEMS CUSTOMERS_P4 C004TSP_SET_1
CUSTOMERS CUSTOMERS_P5 C005TSP_SET_1
LINEITEMS CUSTOMERS_P5 C005TSP_SET_1
ORDERS CUSTOMERS_P5 C005TSP_SET_1
CUSTOMERS CUSTOMERS_P6 C006TSP_SET_1
LINEITEMS CUSTOMERS_P6 C006TSP_SET_1
ORDERS CUSTOMERS_P6 C006TSP_SET_1
18 rows selected.

Repeat this step on all of the shards in your configuration.

12. Connect to the shard catalog database and verify that the chunks are uniformly
distributed.

$ sqlplus / as sysdba

SQL> set echo off
SQL> SELECT a.name Shard, COUNT(b.chunk_number) Number_of_Chunks
 FROM gsmadmin_internal.database a, gsmadmin_internal.chunk_loc b
 WHERE a.database_num=b.database_num
 GROUP BY a.name
 ORDER BY a.name;

Chapter 8
Creating and Deploying a System-Managed SDB

8-23

SHARD NUMBER_OF_CHUNKS
------------------------------ ----------------
sh1 6
sh2 6
sh3 6
sh4 6

13. Verify that the sharded and duplicated tables were created.

Log in as the application schema user on the shard catalog database and each of
the shards.

The following example shows querying the tables on a database shard as the
app_schema user.

$ sqlplus app_schema/app_schema_password
Connected.

SQL> select table_name from user_tables;

TABLE_NAME

CUSTOMERS
ORDERS
LINEITEMS
PRODUCTS

4 rows selected.

14. Verify that the Data Guard Broker automatic Fast-Start Failover configuration was
done.

$ ssh os_username@shard_host_1
$ dgmgrl

DGMGRL> connect sys/password
Connected to "sh1"
Connected as SYSDG.
DGMGRL> show configuration

Configuration - sh1

 Protection Mode: MaxPerformance
 Members:
 sh1 - Primary database
 sh2 - (*) Physical standby database

Fast-Start Failover: ENABLED

Configuration Status:
SUCCESS (status updated 15 seconds ago)

DGMGRL> show database sh1

Database - sh1

 Role: PRIMARY
 Intended State: TRANSPORT-ON
 Instance(s):
 sh1

Database Status:
SUCCESS

Chapter 8
Creating and Deploying a System-Managed SDB

8-24

DGMGRL> show database sh2

Database - sh2

 Role: PHYSICAL STANDBY
 Intended State: APPLY-ON
 Transport Lag: 0 seconds (computed 0 seconds ago)
 Apply Lag: 0 seconds (computed 0 seconds ago)
 Average Apply Rate: 2.00 KByte/s
 Real Time Query: ON
 Instance(s):
 sh2

Database Status:
SUCCESS

DGMGRL> show fast_start failover

Fast-Start Failover: ENABLED

 Threshold: 30 seconds
 Target: sh2
 Observer: shard_director_host
 Lag Limit: 30 seconds
 Shutdown Primary: TRUE
 Auto-reinstate: TRUE
 Observer Reconnect: (none)
 Observer Override: FALSE

Configurable Failover Conditions
 Health Conditions:
 Corrupted Controlfile YES
 Corrupted Dictionary YES
 Inaccessible Logfile NO
 Stuck Archiver NO
 Datafile Write Errors YES

 Oracle Error Conditions:
 (none)

15. Locate the Fast-Start Failover observers.

Connect to the shard catalog database and run the following commands:

$ sqlplus / as sysdba

SQL> SELECT observer_state FROM gsmadmin_internal.broker_configs;

OBSERVER_STATE
--
GSM server SHARDDIRECTOR2. Observer started.
Log files at '/u01/app/oracle/product/18.0.0/gsmhome_1/network/admin/
gsm_observer_1.log'.

GSM server SHARDDIRECTOR2. Observer started.
Log files at '/u01/app/oracle/product/18.0.0/gsmhome_1/network.admin/
gsm_observer_2.log'.

Chapter 8
Creating and Deploying a System-Managed SDB

8-25

See Also:

Oracle Database Global Data Services Concepts and Administration Guide for
information about GDSCTL command usage

8.7.3 System-Managed SDB Demo Application
The system-managed sharded database (SDB) demo application simulates the
workload of an online retail store. Use it to validate the setup of any system-managed
(automatic sharding) SDB configuration. The demo application also provides a
practical example of sharding concepts for administrators and developers new to
database sharding.

The demo application assumes that a system-managed SDB environment was already
created along with the CUSTOMER table-family. The environment may have any
number of chunks and shards (database nodes). When run, the application will first
populate the Products table and then start a one-hour workload that can be paused at
any time by the administrator. The workload includes four types of transactions: create
a customer order, lookup the list of orders, create a new product, and multi-shard
query with report generation. All aspects of a sharded database configuration are
exercised.

You can download the demo application, along with a README file that describes how
to run and monitor it, from My Oracle Support Document 2184500.1.

8.8 Creating and Deploying a User-Defined SDB
The following topics describe the tasks for creating and deploying a user-defined SDB.

• Deploying a User-Defined SDB
The following procedure describes how to deploy a user-defined sharded
database using the ADD SHARD command and an Oracle Active Data Guard high
availability solution.

• Creating a Schema for a User-Defined SDB
Create the schema user, tablespace set, sharded tables, and duplicated tables for
the SDB. Verify that the DDLs are propagated to all of the shards, and, while
connected to the shards, verify the automatic Data Guard Broker configuration
with Fast-Start Failover.

8.8.1 Deploying a User-Defined SDB
The following procedure describes how to deploy a user-defined sharded database
using the ADD SHARD command and an Oracle Active Data Guard high availability
solution.

User-defined sharding allows the user to map data to shards. For more conceptual
information about the user-defined sharding method, see User-Defined Sharding.

1. Because this procedure describes using the ADD SHARD method as detailed in
Introduction to SDB Deployment, you must first create the databases to be used
as shards on their respective hosts.

Chapter 8
Creating and Deploying a User-Defined SDB

8-26

https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=2184500.1

The shard databases must have the following characteristics:

• They must have an associated TNS Listener on each host

• The GSMUSER account must be unlocked with a known password

• SYSDG and SYSBACKUP privileges must be granted to GSMUSER

• The primary and standby databases must be configured as such

• Redo apply should be set up between the corresponding primary and standby
databases

• Flashback and force logging should be enabled

• The compatible parameter must be set to at least 12.2.0

• A server parameter file (SPFILE) must be in use

• A DATA_PUMP_DIR directory object must be created in each database and must
point to a valid directory

You must then validate that a database is correctly set up for sharding. Execute
the following against each database before adding it to the configuration.

SQL> set serveroutput on
SQL> execute DBMS_GSM_FIX.validateShard

Screen output will include INFO, WARNING, and ERROR information that needs
to be analyzed for any issues. All WARNING and ERROR messages must be
resolved. Re-run validateShard() after making changes to confirm the
configuration.

2. Connect to the shard director host.

$ ssh os_user@shard_director1_host

3. Set the global service manager for the current session, and specify the credentials
to administer it.

$ gdsctl
GDSCTL> set gsm -gsm sharddirector1
GDSCTL> connect mysdbadmin/mysdbadmin_password

4. Add shardspaces to the sharded database configuration for each customized
grouping of shards your business case requires.

The shardspaces contain the primary shard database and one or more active
standbys.

In this example the shardspaces are named shspace1 and shspace2. You can
choose your own names.

GDSCTL> add shardspace -shardspace shspace1 -protectmode maxavailability
GDSCTL> add shardspace -shardspace shspace2 -protectmode maxavailability

5. Add each shard’s host address to the valid node checking for registration (VNCR)
list in the catalog, then add the shard in either the primary or standby shardgroup,
as shown in the following example.

Chapter 8
Creating and Deploying a User-Defined SDB

8-27

Note:

The valid node checking for registration (VNCR) feature provides the ability
to configure and dynamically update a set of IP addresses, host names, or
subnets from which registration requests are allowed by the shard
directors. Database instance registration with a shard director succeeds
only when the request originates from a valid node. By default, the shard
management tier (based on Oracle Global Data Services framework)
automatically adds a VNCR entry for the host on which a remote database
is running each time create shard or add shard is executed. The automation
(called auto-VNCR) finds the public IP address of the target host, and
automatically adds a VNCR entry for that IP address. If the host has
multiple public IP addresses, then the address on which the database
registers may not be the same as the address which was added using
auto-VNCR and , as a result, registration many be rejected. If the target
database host has multiple public IP addresses, it is advisable that you
configure VNCR manually for this host using the add invitednode or add
invitedsubnet commands in GDSCTL.

If there are multiple net-cards on the target host (/sbin/ifconfig returns
more than one public interface), use add invitednode to be safe (after
finding out which interface will be used to route packets).

If there is any doubt about registration, then use config vncr and use add
invitednode as necessary. There is no harm in doing this, because if the
node is added already, auto-VNCR ignores it, and if you try to add it after
auto-VNCR already added it, you will get a warning stating that it already
exists.

The following example shows how to add four shards using the ADD SHARD
command, the first two of which are primary and active standby shards in
shardspace shspace1, and the second two are primary and active standbys in
shardspace shspace2. Note that the primaries are given a region of region1 and
the standbys are given region2.

GDSCTL> add invitednode shard_host_1
GDSCTL> add shard -connect shard_host_1:1521/shard_database_name
 -shardspace shspace1 -deploy_as primary -pwd GSMUSER_password -region region1

GDSCTL> add invitednode shard_host_2
GDSCTL> add shard -connect shard_host_2:1521/shard_database_name
 -shardspace shspace1 -deploy_as active_standby -pwd GSMUSER_password
 -region region2

GDSCTL> add invitednode shard_host_3
GDSCTL> add shard -connect shard_host_3:1521/shard_database_name
 -shardspace shspace2 -deploy_as primary -pwd GSMUSER_password -region region1

GDSCTL> add invitednode shard_host_4
GDSCTL> add shard -connect shard_host_4:1521/shard_database_name
 -shardspace shspace2 -deploy_as active_standby -pwd GSMUSER_password
 -region region2

If the shard database to be added is a pluggable database (PDB), you must use
the -cdb option to ADD SHARD to specify which container database (CDB) the PDB
shard is in. In addition, ADD CDB must be used before the ADD SHARD command to

Chapter 8
Creating and Deploying a User-Defined SDB

8-28

add the CDB to the catalog. See Oracle Database Global Data Services Concepts
and Administration Guide for the syntax for ADD CDB and ADD SHARD. Note that in
Oracle Database 18c, only one PDB in each CDB is allowed to be a shard.

6. Check the configuration from a shard director.

GDSCTL> config
Regions

region1
region2

GSMs

sharddirector1
sharddirector2

Sharded Database

udef_shpool

Databases

sh1
sh2
sh3
sh4

Shard spaces

shspace1
shspace2

Services

GDSCTL pending requests

Command Object Status
------- ------ ------

Global properties

Name: oradbcloud
Master GSM: sharddirector1
DDL sequence #: 0

GDSCTL> config vncr
Name Group ID
---- --------
shard_host_1
shard_host_2
shard_host_3
shard_host_4
shard_catalog_host_IP

GDSCTL> config shard
Name Shard space Status State Region Availability
---- ----------- ------ ----- ------ ------------

Chapter 8
Creating and Deploying a User-Defined SDB

8-29

sh1 shspace1 U none region1 -
sh2 shspace1 U none region2 -
sh3 shspace2 U none region1 -
sh4 shspace2 U none region2 -

7. Run the DEPLOY command to create the shards and the replicas.

The DEPLOY command takes some time to run, approximately 15 to 30 minutes.

GDSCTL> deploy

Once the primary and standby shards are built, the DEPLOY command configures
the Data Guard Broker with Fast-Start Failover enabled. The Fast-Start Failover
observers are automatically started on the standby group’s shard director
(sharddirector2 in this example).

8. Verify that all of the shards are deployed.

GDSCTL> config shard
Name Shard space Status State Region Availability
---- ----------- ------ ----- ------ ------------
sh1 shspace1 Ok Deployed region1 ONLINE
sh2 shspace1 Ok Deployed region2 READ_ONLY
sh3 shspace2 Ok Deployed region1 ONLINE
sh4 shspace2 Ok Deployed region2 READ_ONLY

9. Verify that all of the shards are registered.

GDSCTL> databases
Database: "sh1" Registered: Y State: Ok ONS: N. Role: PRIMARY
Instances: 1 Region: region1
 Registered instances:
 udef_shpool%1
Database: "sh2" Registered: Y State: Ok ONS: N. Role: PH_STNDBY
Instances: 1 Region: region2
 Registered instances:
 udef_shpool%11
Database: "sh3" Registered: Y State: Ok ONS: N. Role: PRIMARY
Instances: 1 Region: region1
 Registered instances:
 udef_shpool%21
Database: "sh4" Registered: Y State: Ok ONS: N. Role: PH_STNDBY
Instances: 1 Region: region2
 Registered instances:
 udef_shpool%31

10. Check the configuration of a shard.

GDSCTL> config shard -shard sh1
Name: sh1
Shard space: shspace1
Status: Ok
State: Deployed
Region: region1
Connection string: shard_host_1:1521/sh1:dedicated
SCAN address:
ONS remote port: 0
Disk Threshold, ms: 20
CPU Threshold, %: 75
Version: 18.0.0.0
Last Failed DDL:
DDL Error: ---
Failed DDL id:
Availability: ONLINE

Chapter 8
Creating and Deploying a User-Defined SDB

8-30

Supported services

Name Preferred Status
---- --------- ------

11. Add a global service that runs on all of the primary shards.

The oltp_rw_srvc global service is a global data service that a client can use to
connect to the sharded database. The oltp_rw_srvc service runs the OLTP
transactions on the primary shards. Likewise, the oltp_ro_srvc global service is
created to run read-only workload on the standby shards.

GDSCTL> add service -service oltp_rw_srvc -role primary

GDSCTL> config service

Name Network name Pool Started Preferred
all
---- ------------ ---- -------

oltp_rw_srvc oltp_rw_srvc.cust_sdb.oracdbcloud udef_shpool No Yes

12. Start the oltp_rw_srvc global service.

GDSCTL> start service -service oltp_rw_srvc

GDSCTL> status service
Service "oltp_rw_srvc.cust_sdb.oradbcloud" has 2 instance(s). Affinity: ANYWHERE
 Instance "udef_shpool%1", name: "sh1", db: "sh1", region: "region1",
 status: ready.
 Instance "udef_shpool%21", name: "sh3", db: "sh3", region: "region1",
 status: ready.

13. Add a global service for the read-only workload to run on the standby shards.

GDSCTL> add service -service oltp_ro_srvc -role physical_standby

GDSCTL> config service

Name Network name Pool Started Preferred
all
---- ------------ ---- -------

oltp_rw_srvc oltp_rw_srvc.cust_sdb.oracdbcloud cust_sdb Yes Yes
oltp_ro_srvc oltp_ro_srvc.cust_sdb.oracdbcloud cust_sdb No Yes

14. Start the read-only service, and verify the status of the global services.

GDSCTL> start service -service oltp_ro_srvc

GDSCTL> status service
Service "oltp_ro_srvc.cust_sdb.oradbcloud" has 2 instance(s). Affinity: ANYWHERE
 Instance "udef_shpool%11", name: "sh2", db: "sh2", region: "region2",
 status: ready.
 Instance "udef_shpool%31", name: "sh4", db: "sh4", region: "region2",
 status: ready.
Service "oltp_rw_srvc.cust_sdb.oradbcloud" has 2 instance(s). Affinity: ANYWHERE
 Instance "udef_shpool%1", name: "sh1", db: "sh1", region: "region1",
 status: ready.
 Instance "udef_shpool%21", name: "sh3", db: "sh3", region: "region1",
 status: ready.

Chapter 8
Creating and Deploying a User-Defined SDB

8-31

See Also:

Oracle Database Global Data Services Concepts and Administration Guide for
more information about GDSCTL command usage

8.8.2 Creating a Schema for a User-Defined SDB
Create the schema user, tablespace set, sharded tables, and duplicated tables for the
SDB. Verify that the DDLs are propagated to all of the shards, and, while connected to
the shards, verify the automatic Data Guard Broker configuration with Fast-Start
Failover.

1. Connect to the shard catalog database, create the application schema user, and
grant privileges and roles to the user.

In this example, the application schema user is called app_schema.

$ sqlplus / as sysdba

SQL> alter session enable shard ddl;
SQL> create user app_schema identified by app_schema_password;
SQL> grant all privileges to app_schema;
SQL> grant gsmadmin_role to app_schema;
SQL> grant select_catalog_role to app_schema;
SQL> grant connect, resource to app_schema;
SQL> grant dba to app_schema;
SQL> grant execute on dbms_crypto to app_schema;

2. Create tablespaces for the sharded tables.

SQL> CREATE TABLESPACE c1_tsp DATAFILE SIZE 100M autoextend on next 10M maxsize
unlimited extent management local segment space management auto in
 shardspace shspace1;

SQL> CREATE TABLESPACE c2_tsp DATAFILE SIZE 100M autoextend on next 10M maxsize
unlimited extent management local segment space management auto in
 shardspace shspace2;

3. If you use LOBs in any columns, you can specify tablespaces for the LOBs.

SQL> CREATE TABLESPACE lobts1 ... in shardspace shspace1;

SQL> CREATE TABLESPACE lobts2 ... in shardspace shspace2;

4. Create a tablespace for the duplicated tables.

In this example the duplicated table is the Products table in the sample
Customers-Orders-Products schema.

SQL> CREATE TABLESPACE products_tsp datafile size 100m autoextend
 on next 10M maxsize unlimited extent management local uniform size 1m;

5. Create a sharded table for the root table.

In this example, the root table is the Customers table in the sample Customers-
Orders-Products schema.

SQL> CONNECT app_schema/app_schema_password

SQL> ALTER SESSION ENABLE SHARD DDL;

Chapter 8
Creating and Deploying a User-Defined SDB

8-32

SQL> CREATE SHARDED TABLE Customers
 (
 CustId VARCHAR2(60) NOT NULL,
 CustProfile VARCHAR2(4000),
 Passwd RAW(60),
 CONSTRAINT pk_customers PRIMARY KEY (CustId),
 CONSTRAINT json_customers CHECK (CustProfile IS JSON)
) PARTITION BY RANGE (CustId)
 (PARTITION ck1 values less than ('m') tablespace ck1_tsp,
 PARTITION ck2 values less than (MAXVALUE) tablespace ck2_tsp
);

Note:

If any columns in the sharded tables contain LOBs, the CREATE
SHARDED TABLE statement can include the LOB tablespaces, as shown
here.

SQL> CREATE SHARDED TABLE Customers
 (
 CustId VARCHAR2(60) NOT NULL,
 CustProfile VARCHAR2(4000),
 Passwd RAW(60),
 image BLOB,
 CONSTRAINT pk_customers PRIMARY KEY (CustId),
 CONSTRAINT json_customers CHECK (CustProfile IS JSON)
) PARTITION BY RANGE (CustId)
 (PARTITION ck1 values less than ('m') tablespace ck1_tsp
 lob(image) store as (tablespace lobts1),
 PARTITION ck2 values less than (MAXVALUE) tablespace ck2_tsp
 lob(image) store as (tablespace lobts2)
);

6. Create a sharded table for the other tables in the table family.

In this example, sharded tables are created for the Orders and LineItems tables in
the sample Customers-Orders-Products schema.

The Orders sharded table is created first:

SQL> CREATE SHARDED TABLE Orders
 (
 OrderId INTEGER NOT NULL,
 CustId VARCHAR2(60) NOT NULL,
 OrderDate TIMESTAMP NOT NULL,
 SumTotal NUMBER(19,4),
 Status CHAR(4),
 CONSTRAINT pk_orders PRIMARY KEY (CustId, OrderId),
 CONSTRAINT fk_orders_parent FOREIGN KEY (CustId)
 REFERENCES Customers ON DELETE CASCADE
) PARTITION BY REFERENCE (fk_orders_parent);

Create the sequence used for the OrderId column.

SQL> CREATE SEQUENCE Orders_Seq;

Create a sharded table for LineItems

Chapter 8
Creating and Deploying a User-Defined SDB

8-33

SQL> CREATE SHARDED TABLE LineItems
 (
 OrderId INTEGER NOT NULL,
 CustId VARCHAR2(60) NOT NULL,
 ProductId INTEGER NOT NULL,
 Price NUMBER(19,4),
 Qty NUMBER,
 CONSTRAINT pk_items PRIMARY KEY (CustId, OrderId, ProductId),
 CONSTRAINT fk_items_parent FOREIGN KEY (CustId, OrderId)
 REFERENCES Orders ON DELETE CASCADE
) PARTITION BY REFERENCE (fk_items_parent);

7. Create any required duplicated tables.

In this example, the Products table is a duplicated object.

SQL> CREATE DUPLICATED TABLE Products
 (
 ProductId INTEGER GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY,
 Name VARCHAR2(128),
 DescrUri VARCHAR2(128),
 LastPrice NUMBER(19,4)
) TABLESPACE products_tsp;

8. From the shard director host, verify that there were no failures during the creation
of the tablespaces.

GDSCTL> show ddl
id DDL Text Failed shards
-- -------- -------------

3 grant create table, create procedure,...
4 grant unlimited tablespace to app_schema
5 grant select_catalog_role to app_schema
6 create tablespace c1_tsp DATAFILE SIZ...
7 Create tablespace c2_tsp DATAFILE SIZ...
8 CREATE SHARDED TABLE Customers (Cu...
9 CREATE SHARDED TABLE Orders (Order...
10 CREATE SHARDED TABLE LineItems (Or...
11 create tablespace products_tsp datafi...
12 CREATE MATERIALIZED VIEW "APP_SCHEMA"...

Note:

The show ddl command output might be truncated. You can run SELECT
ddl_text FROM gsmadmin_internal.ddl_requests on the catalog to see the full
text of the statements.

9. Verify that there were no DDL errors on each of the shards.

Run the config shard and config chunks commands on each shard in your
configuration.

GDSCTL> config shard -shard sh1

Name: sh1
Shard space: shspace1
Status: Ok
State: Deployed
Region: region1
Connection string: shard_host_1:1521/sh1:dedicated

Chapter 8
Creating and Deploying a User-Defined SDB

8-34

SCAN address:
ONS remote port: 0
Disk Threshold, ms: 20
CPU Threshold, %: 75
Version: 18.0.0.0
Last Failed DDL:
DDL Error: ---
Failed DDL id:
Availability: ONLINE
Rack:

Supported services

Name Preferred Status
---- --------- ------
oltp_ro_srvc Yes Enabled
oltp_rw_srvc Yes Enabled

GDSCTL> config chunks
Chunks

Database From To
-------- ---- --
sh1 1 1
sh2 1 1
sh3 2 2
sh4 2 2

10. Verify that the tablespaces you created for the sharded table family and the
tablespaces you created for the duplicated tables are created on all of the shards.

The number of tablespaces in the tablespace set is based on the number of
chunks you specified in the create shardcatalog command.

The tablespace set with the first 6 chunks of the 12 that were specified in the
shard catalog creation example, and the duplicated Products tablespace is shown
in the following example.

$ sqlplus / as sysdba

SQL> select TABLESPACE_NAME, BYTES/1024/1024 MB
 from sys.dba_data_files
 order by tablespace_name;

TABLESPACE_NAME MB
----------------------- ----------
C1_TSP 100
PRODUCTS_TSP 10
SYSAUX 722.1875
SYSEXT 39
SYSTEM 782.203125
SYS_SHARD_TS 100
UD1 470

7 rows selected.

Repeat this step on all of the shards in your configuration.

11. Verify that the chunks and chunk tablespaces were created on all of the shards.

SQL> set linesize 140
SQL> column table_name format a20
SQL> column tablespace_name format a20

Chapter 8
Creating and Deploying a User-Defined SDB

8-35

SQL> column partition_name format a20
SQL> show parameter db_unique_name

NAME TYPE VALUE
---------------- ----------- ------------------------------
db_unique_name string sh1

SQL> select table_name, partition_name, tablespace_name
 from dba_tab_partitions
 where tablespace_name like 'C%TSP_SET_1'
 order by tablespace_name;

TABLE_NAME PARTITION_NAME TABLESPACE_NAME
---------------- ---------------- --------------------
CUSTOMERS CK1 C1_TSP
ORDERS CK1 C1_TSP
LINEITEMS CK1 C1_TSP

Repeat this step on all of the shards in your configuration.

12. Verify that the sharded and duplicated tables were created.

Log in as the application schema user on the shard catalog database and each of
the shards.

The following example shows querying the tables on a database shard as the
app_schema user.

$ sqlplus app_schema/app_schema_password
Connected.

SQL> select table_name from user_tables;

TABLE_NAME

CUSTOMERS
ORDERS
LINEITEMS
PRODUCTS
USLOG$_PRODUCTS

13. Verify that the Data Guard Broker automatic Fast-Start Failover configuration was
done.

$ ssh os_username@shard_host_1
$ dgmgrl

DGMGRL> connect sys/password
Connected to "sh1"
Connected as SYSDG.
DGMGRL> show configuration

Configuration - sh1

 Protection Mode: MaxPerformance
 Members:
 sh1 - Primary database
 sh2 - (*) Physical standby database

Fast-Start Failover: ENABLED

Configuration Status:

Chapter 8
Creating and Deploying a User-Defined SDB

8-36

SUCCESS (status updated 15 seconds ago)

DGMGRL> show database sh1

Database - sh1

 Role: PRIMARY
 Intended State: TRANSPORT-ON
 Instance(s):
 sh1

Database Status:
SUCCESS

DGMGRL> show database sh2

Database - sh2

 Role: PHYSICAL STANDBY
 Intended State: APPLY-ON
 Transport Lag: 0 seconds (computed 0 seconds ago)
 Apply Lag: 0 seconds (computed 0 seconds ago)
 Average Apply Rate: 2.00 KByte/s
 Real Time Query: ON
 Instance(s):
 sh2

Database Status:
SUCCESS

DGMGRL> show fast_start failover

Fast-Start Failover: ENABLED

 Threshold: 30 seconds
 Target: sh2
 Observer: shard_director_host
 Lag Limit: 30 seconds
 Shutdown Primary: TRUE
 Auto-reinstate: TRUE
 Observer Reconnect: (none)
 Observer Override: FALSE

Configurable Failover Conditions
 Health Conditions:
 Corrupted Controlfile YES
 Corrupted Dictionary YES
 Inaccessible Logfile NO
 Stuck Archiver NO
 Datafile Write Errors YES

 Oracle Error Conditions:
 (none)

14. Locate the Fast-Start Failover observers.

Connect to the shard catalog database and run the following commands:

$ ssh oracle@shard6

$ ps -ef |grep dgmgrl
oracle 8210 8089 0 22:18 pts/4 00:00:00 grep dgmgrl

Chapter 8
Creating and Deploying a User-Defined SDB

8-37

oracle 20189 1 0 02:57 ? 00:02:40 dgmgrl -delete_script
 @/u01/app/oracle/product/18.0.0/gsmhome_1/network/admin/gsm_observer_1.cfg
oracle 20193 1 0 02:57 ? 00:02:43 dgmgrl -delete_script
 @/u01/app/oracle/product/18.0.0/gsmhome_1/network/admin/gsm_observer_2.cfg

See Also:

Oracle Database Global Data Services Concepts and Administration Guide for
information about GDSCTL command usage

8.9 Creating and Deploying a Composite SDB
To deploy a composite SDB you must install the required Oracle Sharding software
components, configure the objects for a composite SDB, and create the schema.

The composite sharding method allows you to create multiple shardspaces for
different subsets of data in a table partitioned by consistent hash. A shardspace is set
of shards that store data that corresponds to a range or list of key values.

The following topics describe the tasks for deploying a composite SDB.

• Deploying a Composite SDB
To deploy a composite SDB you create shardgroups and shards, execute the
DEPLOY command, and create role-based global services.

• Creating a Schema for a Composite SDB
Create the schema user, tablespace set, sharded tables, and duplicated tables for
the SDB. Verify that the DDLs are propagated to all of the shards, and, while
connected to the shards, verify the automatic Data Guard Broker configuration
with Fast-Start Failover.

8.9.1 Deploying a Composite SDB
To deploy a composite SDB you create shardgroups and shards, execute the DEPLOY
command, and create role-based global services.

The examples used in this deployment procedure are based on a global distribution
scenario where separate shardspaces and shardgroups are created for America and
Europe.

1. Connect to a shard director host, and verify the environment variables.

$ ssh os_user@shard_director_home
$ env |grep ORA
ORACLE_BASE=/u01/app/oracle
ORACLE_HOME=/u01/app/oracle/product/18.0.0/gsmhome_1

2. Set the global service manager for the current session, and specify the credentials
to administer it.

$ gdsctl
GDSCTL> set gsm -gsm sharddirector1
GDSCTL> connect mysdbadmin/mysdbadmin_password

3. Add shardspaces and shardgroups for each customized grouping of shards your
business case requires.

Chapter 8
Creating and Deploying a Composite SDB

8-38

In this example the shardspaces and shardgroups are created for the America and
Europe customers. You can choose your own names.

GDSCTL> add shardspace -shardspace cust_america
GDSCTL> add shardgroup -shardspace cust_america -shardgroup america_shgrp1
 -deploy_as primary -region region1

GDSCTL> add shardspace -shardspace cust_europe
GDSCTL> add shardgroup -shardspace cust_europe -shardgroup europe_shgrp1
 -deploy_as primary -region region2

Note:

For production deployments, additional shardgroups must be created for
high availability using the add shardgroup command

4. Verify the shardspace and shardgroup configurations.

GDSCTL> config shardspace
SHARDSPACE Chunks
---------- ------
cust_america 12
cust_europe 12
shardspaceora 12

GDSCTL>config shardgroup
Shard Group Chunks Region SHARDSPACE
----------- ------ ------ ----------
america_shgrp1 12 region1 cust_america
europe_shgrp1 12 region2 cust_europe

5. Verify the sharded database configuration.

GDSCTL> config

Regions

region1
region2

GSMs

sharddirector1
sharddirector2

Sharded Database

cust_sdb_comp

Databases

Shard Groups

america_shgrp1
europe_shgrp1

Shard spaces

Chapter 8
Creating and Deploying a Composite SDB

8-39

cust_america
cust_europe
shardspaceora

Services

GDSCTL pending requests

Command Object Status
------- ------ ------

Global properties

Name: oradbcloud
Master GSM: sharddirector1
DDL sequence #: 0

6. Add each shard’s host address to the valid node checking for registration (VNCR)
list in the catalog, then create the shard in either the primary or standby
shardgroup, as shown in the following example.

Note:

The valid node checking for registration (VNCR) feature provides the ability
to configure and dynamically update a set of IP addresses, host names, or
subnets from which registration requests are allowed by the shard
directors. Database instance registration with a shard director succeeds
only when the request originates from a valid node. By default, the shard
management tier (based on Oracle Global Data Services framework)
automatically adds a VNCR entry for the host on which a remote database
is running each time create shard or add shard is executed. The automation
(called auto-VNCR) finds the public IP address of the target host, and
automatically adds a VNCR entry for that IP address. If the host has
multiple public IP addresses, then the address on which the database
registers may not be the same as the address which was added using
auto-VNCR and , as a result, registration many be rejected. If the target
database host has multiple public IP addresses, it is advisable that you
configure VNCR manually for this host using the add invitednode or add
invitedsubnet commands in GDSCTL.

If there are multiple net-cards on the target host (/sbin/ifconfig returns
more than one public interface), use add invitednode to be safe (after
finding out which interface will be used to route packets).

If there is any doubt about registration, then use config vncr and use add
invitednode as necessary. There is no harm in doing this, because if the
node is added already, auto-VNCR ignores it, and if you try to add it after
auto-VNCR already added it, you will get a warning stating that it already
exists.

The example shows how to create four shards, two of which are in the America
shardgroup and two in the Europe shardgroup. The os_credential is the operating
system credential you created on each host.

Chapter 8
Creating and Deploying a Composite SDB

8-40

While creating the shards, you can also set the SYS password in the CREATE SHARD
using -sys_password as shown in the following example. This sets the SYS
password after the shards are created when running DEPLOY. There are other
optional parameters for CREATE SHARD that allow you to customize the database
parameters, storage and file locations, listener port numbers, and so on, which are
documented in the Oracle Database Global Data Services Concepts and
Administration Guide appendices.

GDSCTL> add invitednode shard_host_1
GDSCTL> create shard -shardgroup america_shgrp1 -destination shard_host_1
 -credential os_credential-sys_password

GDSCTL> add invitednode shard_host_2
GDSCTL> create shard -shardgroup america_shgrp1 -destination shard_host_2
 -credential os_credential-sys_password

GDSCTL> add invitednode shard_host_3
GDSCTL> create shard -shardgroup europe_shgrp1 -destination shard_host_3
 -credential os_credential-sys_password

GDSCTL> add invitednode shard_host_4
GDSCTL> create shard -shardgroup europe_shgrp1 -destination shard_host_4
 -credential os_credential-sys_password

If you are using the ADD SHARD method described in Introduction to SDB
Deployment, use the following command instead of the CREATE SHARD commands in
the example above. If the shard database to be added is a pluggable database
(PDB), you must use the -cdb option to ADD SHARD to specify which container
database (CDB) the PDB shard is in. In addition, ADD CDB must be used before the
ADD SHARD command to add the CDB to the catalog. See Oracle Database Global
Data Services Concepts and Administration Guide for the syntax for ADD CDB and
ADD SHARD. Note that in Oracle Database 18c, only one PDB in each CDB is
allowed to be a shard.

GDSCTL> add shard –shardgroup america_shgrp1
 –connect shard_host:TNS_listener_port/shard_database_name
 –pwd GSMUSER_password

7. Check the configuration from a shard director.

Note that the shard names, sh1, sh2, sh3, and sh4, are system generated shard
names.

GDSCTL> config shard
Name Shard Group Status State Region Availability
---- ----------- ------ ----- ------ ------------
sh1 america_shgrp1 U none region1 -
sh2 america_shgrp1 U none region1 -
sh3 europe_shgrp1 U none region2 -
sh4 europe_shgrp1 U none region2 -

GDSCTL> config vncr
Name Group ID
---- --------
shard_host_1
shard_host_2
shard_host_3
shard_host_4
shard_catalog_host_IP

8. Run the DEPLOY command to create the shards.

Chapter 8
Creating and Deploying a Composite SDB

8-41

GDSCTL> deploy

The DEPLOY command takes some time to run, approximately 15 to 30 minutes.
The DEPLOY command creates the shards using DBCA.

9. Verify that all of the shards are deployed.

GDSCTL> config shard
Name Shard Group Status State Region Availability
---- ----------- ------ ----- ------ ------------
sh1 america_shgrp1 Ok Deployed region1 ONLINE
sh2 america_shgrp1 Ok Deployed region1 ONLINE
sh3 europe_shgrp1 Ok Deployed region2 ONLINE
sh4 europe_shgrp1 Ok Deployed region2 ONLINE

10. Verify that all of the shards are registered.

GDSCTL> databases
Database: "sh1" Registered: Y State: Ok ONS: N. Role: PRIMARY Instances: 1
 Region: region1
 Registered instances:
 cust_sdb_comp%1
Database: "sh2" Registered: Y State: Ok ONS: N. Role: PRIMARY Instances: 1
 Region: region1
 Registered instances:
 cust_sdb_comp%11
Database: "sh3" Registered: Y State: Ok ONS: N. Role: PRIMARY Instances: 1
 Region: region2
 Registered instances:
 cust_sdb_comp%21
Database: "sh4" Registered: Y State: Ok ONS: N. Role: PRIMARY Instances: 1
 Region: region2
 Registered instances:
 cust_sdb_comp%31

11. Check the configuration of a shard.

GDSCTL> config shard -shard sh1

Name: sh1
Shard Group: america_shgrp1
Status: Ok
State: Deployed
Region: region1
Connection string: shard1:1521/sh1:dedicated
SCAN address:
ONS remote port: 0
Disk Threshold, ms: 20
CPU Threshold, %: 75
Version: 18.0.0.0
Last Failed DDL:
DDL Error: ---
Failed DDL id:
Availability: ONLINE

Supported services

Name Preferred
Status
---- --------- ------

12. Add a global service that runs on all of the primary shards.

Chapter 8
Creating and Deploying a Composite SDB

8-42

The oltp_rw_srvc global service is the global data services listener that helps route
a connection from the client to the actual database. The oltp_rw_srvc service runs
the OLTP transactions on the primary shards.

GDSCTL> add service -service oltp_rw_srvc
GDSCTL> config service

Name Network name Pool Started Preferred
all
---- ------------ ---- -------

oltp_rw_srvc oltp_rw_srvc.cust_sdb_comp.or cust_sdb_comp No
Yes
 adbcloud

13. Start the oltp_rw_srvc global service.

GDSCTL> start service -service oltp_rw_srvc

GDSCTL> status service
Service "oltp_rw_srvc.cust_sdb_comp.oradbcloud" has 4 instance(s).
 Affinity: ANYWHERE
 Instance "cust_sdb_comp%1", name: "sh1", db: "sh1", region: "region1",
 status: ready.
 Instance "cust_sdb_comp%11", name: "sh2", db: "sh2", region: "region1",
 status: ready.
 Instance "cust_sdb_comp%21", name: "sh3", db: "sh3", region: "region2",
 status: ready.
 Instance "cust_sdb_comp%31", name: "sh4", db: "sh4", region: "region2",
 status: ready.

See Also:

Oracle Database Global Data Services Concepts and Administration Guide

8.9.2 Creating a Schema for a Composite SDB
Create the schema user, tablespace set, sharded tables, and duplicated tables for the
SDB. Verify that the DDLs are propagated to all of the shards, and, while connected to
the shards, verify the automatic Data Guard Broker configuration with Fast-Start
Failover.

1. Connect to the shard catalog host, and set the ORACLE_SID to the shard catalog
name.

2. Connect to the shard catalog database, create the application schema user, and
grant privileges and roles to the user.

In this example, the application schema user is called app_schema.

$ sqlplus / as sysdba

SQL> connect / as sysdba
SQL> alter session enable shard ddl;
SQL> create user app_schema identified by app_schema_password;
SQL> grant connect, resource, alter session to app_schema;
SQL> grant execute on dbms_crypto to app_schema;
SQL> grant create table, create procedure, create tablespace,

Chapter 8
Creating and Deploying a Composite SDB

8-43

 create materialized view to app_schema;
SQL> grant unlimited tablespace to app_schema;
SQL> grant select_catalog_role to app_schema;
SQL> grant all privileges to app_schema;
SQL> grant gsmadmin_role to app_schema;
SQL> grant dba to app_schema;

3. Create tablespace sets for the sharded tables.

SQL> CREATE TABLESPACE SET
 TSP_SET_1 in shardspace cust_america using template
 (datafile size 100m autoextend on next 10M maxsize
 unlimited extent management
 local segment space management auto);

SQL> CREATE TABLESPACE SET
 TSP_SET_2 in shardspace cust_europe using template
 (datafile size 100m autoextend on next 10M maxsize
 unlimited extent management
 local segment space management auto);

Specifying the shardspace is optional when creating the tablespace set. If the
shardspace is not specified in the command, the default shardspace is used.

4. If you use LOBs in any columns, you can specify tablespace sets for the LOBs.

SQL> CREATE TABLESPACE SET LOBTS1 in shardspace cust_america ... ;

SQL> CREATE TABLESPACE SET LOBTS2 in shardspace cust_europe ... ;

Note:

Tablespace sets for LOBs cannot be specified at the subpartitition level in
composite sharding.

5. Create a tablespace for the duplicated tables.

In this example the duplicated table is the Products table in the sample
Customers-Orders-Products schema.

CREATE TABLESPACE products_tsp datafile size 100m autoextend on next 10M
 maxsize unlimited extent management local uniform size 1m;

6. Create a sharded table for the root table.

In this example, the root table is the Customers table in the sample Customers-
Orders-Products schema.

connect app_schema/app_schema_password
alter session enable shard ddl;

CREATE SHARDED TABLE Customers
(
 CustId VARCHAR2(60) NOT NULL,
 FirstName VARCHAR2(60),
 LastName VARCHAR2(60),
 Class VARCHAR2(10),
 Geo VARCHAR2(8),
 CustProfile VARCHAR2(4000),
 Passwd RAW(60),
 CONSTRAINT pk_customers PRIMARY KEY (CustId),

Chapter 8
Creating and Deploying a Composite SDB

8-44

 CONSTRAINT json_customers CHECK (CustProfile IS JSON)
) partitionset by list(GEO)
partition by consistent hash(CustId)
partitions auto
(partitionset america values ('AMERICA') tablespace set tsp_set_1,
partitionset europe values ('EUROPE') tablespace set tsp_set_2
);

Note:

If any columns in the sharded tables contain LOBs, the CREATE
SHARDED TABLE statement can include the LOB tablespace set, as
shown here.

CREATE SHARDED TABLE Customers
(
 CustId VARCHAR2(60) NOT NULL,
 FirstName VARCHAR2(60),
 LastName VARCHAR2(60),
 Class VARCHAR2(10),
 Geo VARCHAR2(8) NOT NULL,
 CustProfile VARCHAR2(4000),
 Passwd RAW(60),
 image BLOB,
 CONSTRAINT pk_customers PRIMARY KEY (CustId),
 CONSTRAINT json_customers CHECK (CustProfile IS JSON)
) partitionset by list(GEO)
partition by consistent hash(CustId)
partitions auto
(partitionset america values ('AMERICA') tablespace set tsp_set_1
 lob(image) store as (tablespace set lobts1),
partitionset europe values ('EUROPE') tablespace set tsp_set_2
 lob(image) store as (tablespace set lobts2));

7. Create a sharded table for the other tables in the table family.

In this example, sharded tables are created for the Orders and LineItems tables in
the sample Customers-Orders-Products schema.

Create the sequence used for the OrderId column.

CREATE SEQUENCE Orders_Seq;

The Orders sharded table is created first:

CREATE SHARDED TABLE Orders
(
 OrderId INTEGER NOT NULL,
 CustId VARCHAR2(60) NOT NULL,
 OrderDate TIMESTAMP NOT NULL,
 SumTotal NUMBER(19,4),
 Status CHAR(4),
 constraint pk_orders primary key (CustId, OrderId),
 constraint fk_orders_parent foreign key (CustId)
 references Customers on delete cascade
) partition by reference (fk_orders_parent);

Create a sharded table for LineItems

Chapter 8
Creating and Deploying a Composite SDB

8-45

CREATE SHARDED TABLE LineItems
(
 OrderId INTEGER NOT NULL,
 CustId VARCHAR2(60) NOT NULL,
 ProductId INTEGER NOT NULL,
 Price NUMBER(19,4),
 Qty NUMBER,
 constraint pk_items primary key (CustId, OrderId, ProductId),
 constraint fk_items_parent foreign key (CustId, OrderId)
 references Orders on delete cascade
) partition by reference (fk_items_parent);

8. Create any required duplicated tables.

In this example, the Products table is a duplicated object.

CREATE DUPLICATED TABLE Products
(
 ProductId INTEGER GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY,
 Name VARCHAR2(128),
 DescrUri VARCHAR2(128),
 LastPrice NUMBER(19,4)
) tablespace products_tsp;

9. From the shard director host, verify that there were no failures during the creation
of the tablespaces.

GDSCTL> show ddl
id DDL Text Failed shards
-- -------- -------------
11 CREATE TABLESPACE SET TSP_SET_2 in s...
12 CREATE TABLESPACE products_tsp datafi...
13 CREATE SHARDED TABLE Customers (Cu...
14 CREATE SEQUENCE Orders_Seq;
15 CREATE SHARDED TABLE Orders (Order...
16 CREATE SHARDED TABLE LineItems (Or...
17 create database link "PRODUCTSDBLINK@...
18 CREATE MATERIALIZED VIEW "PRODUCTS" ...
19 CREATE OR REPLACE FUNCTION PasswCreat...
20 CREATE OR REPLACE FUNCTION PasswCheck...

10. Verify that there were no DDL errors on each of the shards.

Run the config shard and config chunks commands on each shard in your
configuration.

GDSCTL> config shard -shard sh1

Name: sh1
Shard Group: america_shgrp1
Status: Ok
State: Deployed
Region: region1
Connection string: shard1:1521/sh1:dedicated
SCAN address:
ONS remote port: 0
Disk Threshold, ms: 20
CPU Threshold, %: 75
Version: 18.0.0.0
Last Failed DDL:
DDL Error: ---
Failed DDL id:
Availability: ONLINE

Chapter 8
Creating and Deploying a Composite SDB

8-46

Supported services

Name Preferred
Status
---- ---------

oltp_rw_srvc Yes
Enabled

GDSCTL> config chunks
Chunks

Database From To
-------- ---- --
sh1 1 6
sh2 7 12
sh3 1 6
sh4 7 12

11. Verify that the tablespaces of the tablespace set you created for the sharded table
family and the tablespaces you created for the duplicated tables are created on all
of the shards.

The number of tablespaces in the tablespace set is based on the number of
chunks you specified in the create shardcatalog command.

The tablespace set with the first 6 chunks of the 12 that were specified in the
shard catalog creation example, and the duplicated Products tablespace is shown
in the following example on the shard_host_1.

$ sqlplus / as sysdba

SQL> select TABLESPACE_NAME, BYTES/1024/1024 MB
 from sys.dba_data_files
 order by tablespace_name;

TABLESPACE_NAME MB
------------------------------ ----------
C001TSP_SET_1 100
C002TSP_SET_1 100
C003TSP_SET_1 100
C004TSP_SET_1 100
C005TSP_SET_1 100
C006TSP_SET_1 100
PRODUCTS_TSP 100
SYSAUX 650
SYSTEM 890
SYS_SHARD_TS 100
TSP_SET_1 100

TABLESPACE_NAME MB
------------------------------ ----------
TSP_SET_2 100
UNDOTBS1 110
USERS 5

14 rows selected.

Repeat this step on all of the shards in your configuration.

12. Verify that the chunks and chunk tablespaces were created on all of the shards.

Chapter 8
Creating and Deploying a Composite SDB

8-47

SQL> set linesize 140
SQL> column table_name format a20
SQL> column tablespace_name format a20
SQL> column partition_name format a20
SQL> show parameter db_unique_name
NAME TYPE VALUE
------------------------------------ ----------- ------------------------------
db_unique_name string sh2

SQL> select table_name, partition_name, tablespace_name
 from dba_tab_partitions
 where tablespace_name like 'C%TSP_SET_1'
 order by tablespace_name;

TABLE_NAME PARTITION_NAME TABLESPACE_NAME
-------------------- -------------------- --------------------
LINEITEMS CUSTOMERS_P7 C007TSP_SET_1
CUSTOMERS CUSTOMERS_P7 C007TSP_SET_1
ORDERS CUSTOMERS_P7 C007TSP_SET_1
CUSTOMERS CUSTOMERS_P8 C008TSP_SET_1
LINEITEMS CUSTOMERS_P8 C008TSP_SET_1
ORDERS CUSTOMERS_P8 C008TSP_SET_1
LINEITEMS CUSTOMERS_P9 C009TSP_SET_1
CUSTOMERS CUSTOMERS_P9 C009TSP_SET_1
ORDERS CUSTOMERS_P9 C009TSP_SET_1
CUSTOMERS CUSTOMERS_P10 C00ATSP_SET_1
LINEITEMS CUSTOMERS_P10 C00ATSP_SET_1

TABLE_NAME PARTITION_NAME TABLESPACE_NAME
-------------------- -------------------- --------------------
ORDERS CUSTOMERS_P10 C00ATSP_SET_1
CUSTOMERS CUSTOMERS_P11 C00BTSP_SET_1
LINEITEMS CUSTOMERS_P11 C00BTSP_SET_1
ORDERS CUSTOMERS_P11 C00BTSP_SET_1
CUSTOMERS CUSTOMERS_P12 C00CTSP_SET_1
LINEITEMS CUSTOMERS_P12 C00CTSP_SET_1
ORDERS CUSTOMERS_P12 C00CTSP_SET_1

18 rows selected.

Repeat this step on all of the shards in your configuration.

13. Connect to the shard catalog database and verify that the chunks are uniformly
distributed.

$ sqlplus / as sysdba

SQL> set echo off
SQL> select a.name Shard, count(b.chunk_number) Number_of_Chunks
 from gsmadmin_internal.database a, gsmadmin_internal.chunk_loc b
 where a.database_num=b.database_num group by a.name;

SHARD NUMBER_OF_CHUNKS
------------------------------ ----------------
sh1 6
sh2 6
sh3 6
sh4 6

14. Verify that the sharded and duplicated tables were created.

Chapter 8
Creating and Deploying a Composite SDB

8-48

Log in as the application schema user on the shard catalog database and each of
the shards.

The following example shows querying the tables on a database shard as the
app_schema user.

$ sqlplus app_schema/app_schema_password
Connected.
SQL> select table_name from user_tables;

TABLE_NAME

CUSTOMERS
ORDERS
LINEITEMS
PRODUCTS

4 rows selected.

Chapter 8
Creating and Deploying a Composite SDB

8-49

9
Sharded Database Lifecycle Management

Oracle Sharding provides tools and some automation for lifecycle management of a
sharded database.

The following topics describe sharded database lifecycle management in detail:

• Managing the Sharding-Enabled Stack

• Monitoring a Sharded Database
Sharded databases can be monitored using Enterprise Manager Cloud Control or
GDSCTL.

• Backing Up and Recovering a Sharded Database
Because shards are hosted on individual Oracle databases, you can use Oracle
Maximum Availability best practices to back up and restore shards individually.

• Modifying a Sharded Database Schema
When making changes to duplicated tables or sharded tables in a sharded
database, these changes should be done from the shard catalog database.

• Managing Sharded Database Software Versions

• Shard Management
You can manage shards in your Oracle Sharding deployment with Oracle
Enterprise Manager Cloud Control and GDSCTL.

• Chunk Management
You can manage chunks in your Oracle Sharding deployment with Oracle
Enterprise Manager Cloud Control and GDSCTL.

• Shard Director Management
You can add, edit, and remove shard directors in your Oracle Sharding
deployment with Oracle Enterprise Manager Cloud Control.

• Region Management
You can add, edit, and remove regions in your Oracle Sharding deployment with
Oracle Enterprise Manager Cloud Control.

• Shardspace Management
You can add, edit, and remove shardspaces in your Oracle Sharding deployment
with Oracle Enterprise Manager Cloud Control.

• Shardgroup Management
You can add, edit, and remove shardgroups in your Oracle Sharding deployment
with Oracle Enterprise Manager Cloud Control.

• Services Management
You can manage services in your Oracle Sharding deployment with Oracle
Enterprise Manager Cloud Control.

9.1 Managing the Sharding-Enabled Stack
This section describes the startup and shutdown of components in the sharded
database configuration. It contains the following topics:

9-1

• Starting Up the Sharding-Enabled Stack

• Shutting Down the Sharding-Enabled Stack

9.1.1 Starting Up the Sharding-Enabled Stack
The following is the recommended startup sequence of the sharding-enabled stack:

• Start the shard catalog database and local listener.

• Start the shard directors (GSMs).

• Start up the shard databases and local listeners.

• Start the global services.

• Start the connection pools and clients.

9.1.2 Shutting Down the Sharding-Enabled Stack
The following is the recommended shutdown sequence of the sharding-enabled stack:

• Shut down the connection pools and clients.

• Stop the global services.

• Shut down the shard databases and local listeners.

• Stop the shard directors (GSMs).

• Stop the shard catalog database and local listener.

9.2 Monitoring a Sharded Database
Sharded databases can be monitored using Enterprise Manager Cloud Control or
GDSCTL.

See the following topics to use Enterprise Manager Cloud Control or GDSCTL to
monitor sharded databases.

• Monitoring a Sharded Database with GDSCTL
There are numerous GDSCTL CONFIG commands that you can use to obtain the
health status of individual shards, shardgroups, shardspaces, and shard directors.

• Monitoring a Sharded Database with Enterprise Manager Cloud Control
Oracle Enterprise Manager Cloud Control lets you discover, monitor, and manage
the components of a sharded database.

• Querying System Objects Across Shards
Use the SHARDS() clause to query Oracle-supplied tables to gather performance,
diagnostic, and audit data from V$ views and DBA_* views.

9.2.1 Monitoring a Sharded Database with GDSCTL
There are numerous GDSCTL CONFIG commands that you can use to obtain the health
status of individual shards, shardgroups, shardspaces, and shard directors.

Monitoring a shard is just like monitoring a normal database, and standard Oracle best
practices should be used to monitor the individual health of a single shard. However, it
is also important to monitor the overall health of the entire sharded environment. The

Chapter 9
Monitoring a Sharded Database

9-2

GDSCTL commands can also be scripted and through the use of a scheduler and can
be done at regular intervals to help ensure that everything is running smoothly. When
using Oracle GoldenGate for replication it is also important to monitor the lag of each
replication stream.

See Also:

Oracle Database Global Data Services Concepts and Administration Guide for
information about using the GDSCTL CONFIG commands

9.2.2 Monitoring a Sharded Database with Enterprise Manager Cloud
Control

Oracle Enterprise Manager Cloud Control lets you discover, monitor, and manage the
components of a sharded database.

Sharded database targets are found in the All Targets page.

Figure 9-1 Sharded Databases in the All Targets Refine Search pane

The target home page for a sharded database shows you a summary of the sharded
database components and their statuses.

To monitor sharded database components you must first discover them. See
Discovering Sharded Database Components for more information.

Chapter 9
Monitoring a Sharded Database

9-3

Summary

The Summary pane, in the top left of the page, shows the following information:

• Sharded database name

• Sharded database domain name

• Shard catalog name. You can click the name to view more information about the
shard catalog.

• Shard catalog database version

• Sharding method used to shard the database

• Replication technology used for high availability

• Number and status of the shard directors

• Master shard director name. You can click the name to view more information
about the master shard director.

Figure 9-2 Sharded Database Summary pane

Shard Load Map

The Shard Load Map, in the upper right of the page, shows a pictorial graph illustrating
how transactions are distributed among the shards.

Chapter 9
Monitoring a Sharded Database

9-4

Figure 9-3 Sharded Database Shard Load Map

You can select different View Levels above the graph.

• Database

The database view aggregates database instances in Oracle RAC cluster
databases into a single cell labeled with the Oracle RAC cluster database target
name. This enables you to easily compare the total database load in Oracle RAC
environments.

• Instance

The instance view displays all database instances separately, but Oracle RAC
instances are grouped together as sub-cells of the Oracle RAC database target.
This view is essentially a two-level tree map, where the database level is the
primary division, and the instance within the database is the secondary division.
This allows load comparison of instances within Oracle RAC databases; for
instance, to easily spot load imbalances across instances.

• Pluggable Database

Although the PDB option is shown, PDB is not supported for Oracle Sharding in
the current release.

Notice that the cells of the graph are not identical in size. Each cell corresponds to a
shard target, either an instance or a cluster database. The cell size (its area) is
proportional to the target database's load measured in average active sessions, so
that targets with a higher load have larger cell sizes. Cells are ordered by size from left
to right and top to bottom. Therefore, the target with the highest load always appears
as the upper leftmost cell in the graph.

You can hover your mouse pointer over a particular cell of the graph to view the total
active load (I/O to CPU ration), CPU, I/O, and wait times. Segments of the graph are
colored to indicate the dominant load:

• Green indicates that CPU time dominates the load

• Blue indicates that I/O dominates the load

• Yellow indicates that WAIT dominates the load

Chapter 9
Monitoring a Sharded Database

9-5

Members

The Members pane, in the lower left of the page, shows some relevant information
about each of the components.

Figure 9-4 Sharded Database Members pane

The pane is divided into tabs for each component: Shardspaces, Shardgroups, Shard
Directors, and Shards. Click on a tab to view the information about each type of
component

• Shardspaces

The Shardspaces tab displays the shardspace names, status, number of chunks,
and Data Guard protection mode. The shardspace names can be clicked to reveal
more details about the selected shardspace.

• Shardgroups

The Shardgroups tab displays the shardgroup names, status, the shardspace to
which it belongs, the number of chunks, Data Guard role, and the region to which
it belongs. You can click the shardgroup and shardspace names to reveal more
details about the selected component.

• Shard Directors

The Shard Directors tab displays the shard director names, status, region, host,
and Oracle home. You can click the shard director names can be clicked to reveal
more details about the selected shard director.

• Shards

The Shards tab displays the shard names, deploy status, status, the shardspaces
and shardgroups to which they belong, Data Guard roles, and the regions to which
they belong. In the Names column, you can expand the Primary shards to display
the information about its corresponding Standby shard. You can hover the mouse
over the Deployed column icon and the deployment status details are displayed.
You can click on the shard, shardspace, and shardgroup names to reveal more
details about the selected component.

Chapter 9
Monitoring a Sharded Database

9-6

Services

The Services pane, in the lower right of the page, shows the names, status, and Data
Guard role of the sharded database services. Above the list is shown the total number
of services and an icon showing how many services are in a particular status. You can
hover your mouse pointer over the icon to read a description of the status icon.

Figure 9-5 Sharded Database Services pane

Incidents

The Incidents pane displays messages and warnings about the various components in
the sharded database environment. More information about how to use this pane is in
the Cloud Control online help.

Sharded Database Menu

The Sharded Database menu, located in the top left corner, provides you with access
to administrate the sharded database components.

Target Navigation

The Target Navigation pane gives you easy access to more details about any of the
components in the sharded database.

Clicking the navigation tree icon on the upper left corner of the page opens the Target
Navigation pane. This pane shows all of the discovered components in the sharded
database in tree form.

Expanding a shardspace reveals the shardgroups in them. Expanding a shardgroup
reveals the shards in that shardgroup.

Any of the component names can be clicked to view more details about them.

Chapter 9
Monitoring a Sharded Database

9-7

• Discovering Sharded Database Components
In Enterprise Manager Cloud Control, you can discover the shard catalog and
shard databases, then add the shard directors, sharded databases, shardspaces,
and shardgroups using guided discovery.

9.2.2.1 Discovering Sharded Database Components
In Enterprise Manager Cloud Control, you can discover the shard catalog and shard
databases, then add the shard directors, sharded databases, shardspaces, and
shardgroups using guided discovery.

As a prerequisite, you must use Cloud Control to discover the shard director hosts and
the.shard catalog database. Because the catalog database and each of the shards is a
database itself, you can use standard database discovery procedures.

Monitoring the shards is only possible when the individual shards are discovered using
database discovery. Discovering the shards is optional to discovering a sharded
database, because you can have a sharded database configuration without the
shards.

1. In Enterprise Manager Cloud Control, select Setup, choose Add Target, then
choose Add Target Manually.

2. In the Add Targets Manually page, click Add Using Guided Process in the Add
Non-Host Target Using Guided Process panel.

3. In the Add Using Guided Process dialog, locate and select Sharded Database,
and click Add.

4. In the Add Sharded Database: Catalog Database page, click the browse icon next
to Catalog Database to locate the SDB catalog database.

5. In the Select Targets dialog, click the target name corresponding to the catalog
database and click Select.

The Catalog Database and Monitoring Credentials fields are filled in if they exist.
The monitoring credential is used to query the catalog database to get the
configuration information. The monitoring user is granted
GDS_CATALOG_SELECT role and has read only privileges on the catalog
repository tables.

Click Next to proceed to the next step.

In the Add Sharded Database: Components page you are shown information
about the sharded database that is managed by the catalog database, including
the sharded database name, its domain name, the sharding method employed on
the sharded database, and a list of discovered shard directors.

6. To set monitoring credentials on a shard director, click the plus sign icon on the
right side of the list entry.

A dialog opens allowing you to set the credentials.

Click OK to close the dialog, and click Next to proceed to the next step.

7. In the Add Sharded Database: Review page, verify that all of the shard directors,
shardspaces, and shardgroups were discovered.

8. Click Submit to finalize the steps.

An Enterprise Manager Deployment Procedure is submitted and you are returned
to the Add Targets Manually page.

Chapter 9
Monitoring a Sharded Database

9-8

At the top of the page you will see information about the script that was submitted
to add all of the discovered components to Cloud Control.

9. Click the link to view the provisioning status of the sharded database components.

In another browser window you can go to the Cloud Control All Targets page to
observe the status of the sharded database.

When the target discovery procedure is finished, sharded database targets are added
in Cloud Control. You can open the sharded database in Cloud Control to monitor and
manage the components.

9.2.3 Querying System Objects Across Shards
Use the SHARDS() clause to query Oracle-supplied tables to gather performance,
diagnostic, and audit data from V$ views and DBA_* views.

The shard catalog database can be used as the entry point for centralized diagnostic
operations using the SQL SHARDS() clause. The SHARDS() clause allows you to query the
same Oracle supplied objects, such as V$, DBA/USER/ALL views and dictionary
objects and tables, on all of the shards and return the aggregated results.

As shown in the examples below, an object in the FROM part of the SELECT statement is
wrapped in the SHARDS() clause to specify that this is not a query to local object, but to
objects on all shards in the sharded database configuration. A virtual column called
SHARD_ID is automatically added to a SHARDS()-wrapped object during execution of a
multi-shard query to indicate the source of every row in the result. The same column
can be used in predicate for pruning the query.

A query with the SHARDS() clause can only be run on the shard catalog database.

Examples

The following statement queries performance views

SQL> SELECT shard_id, callspersec FROM SHARDS(v$servicemetric)
 WHERE service_name LIKE 'oltp%' AND group_id = 10;

The following statement gathers statistics.

SQL> SELECT table_name, partition_name, blocks, num_rows
 FROM SHARDS(dba_tab_partition) p
 WHERE p.table_owner= :1;

The following example statement shows how to find the SHARD_ID value for each shard.

SQL> select ORA_SHARD_ID, INSTANCE_NAME from SHARDS(sys.v_$instance);

 ORA_SHARD_ID INSTANCE_NAME
 ------------ ----------------
 1 sh1
 11 sh2
 21 sh3
 31 sh4

The following example statement shows how to use the SHARD_ID to prune a query.

SQL> select ORA_SHARD_ID, INSTANCE_NAME
 from SHARDS(sys.v_$instance)
 where ORA_SHARD_ID=21;

Chapter 9
Monitoring a Sharded Database

9-9

 ORA_SHARD_ID INSTANCE_NAME
 ------------ ----------------
 21 sh3

See Also:

Oracle Database SQL Language Reference for more information about the
SHARDS() clause.

9.3 Backing Up and Recovering a Sharded Database
Because shards are hosted on individual Oracle databases, you can use Oracle
Maximum Availability best practices to back up and restore shards individually.

If you are using Data Guard and Oracle Active Data Guard for SDB high availability,
be sure to take observers offline and disable Fast Start Failover before taking a
primary or standby database offline.

Contact Oracle Support for specific steps to recover a shard in the event of a disaster.

See Also:

Oracle Maximum Availability Architecture for MAA best practices white papers

9.4 Modifying a Sharded Database Schema
When making changes to duplicated tables or sharded tables in a sharded database,
these changes should be done from the shard catalog database.

Before executing any DDL operations on a sharded database, enable sharded DDL
with

ALTER SESSION ENABLE SHARD DDL;

This statement ensures that the DDL changes will be propagated to each shard in the
sharded database.

The DDL changes that are propagated are commands that are defined as “schema
related,” which include operations such as ALTER TABLE and CREATE TRIGGER. There are
other operations that are propagated to each shard, such as the CREATE, ALTER, DROP
user commands for simplified user management, and TABLESPACE operations to simplify
the creation of tablespaces on multiple shards.

GRANT and REVOKE operations can be done from the shard catalog and are propagated
to each shard, providing you have enabled shard DDL for the session. If more granular
control is needed you can issue the command directly on each shard.

Chapter 9
Backing Up and Recovering a Sharded Database

9-10

http://www.oracle.com/goto/maa

Operations such as DBMS package calls or similar operations are not propagated. For
example, operations gathering statistics on the shard catalog are not propagated to
each shard.

If you perform an operation that requires a lock on a table, such as adding a not null
column, it is important to remember that each shard needs to obtain the lock on the
table in order to perform the DDL operation. Oracle’s best practices for applying DDL
in a single instance apply to sharded environments.

Multi-shard queries, which are executed on the shard catalog, issue remote queries
across database connections on each shard. In this case it is important to ensure that
the user has the appropriate privileges on each of the shards, whether or not the query
will return data from that shard.

See Also:

Oracle Database SQL Language Reference for information about operations
used with duplicated tables and sharded tables

9.5 Managing Sharded Database Software Versions
This section describes the version management of software components in the
sharded database configuration. It contains the following topics:

• Patching and Upgrading a Sharded Database
Applying an Oracle patch to a sharded database environment can be done on a
single shard or all shards; however, the method you use depends on the
replication option used for the environment and the type of patch being applied.

• Upgrading Sharded Database Components
The order in which sharded database components are upgraded is important for
limiting downtime and avoiding errors as components are brought down and back
online.

• Downgrading a Sharded Database
Oracle Sharding does not support downgrading 18c versions to 12c.

9.5.1 Patching and Upgrading a Sharded Database
Applying an Oracle patch to a sharded database environment can be done on a single
shard or all shards; however, the method you use depends on the replication option
used for the environment and the type of patch being applied.

Patching a Sharded Database

Most patches can be applied to a single shard at a time; however, some patches
should be applied across all shards. Use Oracle’s best practices for applying patches
to single shards just as you would a non-sharded database, keeping in mind the
replication method that is being used with the SDB. Oracle opatchauto can be used to
apply patches to multiple shards at a time, and can be done in a rolling manner. Data
Guard configurations are applied one after another, and in some cases (depending on
the patch) you can use Standby First patching. When using Oracle GoldenGate be
sure to apply patches in parallel across the entire shardspace. If a patch addresses an

Chapter 9
Managing Sharded Database Software Versions

9-11

issue with multi-shard queries, replication, or the sharding infrastructure, it should be
applied to all of the shards in the SDB.

Upgrading a Sharded Database

Upgrading the Oracle Sharding environment is not much different from upgrading
other Oracle Database and global service manager environments; however, the
components must be upgraded in a particular sequence such that the shard catalog is
upgraded first, followed by the shard directors, and finally the shards.

See Also:

Oracle OPatch User's Guide

Oracle Database Global Data Services Concepts and Administration Guide for
information about upgrading the shard directors.

Oracle Data Guard Concepts and Administration for information about patching
and upgrading in an Oracle Data Guard configuration.

9.5.2 Upgrading Sharded Database Components
The order in which sharded database components are upgraded is important for
limiting downtime and avoiding errors as components are brought down and back
online.

Before upgrading any sharded database components you must

• Complete any pending MOVE CHUNK operations that are in progress.

• Do not start any new MOVE CHUNK operations.

• Do not add any new shards during the upgrade process.

1. Upgrade the shards with the following points in mind.

• For system-managed sharded databases: upgrade each set of shards in a
Data Guard Broker configuration in a rolling manner.

• For user-defined sharded databases: upgrade each set of shards in a
shardspace in a rolling manner.

• For composite sharded databases: in a given shardspace, upgrade each set of
shards in a Data Guard Broker configuration in a rolling manner.

2. Upgrade the shard catalog database.

 For best results the catalog should be upgraded using a rolling database upgrade;
however, global services will remain available during the upgrade if the catalog is
unavailable, although service failover will not occur.

3. Upgrade any shard directors that are used to run GDSCTL clients, and which do
not also run a global service manager server.

Shard director upgrades should be done in-place; however, an in-place upgrade
causes erroneous error messages unless permissions on the following files for the
following platforms are updated to 755:

Chapter 9
Managing Sharded Database Software Versions

9-12

• On Linux, Solaris64, and Solaris Sparc64:

$ORACLE_HOME/QOpatch/qopiprep.bat
$ORACLE_HOME/jdk/bin/jcontrol
$ORACLE_HOME/jdk/jre/bin/jcontrol

• On AIX:

$ORACLE_HOME/QOpatch/qopiprep.bat
$ORACLE_HOME/jdk/jre/bin/classic/libjvm.a
$ORACLE_HOME/jdk/bin/policytool

• On HPI:

$ORACLE_HOME/jdk/jre/lib/IA64N/server/Xusage.txt
$ORACLE_HOME/jdk/jre/bin/jcontrol
$ORACLE_HOME/QOpatch/qopiprep.bat

• On Windows no error messages are expected.

4. Stop, upgrade, and restart all shard director servers one at a time.

 To ensure zero downtime, at least one shard director server should always be
running. Shard director servers at an earlier version than the catalog will continue
to operate fully until catalog changes are made.

See Also:

Oracle Data Guard Concepts and Administration for information about using
DBMS_ROLLING to perform a rolling upgrade.

Oracle Data Guard Concepts and Administration for information about patching
and upgrading databases in an Oracle Data Guard configuration.

9.5.3 Downgrading a Sharded Database
Oracle Sharding does not support downgrading 18c versions to 12c.

Sharded database catalogs and shards cannot be downgraded from 18c to 12c.

9.6 Shard Management
You can manage shards in your Oracle Sharding deployment with Oracle Enterprise
Manager Cloud Control and GDSCTL.

The following topics describe shard management concepts and tasks:

• About Adding Shards
New shards can be added to an existing sharded database environment to scale
out and to improve fault tolerance.

• Resharding and Hot Spot Elimination
The process of redistributing data between shards, triggered by a change in the
number of shards, is called resharding. Automatic resharding is a feature of the
system-managed sharding method that provides elastic scalability of an SDB.

Chapter 9
Shard Management

9-13

• Removing a Shard From the Pool
It may become necessary to remove a shard from the sharded database
environment, either temporarily or permanently, without losing any data that
resides on that shard.

• Adding Standby Shards
You can add Data Guard standby shards to an Oracle Sharding environment;
however there are some limitations.

• Managing Shards with Oracle Enterprise Manager Cloud Control
You can manage database shards using Oracle Enterprise Manager Cloud Control

• Managing Shards with GDSCTL
You can manage shards in your Oracle Sharding deployment using the GDSCTL
command-line utility.

9.6.1 About Adding Shards
New shards can be added to an existing sharded database environment to scale out
and to improve fault tolerance.

For fault tolerance, it is beneficial to have many smaller shards than a few very large
ones. As an application matures and the amount of data increases, you can add an
entire shard or multiple shards to the SDB to increase capacity.

When you add a shard to a sharded database, if the environment is sharded by
consistent hash, then chunks from existing shards are automatically moved to the new
shard to rebalance the sharded environment.

When using user-defined sharding, populating a new shard with data may require
manually moving chunks from existing shards to the new shard using the GDSCTL
split chunk and move chunk commands.

Oracle Enterprise Manager Cloud Control can be used to help identify chunks that
would be good candidates to move, or split and move to the new shard.

When you add a shard to the environment, verify that the standby server is ready, and
after the new shard is in place take backups of any shards that have been involved in
a move chunk operation.

9.6.2 Resharding and Hot Spot Elimination
The process of redistributing data between shards, triggered by a change in the
number of shards, is called resharding. Automatic resharding is a feature of the
system-managed sharding method that provides elastic scalability of an SDB.

Sometimes data in an SDB needs to be migrated from one shard to another. Data
migration across shards is required in the following cases:

• When one or multiple shards are added to or removed from an SDB

• When there is skew in the data or workload distribution across shards

The unit of data migration between shards is the chunk. Migrating data in chunks
guaranties that related data from different sharded tables are moved together.

When a shard is added to or removed from an SDB, multiple chunks are migrated to
maintain a balanced distribution of chunks and workload across shards.

Chapter 9
Shard Management

9-14

Depending on the sharding method, resharding happens automatically (system-
managed) or is directed by the user (composite). The following figure shows the
stages of automatic resharding when a shard is added to an SDB with three shards.

Figure 9-6 Resharding an SDB

1

2

3

4

5

6

7

8

9

10

11

12

1

2

3

5

6

7

9

10

11

4 8 12

+

1

2

3

5

6

7

9

10

11

4

8

12

A particular chunk can also be moved from one shard to another, when data or
workload skew occurs, without any change in the number of shards. In this case,
chunk migration can be initiated by the database administrator to eliminate the hot
spot.

RMAN Incremental Backup, Transportable Tablespace, and Oracle Notification
Service technologies are used to minimize impact of chunk migration on application
availability. A chunk is kept online during chunk migration. There is a short period of
time (a few seconds) when data stored in the chunk is available for read-only access
only.

FAN-enabled clients receive a notification when a chunk is about to become read-only
in the source shard, and again when the chunk is fully available in the destination
shard on completion of chunk migration. When clients receive the chunk read-only
event, they can either repeat connection attempts until the chunk migration is
completed, or access the read-only chunk in the source chunk. In the latter case, an
attempt to write to the chunk will result in a run-time error.

Chapter 9
Shard Management

9-15

Note:

Running multi-shard queries while a sharded database is resharding can result
in errors, so it is recommended that you do not deploy new shards during multi-
shard workloads.

See Also:

Adding Shards to a System-Managed SDB

Sharding Methods

9.6.3 Removing a Shard From the Pool
It may become necessary to remove a shard from the sharded database environment,
either temporarily or permanently, without losing any data that resides on that shard.

For example, removing a shard might become necessary if a sharded environment is
scaled down after a busy holiday, or to replace a server or infrastructure within the
data center. Prior to decommissioning the shard, you must move all of the chunks from
the shard to other shards that will remain online. As you move them, try to maintain a
balance of data and activity across all of the shards.

If the shard is only temporarily removed, keep track of the chunks moved to each
shard so that they can be easily identified and moved back once the maintenance is
complete.

See Also:

About Moving Chunks

Oracle Database Global Data Services Concepts and Administration Guide for
information about using the GDSCTL REMOVE SHARD command

9.6.4 Adding Standby Shards
You can add Data Guard standby shards to an Oracle Sharding environment; however
there are some limitations.

When using Data Guard as the replication method for a sharded database, Oracle
Sharding supports only the addition of a primary or physical standby shard; other types
of Data Guard standby databases are not supported when adding a new standby to
the sharded database. However, a shard that is already part of the sharded database
can be converted from a physical standby to a snapshot standby. When converting a
physical standby to a snapshot standby, the following steps should be followed:

1. Stop all global services on the shard using the GDSCTL command STOP SERVICE.

Chapter 9
Shard Management

9-16

2. Disable all global services on the shard using the GDSCTL command DISABLE
SERVICE.

3. Convert the shard to a snapshot standby using the procedure described in the
Data Guard documentation.

At this point, the shard remains part of the sharded database, but will not accept
connections which use the sharding key.

If the database is converted back to a physical standby, the global services can be
enabled and started again, and the shard becomes an active member of the sharded
database.

See Also:

Oracle Data Guard Concepts and Administration

9.6.5 Managing Shards with Oracle Enterprise Manager Cloud Control
You can manage database shards using Oracle Enterprise Manager Cloud Control

To manage shards using Cloud Control, they must first be discovered. Because each
database shard is a database itself, you can use standard Cloud Control database
discovery procedures.

The following topics describe shard management using Oracle Enterprise Manager
Cloud Control:

• Validating a Shard
Validate a shard prior to adding it to your Oracle Sharding deployment.

• Adding Primary Shards
Use Oracle Enterprise Manager Cloud Control to add a primary shards to your
Oracle Sharding deployment.

• Adding Standby Shards
Use Oracle Enterprise Manager Cloud Control to add a standby shards to your
Oracle Sharding deployment.

• Deploying Shards
Use Oracle Enterprise Manager Cloud Control to deploy shards that have been
added to your Oracle Sharding environment.

9.6.5.1 Validating a Shard
Validate a shard prior to adding it to your Oracle Sharding deployment.

You can use Oracle Enterprise Manager Cloud Control to validate shards before
adding them to your Oracle Sharding deployment. You can also validate a shard after
deployment to confirm that the settings are still valid later in the shard lifecycle. For
example, after a software upgrade you can validate existing shards to confirm
correctness of their parameters and configuration.

To validate shards with Cloud Control, they should be existing targets that are being
monitored by Cloud Control.

Chapter 9
Shard Management

9-17

1. From a shardgroup management page, open the Shardgroup menu, located in
the top left corner of the shardgroup target page, and choose Manage Shards.

2. If prompted, enter the shard catalog credentials, select the shard director to
manage under Shard Director Credentials, select the shard director host
credentials, and log in.

3. Select a shard from the list and click Validate.

4. Click OK to confirm you want to validate the shard.

5. Click the link in the Information box at the top of the page to view the provisioning
status of the shard.

When the shard validation script runs successfully check for errors reported in the
output.

9.6.5.2 Adding Primary Shards
Use Oracle Enterprise Manager Cloud Control to add a primary shards to your Oracle
Sharding deployment.

Primary shards should be existing targets that are being monitored by Cloud Control.

It is highly recommended that you validate a shard before adding it to your Oracle
Sharding environment. You can either use Cloud Control to validate the shard (see
Validating a Shard), or run the DBMS_GSM_FIX.validateShard procedure against the
shard using SQL*Plus (see Validating a Shard).

1. Open the Sharded Database menu, located in the top left corner of the Sharded
Database target page, and choose Add Primary Shards.

2. If prompted, enter the shard catalog credentials, select the shard director to
manage under Shard Director Credentials, select the shard director host
credentials, and log in.

3. Select Deploy All Shards in the sharded database to deploy all shards added to
the sharded database configuration.

The deployment operation validates the configuration of the shards and performs
final configuration steps. Shards can be used only after they are deployed.

4. Click Add.

5. In the Database field of the Shard Details dialog, select a shard and click Select.

6. In a composite Oracle Sharding environment you can select the shardspace to
which to add the shard.

7. Click OK.

8. Enter the GSMUSER credentials if necessary, then click Next.

9. Indicate when the ADD SHARD operation should occur, then click Next.

• Immediately: the shard is provisioned upon confirmation

• Later: schedule the timing of the shard addition using the calendar tool in the
adjacent field

10. Review the configuration of the shard to be added and click Submit.

11. Click the link in the Information box at the top of the page to view the provisioning
status of the shard.

Chapter 9
Shard Management

9-18

If you did not select Deploy All Shards in the sharded database in the procedure
above, deploy the shard in your Oracle Sharding deployment using the Deploying
Shards task.

9.6.5.3 Adding Standby Shards
Use Oracle Enterprise Manager Cloud Control to add a standby shards to your Oracle
Sharding deployment.

Standby shards should be existing targets that are being monitored by Cloud Control.

It is highly recommended that you validate a shard before adding it to your Oracle
Sharding environment. You can either use Cloud Control to validate the shard (see
Validating a Shard), or run the DBMS_GSM_FIX.validateShard procedure against the
shard using SQL*Plus (see Validating a Shard).

1. Open the Sharded Database menu, located in the top left corner of the Sharded
Database target page, and choose Add Standby Shards.

2. If prompted, enter the shard catalog credentials, select the shard director to
manage under Shard Director Credentials, select the shard director host
credentials, and log in.

3. Select Deploy All Shards in the sharded database to deploy all shards added to
the sharded database configuration.

The deployment operation validates the configuration of the shards and performs
final configuration steps. Shards can be used only after they are deployed.

4. Choose a primary shard for which the new shard will act as a standby in the
Primary Shards list.

5. Click Add.

6. In the Database field of the Shard Details dialog, select the standby shard.

7. Select the shardgroup to which to add the shard.

Only shardgroups that do not already contain a standby for the selected primary
are shown.

8. Click OK.

9. Enter the GSMUSER credentials if necessary, then click Next.

10. Indicate when the ADD SHARD operation should occur, then click Next.

• Immediately: the shard is provisioned upon confirmation

• Later: schedule the timing of the shard addition using the calendar tool in the
adjacent field

11. Review the configuration of the shard to be added and click Submit.

12. Click the link in the Information box at the top of the page to view the provisioning
status of the shard.

If you did not select Deploy All Shards in the sharded database in the procedure
above, deploy the shard in your Oracle Sharding deployment using the Deploying
Shards task.

Chapter 9
Shard Management

9-19

9.6.5.4 Deploying Shards
Use Oracle Enterprise Manager Cloud Control to deploy shards that have been added
to your Oracle Sharding environment.

1. Open the Sharded Database menu, located in the top left corner of the Sharded
Database target page, and choose Deploy Shards.

2. If prompted, enter the shard catalog credentials, select the shard director to
manage under Shard Director Credentials, select the shard director host
credentials, and log in.

3. Select the Perform Rebalance check box to redistribute data between shards
automatically after the shard is deployed.

If you want to move chunks to the shard manually, uncheck this box.

4. Click Submit.

5. Click the link in the Information box at the top of the page to view the provisioning
status of the shard.

9.6.6 Managing Shards with GDSCTL
You can manage shards in your Oracle Sharding deployment using the GDSCTL
command-line utility.

The following topics describe shard management using GDSCTL:

• Validating a Shard
Before adding a newly created shard to a sharding configuration, you must
validate that the shard has been configured correctly for the sharding environment.

• Adding Shards to a System-Managed SDB
Adding shards to a system-managed SDB elastically scales the SDB. In a system-
managed SDB chunks are automatically rebalanced after the new shards are
added.

• Replacing a Shard
If a shard fails and is unrecoverable, or if you just want to move a shard to a new
host for other reasons, you can replace it using the ADD SHARD -REPLACE
command in GDSCTL.

9.6.6.1 Validating a Shard
Before adding a newly created shard to a sharding configuration, you must validate
that the shard has been configured correctly for the sharding environment.

Before you run ADD SHARD, run the validateShard procedure against the database that
will be added as a shard. The validateShard procedure verifies that the target
database has the initialization parameters and characteristics needed to act
successfully as a shard.

The validateShard procedure analyzes the target database and reports any issues that
need to be addressed prior to running GDSCTL ADD SHARD on that database. The
validateShard procedure does not make any changes to the database or its
parameters; it only reports information and possible issues.

Chapter 9
Shard Management

9-20

The validateShard procedure takes one optional parameter that specifies whether the
shard will be added to a shard catalog using Data Guard or to a shard catalog using
Oracle GoldenGate as its replication technology. If you are using Data Guard, call
validateShard('DG'). If you are using Oracle GoldenGate, use validateShard('OGG').
The default value is Data Guard if no parameter is passed to validateShard.

The validateShard procedure can also be run after the deployment of a shard to
confirm that the settings are still valid later in the shard lifecycle. For example, after a
software upgrade or after shard deployment, validateShard can be run on existing
shards to confirm correctness of their parameters and configuration.

Run validateShard as follows:

sqlplus / as sysdba
SQL> set serveroutput on
SQL> execute dbms_gsm_fix.validateShard

The following is an example of the output.

INFO: Data Guard shard validation requested.
INFO: Database role is PRIMARY.
INFO: Database name is DEN27B.
INFO: Database unique name is den27b.
INFO: Database ID is 718463507.
INFO: Database open mode is READ WRITE.
INFO: Database in archivelog mode.
INFO: Flashback is on.
INFO: Force logging is on.
INFO: Database platform is Linux x86 64-bit.
INFO: Database character set is WE8DEC. This value must match the character set of
 the catalog database.
INFO: 'compatible' initialization parameter validated successfully.
INFO: Database is not a multitenant container database.
INFO: Database is using a server parameter file (spfile).
INFO: db_create_file_dest set to: '<ORACLE_BASE>/oracle/dbs2'
INFO: db_recovery_file_dest set to: '<ORACLE_BASE>/oracle/dbs2'
INFO: db_files=1000. Must be greater than the number of chunks and/or tablespaces
 to be created in the shard.
INFO: dg_broker_start set to TRUE.
INFO: remote_login_passwordfile set to EXCLUSIVE.
INFO: db_file_name_convert set to: '/dbs/dt, /dbs/bt, dbs2/DEN27D/, dbs2/DEN27B/'
INFO: GSMUSER account validated successfully.
INFO: DATA_PUMP_DIR is '<ORACLE_BASE>//oracle/dbs2'.

Any lines tagged with INFO are informational in nature and confirm correct settings.
Lines tagged with WARNING may or may not be issues depending on your configuration.
For example, issues related to Data Guard parameters are reported, but if your
configuration will only include primary databases, then any Data Guard issues can be
ignored. Finally, any output with the ERROR tag must be corrected for the shard to
deploy and operate correctly in a sharding configuration.

9.6.6.2 Adding Shards to a System-Managed SDB
Adding shards to a system-managed SDB elastically scales the SDB. In a system-
managed SDB chunks are automatically rebalanced after the new shards are added.

To prepare a new shard host, do all of the setup procedures as you did for the initial
sharded database environment including:

• Installing Oracle Database Software

Chapter 9
Shard Management

9-21

• Registering remote scheduler agents as described in Setting Up the Oracle
Sharding Management and Routing Tier

1. Connect to a shard director host, and verify the environment variables.

$ ssh os_user@shard_director_home
$ env |grep ORA
ORACLE_BASE=/u01/app/oracle
ORACLE_HOME=/u01/app/oracle/product/18.0.0/gsmhome_1

2. Set the global service manager for the current session, and specify the credentials
to administer it.

$ gdsctl
GDSCTL> set gsm -gsm sharddirector1
GDSCTL> connect mysdbadmin/mysdbadmin_password

3. Verify the current shard configuration.

GDSCTL> config shard
Name Shard Group Status State Region Availability
---- ----------- ------ ----- ------ ------------
sh1 primary_shardgroup Ok Deployed region1 ONLINE
sh2 standby_shardgroup Ok Deployed region2 READ_ONLY
sh3 primary_shardgroup Ok Deployed region1 ONLINE
sh4 standby_shardgroup Ok Deployed region2 READ_ONLY

4. Specify the shard group, destination, and the credentials for each new shard.

In the examples the new shard hosts are called shard5 and shard6, and they are
using the default templates for NETCA and DBCA.

GDSCTL> add invitednode shard5
GDSCTL> create shard -shardgroup primary_shardgroup -destination shard5
 -credential os_credential -sys_password
GDSCTL> add invitednode shard6
GDSCTL> create shard -shardgroup standby_shardgroup -destination shard6
 -credential os_credential -sys_password

While creating the shards, you can also set the SYS password in the create shard
using -sys_password as shown in the above example. This sets the SYS password
after the shards are created during DEPLOY.

The above example uses the CREATE SHARD method for creating new shards.
To add a preconfigured sahrd using the ADD SHARD command, do the following
after ADD INVITEDNODE:

GDSCTL> add shard –shardgroup primary_shardgroup
 –connect shard_host:TNS_listener_port/shard_database_name
 –pwd GSMUSER_password

If the shard to be added is a PDB, you must use the -cdb option in ADD SHARD to
specify which CDB the PDB shard is in. In addition, ADD CDB must be used before
the ADD SHARD command to add the CDB to the catalog. See Oracle Database
Global Data Services Concepts and Administration Guide for the syntax for ADD
CDB and ADD SHARD.

Note:

See this note for information about automatic VNCR registration.

Chapter 9
Shard Management

9-22

5. Run the DEPLOY command to create the shards and the replicas.

GDSCTL> deploy

6. Verify that the new shards are deployed.

GDSCTL> config shard
Name Shard Group Status State Region Availability
---- ----------- ------ ----- ------ ------------
sh1 primary_shardgroup Ok Deployed region1 ONLINE
sh2 standby_shardgroup Ok Deployed region2 READ_ONLY
sh3 primary_shardgroup Ok Deployed region1 ONLINE
sh4 standby_shardgroup Ok Deployed region2 READ_ONLY
sh5 primary_shardgroup Ok Deployed region1 ONLINE
sh6 standby_shardgroup Ok Deployed region2 READ_ONLY

7. Check the chunk configuration every minute or two to see the progress of
automatic rebalancing of chunks.

$ gdsctl config chunks -show_Reshard

Chunks

Database From To
-------- ---- --
sh1 1 4
sh2 1 4
sh3 7 10
sh4 7 10
sh5 5 6
sh5 11 12
sh6 5 6
sh6 11 12

Ongoing chunk movement

Chunk Source Target status
----- ------ ------ ------

8. Observe that the shards (databases) are automatically registered.

$ gdsctl databases

Database: "sh1" Registered: Y State: Ok ONS: N. Role: PRIMARY Instances: 1
 Region: region1
 Service: "oltp_ro_srvc" Globally started: Y Started: N
 Scan: N Enabled: Y Preferred: Y
 Service: "oltp_rw_srvc" Globally started: Y Started: Y
 Scan: N Enabled: Y Preferred: Y
 Registered instances:
 cust_sdb%1
Database: "sh2" Registered: Y State: Ok ONS: N. Role: PH_STNDBY Instances: 1
 Region: region2
 Service: "oltp_ro_srvc" Globally started: Y Started: Y
 Scan: N Enabled: Y Preferred: Y
 Service: "oltp_rw_srvc" Globally started: Y Started: N
 Scan: N Enabled: Y Preferred: Y
 Registered instances:
 cust_sdb%11
Database: "sh3" Registered: Y State: Ok ONS: N. Role: PRIMARY Instances: 1
 Region: region1
 Service: "oltp_ro_srvc" Globally started: Y Started: N
 Scan: N Enabled: Y Preferred: Y

Chapter 9
Shard Management

9-23

 Service: "oltp_rw_srvc" Globally started: Y Started: Y
 Scan: N Enabled: Y Preferred: Y
 Registered instances:
 cust_sdb%21
Database: "sh4" Registered: Y State: Ok ONS: N. Role: PH_STNDBY Instances: 1
 Region: region2
 Service: "oltp_ro_srvc" Globally started: Y Started: Y
 Scan: N Enabled: Y Preferred: Y
 Service: "oltp_rw_srvc" Globally started: Y Started: N
 Scan: N Enabled: Y Preferred: Y
 Registered instances:
 cust_sdb%31
Database: "sh5" Registered: Y State: Ok ONS: N. Role: PRIMARY Instances: 1
 Region: region1
 Service: "oltp_ro_srvc" Globally started: Y Started: N
 Scan: N Enabled: Y Preferred: Y
 Service: "oltp_rw_srvc" Globally started: Y Started: Y
 Scan: N Enabled: Y Preferred: Y
 Registered instances:
 cust_sdb%41
Database: "sh6" Registered: Y State: Ok ONS: N. Role: PH_STNDBY Instances: 1
 Region: region2
 Service: "oltp_ro_srvc" Globally started: Y Started: Y
 Scan: N Enabled: Y Preferred: Y
 Service: "oltp_rw_srvc" Globally started: Y Started: N
 Scan: N Enabled: Y Preferred: Y
 Registered instances:
 cust_sdb%51

9. Observe that the services are automatically brought up on the new shards.

$ gdsctl services

Service "oltp_ro_srvc.cust_sdb.oradbcloud" has 3 instance(s). Affinity: ANYWHERE
 Instance "cust_sdb%11", name: "sh2", db: "sh2", region: "region2", status:
ready.
 Instance "cust_sdb%31", name: "sh4", db: "sh4", region: "region2", status:
ready.
 Instance "cust_sdb%51", name: "sh6", db: "sh6", region: "region2", status:
ready.
Service "oltp_rw_srvc.cust_sdb.oradbcloud" has 3 instance(s). Affinity: ANYWHERE
 Instance "cust_sdb%1", name: "sh1", db: "sh1", region: "region1", status:
ready.
 Instance "cust_sdb%21", name: "sh3", db: "sh3", region: "region1", status:
ready.
 Instance "cust_sdb%41", name: "sh5", db: "sh5", region: "region1", status:
ready.

See Also:

Oracle Database Global Data Services Concepts and Administration Guide for
information about GDSCTL command usage

Chapter 9
Shard Management

9-24

9.6.6.3 Replacing a Shard
If a shard fails and is unrecoverable, or if you just want to move a shard to a new host
for other reasons, you can replace it using the ADD SHARD -REPLACE command in
GDSCTL.

When a shard database fails and the database can be recovered on the same host
(using RMAN backup/restore or other methods), there is no need to replace the shard
using the -replace parameter. If the shard cannot be recovered locally, or for some
other reason you want to relocate the shard to another host or CDB, it is possible to
create its replica on the new host. The sharding configuration can be updated with the
new information by specifying the -replace option in GDSCTL command ADD SHARD.

The following are some cases where replacing a shard using ADD SHARD -REPLACE
is useful.

• The server (machine) where the shard database was running suffered irreparable
damage and has to be replaced

• You must replace a working server with another (more powerful, for example)
server

• A shard in a PDB was relocated from one CDB to another

In all of these cases the number of shards and data distribution across shards does
not change after ADD SHARD is executed; a shard is replaced with another shard that
holds the same data. This is different from ADD SHARD used without the -replace
option when the number of shards increases and data gets redistributed.

Upon running ADD SHARD -REPLACE, the old shard parameters, such as
connect_string, db_unique_name, and so on, are replaced with their new values. A
new database can have different db_unique_name than the failed one. When
replacing a standby in a Data Guard configuration, the DBID of the new database must
match the old one, as Data Guard requires all of the members of the configuration to
have same DBID.

Before Using Replace

Before you use ADD SHARD -REPLACE, verify the following:

• You have restored the database correctly (for example, using RMAN restore or
other method). The new database shard must have the same sharding metadata
as the failed one. Perform basic validation to ensure that you do not accidently
provide a connect string to the wrong shard.

• The shard that failed must have been in a deployed state before failure happened.

• The shard that failed must be down when executing the ADD SHARD -REPLACE
command.

• Fast-start failover observer must be running, if fast-start failover is enabled (which
it is by default).

Replacing a Shard in a Data Guard Environment

The ADD SHARD -REPLACE command can only be used to replace a standby shard if the
primary is still alive. In order to replace a primary shard that failed, wait for one of the
remaining standbys to switch over to the primary role before trying to replace the failed
shard.

Chapter 9
Shard Management

9-25

When a switchover is not possible (primary and all the standbys are down), you must
run ADD SHARD -REPLACE for each member starting with the primary. This creates
a new broker configuration from scratch.

In MAXPROTECTION mode with no standbys alive, the primary database shuts down
to maintain the protection mode. In this case, the primary database cannot be opened
if the standby is not alive. To handle the replace operation in this scenario, you must
first downgrade Data Guard protection mode using DGMGRL (to MAXAVAILABILITY
or MAXPERFORMANCE) by starting up the database in mounted mode. After the
protection mode is set, open the primary database and perform the replace operation
using GDSCTL. After the replace operation finishes you can revert the protection
mode back to the previous level using DGMGRL.

When replacing a standby in a Data Guard configuration, the DBID of the new
database must match the old one, as Data Guard requires all of the members of the
configuration to have same DBID.

Example 9-1 Example 1: Replacing the primary shard with no standbys in the
configuration

The initial configuration has two primary shards deployed and no standbys, as shown
in the following example. The Availability for shdc is shown as a dash because it has
gone down in a disaster scenario.

$ gdsctl config shard

Name Shard Group Status State Region Availability
---- ----------- ------ ----- ------ ------------
shdb dbs1 Ok Deployed east ONLINE
shdc dbs1 Ok Deployed east -

To recover, you create a replica of the primary from the backup, using RMAN for
example. For this example, a new shard is created with db_unique_name shdd and
connect string inst4. Now, the old shard, shdc, can be replaced with the new shard,
shdd, as follows:

$ gdsctl add shard -replace shdc -connect inst4 -pwd password

DB Unique Name: SHDD

You can verify the configuration as follows:

$ gdsctl config shard

Name Shard Group Status State Region Availability
---- ----------- ------ ----- ------ ------------
shdb dbs1 Ok Deployed east ONLINE
shdd dbs1 Ok Deployed east ONLINE

Example 9-2 Example 2: Replacing a standby shard

Note that you cannot replace a primary shard when the configuration contains a
standby shard. In such cases, if the primary fails, the replace operation must be
performed after one of the standbys becomes the new primary by automatic
switchover.

The initial configuration has two shardgroups: one primary and one standby, each
containing two shards, when the standby, shdd goes down.

Chapter 9
Shard Management

9-26

$ gdsctl config shard

Name Shard Group Status State Region Availability
---- ----------- ------ ----- ------ ------------
shdb dbs1 Ok Deployed east ONLINE
shdc dbs1 Ok Deployed east ONLINE
shdd dbs2 Ok Deployed east -
shde dbs2 Ok Deployed east READ ONLY

Create a new standby. Because the primary is running, this should be done using the
RMAN DUPLICATE command with the FOR STANDBY option. Once the new standby, shdf, is
ready, replace the old shard, shdd, as follows:

$ gdsctl add shard -replace shdd -connect inst6 -pwd password

DB Unique Name: shdf

You can verify the configuration as follows:

$ gdsctl config shard

Name Shard Group Status State Region Availability
---- ----------- ------ ----- ------ ------------
shdb dbs1 Ok Deployed east ONLINE
shdc dbs1 Ok Deployed east ONLINE
shde dbs2 Ok Deployed east READ ONLY
shdf dbs2 Ok Deployed east READ ONLY

Replacing a Shard in an Oracle GoldenGate Environment

The GDSCTL command option ADD SHARD -REPLACE is not supported with Oracle
GoldenGate.

Common Errors

ORA-03770: incorrect shard is given for replace

This error is thrown when the shard given for the replace operation is not the replica of
the original shard. Specifically, the sharding metadata does not match the metadata
stored in the shard catalog for this shard. Make sure that the database was copied
correctly, preferably using RMAN. Note that this is not an exhaustive check. It is
assumed that you created the replica correctly.

ORA-03768: The database to be replaced is still up: shardc

The database to be replaced must not be running when running the add shard -
replace command. Verify this by looking at the output of GDSCTL command config
shard. If the shard failed but still shows ONLINE in the output, wait for some time
(about 2 minutes) and retry.

See Also:

Oracle Database Global Data Services Concepts and Administration Guide for
information about the ADD SHARD command.

Chapter 9
Shard Management

9-27

9.7 Chunk Management
You can manage chunks in your Oracle Sharding deployment with Oracle Enterprise
Manager Cloud Control and GDSCTL.

The following topics describe chunk management concepts and tasks:

• About Moving Chunks
Sometimes it becomes necessary to move a chunk from one shard to another. To
maintain scalability of the sharded environment, it is important to attempt to
maintain an equal distribution of the load and activity across all shards.

• Moving Chunks
You can move chunks from one shard to another in your Oracle Sharding
deployment using Oracle Enterprise Manager Cloud Control.

• About Splitting Chunks
Splitting a chunk in a sharded database is required when chunks become too big,
or only part of a chunk must be migrated to another shard.

• Splitting Chunks
You can split chunks in your Oracle Sharding deployment using Oracle Enterprise
Manager Cloud Control.

9.7.1 About Moving Chunks
Sometimes it becomes necessary to move a chunk from one shard to another. To
maintain scalability of the sharded environment, it is important to attempt to maintain
an equal distribution of the load and activity across all shards.

As the environment matures in a composite SDB, some shards may become more
active and have more data than other shards. In order to keep a balance within the
environment you must move chunks from more active servers to less active
servers. There are other reasons for moving chunks:

• When a shard becomes more active than other shards, you can move a chunk to a
less active shard to help redistribute the load evenly across the environment.

• When using range, list, or composite sharding, and you are adding a shard to a
shardgroup.

• When using range, list, or composite sharding, and you a removing a shard from a
shardgroup.

• After splitting a chunk it is often advisable to move one of the resulting chunks to a
new shard.

When moving shards to maintain scalability, the ideal targets of the chunks are shards
that are less active, or have a smaller portion of data. Oracle Enterprise Manager and
AWR reports can help you identify the distribution of activity across the shards, and
help identify shards that are good candidates for chunk movement.

Chapter 9
Chunk Management

9-28

Note:

Any time a chunk is moved from one shard to another, you should make a full
backup of the databases involved in the operation (both the source of the
chunk move, and the target of the chunk move.)

See Also:

Oracle Database Global Data Services Concepts and Administration Guide for
information about using the GDSCTL MOVE CHUNK command

9.7.2 Moving Chunks
You can move chunks from one shard to another in your Oracle Sharding deployment
using Oracle Enterprise Manager Cloud Control.

1. From a shardspace management page, open the Shardspace menu, located in
the top left corner of the Sharded Database target page, and choose Manage
Shardgroups.

2. Select a shardgroup in the list and click Move Chunks.

3. In the Move Chunks dialog, select the source and destination shards between
which to move the chunks.

4. Select the chunks that you want to move by choosing one of the options.

• Enter ID List: enter a comma separates list of chunk ID numbers

• Select IDs From Table: click the chunk IDs in the table

5. Indicate when the chunk move should occur.

• Immediately: the chunk move is provisioned upon confirmation

• Later: schedule the timing of the chunk move using the calendar tool in the
adjacent field

6. Click OK.

7. Click the link in the Information box at the top of the page to view the provisioning
status of the chunk move.

9.7.3 About Splitting Chunks
Splitting a chunk in a sharded database is required when chunks become too big, or
only part of a chunk must be migrated to another shard.

Oracle Sharding supports the online split of a chunk. Theoretically it is possible to
have a single chunk for each shard and split it every time data migration is required.
However, even though a chunk split does not affect data availability, the split is a time-
consuming and CPU-intensive operation because it scans all of the rows of the
partition being split, and then inserts them one by one into the new partitions. For
composite sharding, it is time consuming and may require downtime to redefine new
values for the shard key or super shard key.

Chapter 9
Chunk Management

9-29

Therefore, it is recommended that you pre-create multiple chunks on each shard and
split them either when the number of chunks is not big enough for balanced
redistribution of data during re-sharding, or a particular chunk has become a hot spot.

Even with system-managed sharding, a single chunk may grow larger than other
chunks or may become more active. In this case, splitting that chunk and allowing
automatic resharding to move one of the resulting chunks to another shard maintains a
more equal balanced distribution of data and activity across the environment.

Oracle Enterprise Manager heat maps show which chunks are more active than other
chunks. Using this feature will help identify which chunks could be split, and one of the
resulting chunks could then be moved to another shard to help rebalance the
environment.

See Also:

Oracle Database Global Data Services Concepts and Administration Guide for
information about using the GDSCTL SPLIT CHUNK command

9.7.4 Splitting Chunks
You can split chunks in your Oracle Sharding deployment using Oracle Enterprise
Manager Cloud Control.

1. Open the Sharded Database menu, located in the top left corner of the Sharded
Database target page, and choose Shardspaces.

2. If prompted, enter the shard catalog credentials, select the shard director to
manage under Shard Director Credentials, select the shard director host
credentials, and log in.

3. Select a shardspace in the list and click Split Chunks.

4. Select the chunks that you want to split by choosing one of the options.

• Enter ID List: enter a comma separate list of chunk ID numbers

• Select IDs From Table: click the chunk IDs in the table

5. Indicate when the chunk split should occur.

• Immediately: the chunk split is provisioned upon confirmation

• Later: schedule the timing of the chunk split using the calendar tool in the
adjacent field

6. Click OK.

7. Click the link in the Information box at the top of the page to view the provisioning
status of the chunk split.

When the chunk is split successfully the number of chunks is updated in the
Shardspaces list. You might need to refresh the page to see the updates.

9.8 Shard Director Management
You can add, edit, and remove shard directors in your Oracle Sharding deployment
with Oracle Enterprise Manager Cloud Control.

Chapter 9
Shard Director Management

9-30

The following topics describe shard director management tasks:

• Creating a Shard Director
Use Oracle Enterprise Manager Cloud Control to create and add a shard director
to your Oracle Sharding deployment.

• Editing a Shard Director Configuration
Use Oracle Enterprise Manager Cloud Control to edit a shard director
configuration in your Oracle Sharding deployment.

• Removing a Shard Director
Use Oracle Enterprise Manager Cloud Control to remove shard directors from your
Oracle Sharding deployment.

9.8.1 Creating a Shard Director
Use Oracle Enterprise Manager Cloud Control to create and add a shard director to
your Oracle Sharding deployment.

1. Open the Sharded Database menu, located in the top left corner of the Sharded
Database target page, and choose Shard Directors.

2. If prompted, enter the shard catalog credentials, select the shard director to
manage under Shard Director Credentials, select the shard director host
credentials, and log in.

3. Click Create, or select a shard director from the list and click Create Like.

Choosing Create opens the Add Shard Director dialog with default configuration
values in the fields.

Choosing Create Like opens the Add Shard Director dialog with configuration
values from the selected shard director in the fields. You must select a shard
director from the list to enable the Create Like option.

4. Enter the required information in the Add Shard Director dialog, and click OK.

Note:

If you do not want the shard director to start running immediately upon
creation, you must uncheck the Start Shard Director After Creation
checkbox.

5. Click OK on the confirmation dialog.

6. Click the link in the Information box at the top of the page to view the provisioning
status of the shard director.

When the shard director is created successfully it appears in the Shard Directors list.
You might need to refresh the page to see the updates.

Chapter 9
Shard Director Management

9-31

9.8.2 Editing a Shard Director Configuration
Use Oracle Enterprise Manager Cloud Control to edit a shard director configuration in
your Oracle Sharding deployment.

You can change the region, ports, local endpoint, and host credentials for a shard
director in Cloud Control. You cannot edit the shard director name, host, or Oracle
home.

1. Open the Sharded Database menu, located in the top left corner of the Sharded
Database target page, and choose Shard Directors.

2. If prompted, enter the shard catalog credentials, select the shard director to
manage under Shard Director Credentials, select the shard director host
credentials, and log in.

3. Select a shard director from the list and click Edit.

Note that you cannot edit the shard director name, host, or Oracle home.

4. Edit the fields, enter the GSMCATUSER password, and click OK.

5. Click the link in the Information box at the top of the page to view the provisioning
status of the shard director configuration changes.

9.8.3 Removing a Shard Director
Use Oracle Enterprise Manager Cloud Control to remove shard directors from your
Oracle Sharding deployment.

If the shard director you want to remove is the administrative shard director, as
indicated by a check mark in that column of the Shard Directors list, you must choose
another shard director to be the administrative shard director before removing it.

1. Open the Sharded Database menu, located in the top left corner of the Sharded
Database target page, and choose Shard Directors.

2. If prompted, enter the shard catalog credentials, select the shard director to
manage under Shard Director Credentials, select the shard director host
credentials, and log in.

3. Select a shard director from the list and click Delete.

4. Click the link in the Information box at the top of the page to view the provisioning
status of the shard director removal.

When the shard director is removed successfully it no longer appears in the Shard
Directors list. You might need to refresh the page to see the changes.

9.9 Region Management
You can add, edit, and remove regions in your Oracle Sharding deployment with
Oracle Enterprise Manager Cloud Control.

The following topics describe region management tasks:

• Creating a Region
Create sharded database regions in your Oracle Sharding deployment using
Oracle Enterprise Manager Cloud Control.

Chapter 9
Region Management

9-32

• Editing a Region Configuration
Edit sharded database region configurations in your Oracle Sharding deployment
using Oracle Enterprise Manager Cloud Control.

• Removing a Region
Remove sharded database regions in your Oracle Sharding deployment using
Oracle Enterprise Manager Cloud Control.

9.9.1 Creating a Region
Create sharded database regions in your Oracle Sharding deployment using Oracle
Enterprise Manager Cloud Control.

1. Open the Sharded Database menu, located in the top left corner of the Sharded
Database target page, and choose Regions.

2. If prompted, enter the shard catalog credentials, select the shard director to
manage under Shard Director Credentials, select the shard director host
credentials, and log in.

3. Click Create.

4. Enter a unique name for the region in the Create Region dialog.

5. Optionally, select a buddy region from among the existing regions.

6. Click OK.

7. Click the link in the Information box at the top of the page to view the provisioning
status of the region.

When the region is created successfully it appears in the Regions list. You might need
to refresh the page to see the updates.

9.9.2 Editing a Region Configuration
Edit sharded database region configurations in your Oracle Sharding deployment
using Oracle Enterprise Manager Cloud Control.

You can change the buddy region for a sharded database region in Cloud Control. You
cannot edit the region name.

1. Open the Sharded Database menu, located in the top left corner of the Sharded
Database target page, and choose Regions.

2. If prompted, enter the shard catalog credentials, select the shard director under
Shard Director Credentials, select the shard director host credentials, and log in.

3. Select a region from the list and click Edit.

4. Select or remove a buddy region, and click OK.

5. Click the link in the Information box at the top of the page to view the provisioning
status of the region configuration changes.

When the region configuration is successfully updated the changes appear in the
Regions list. You might need to refresh the page to see the updates.

Chapter 9
Region Management

9-33

9.9.3 Removing a Region
Remove sharded database regions in your Oracle Sharding deployment using Oracle
Enterprise Manager Cloud Control.

1. Open the Sharded Database menu, located in the top left corner of the Sharded
Database target page, and choose Regions.

2. If prompted, enter the shard catalog credentials, select the shard director under
Shard Director Credentials, select the shard director host credentials, and log in.

3. Select a region from the list and click Delete.

4. Click the link in the Information box at the top of the page to view the provisioning
status of the region removal.

When the region configuration is successfully removed the changes appear in the
Regions list. You might need to refresh the page to see the updates.

9.10 Shardspace Management
You can add, edit, and remove shardspaces in your Oracle Sharding deployment with
Oracle Enterprise Manager Cloud Control.

The following topics describe shardspace management tasks:

• Creating a Shardspace
Create shardspaces in your composite Oracle Sharding deployment using Oracle
Enterprise Manager Cloud Control.

9.10.1 Creating a Shardspace
Create shardspaces in your composite Oracle Sharding deployment using Oracle
Enterprise Manager Cloud Control.

Only databases that are sharded using the composite method can have more than one
shardspace. A system-managed sharded database can have only one shardspace.

1. Open the Sharded Database menu, located in the top left corner of the Sharded
Database target page, and choose Shardspaces.

2. If prompted, enter the shard catalog credentials, select the shard director to
manage under Shard Director Credentials, select the shard director host
credentials, and log in.

3. Click Create.

Note:

This option is disabled in the Shardspaces page for a system-managed
sharded database.

4. Enter the values in the fields in the Add Shardspace dialog, and click OK.

• Name: enter a unique name for the shardspace (required)

Chapter 9
Shardspace Management

9-34

• Chunks: Enter the number of chunks that should be created in the
shardspace (default 120)

• Protection Mode: select the Data Guard protection mode (default Maximum
Performance)

5. Click the link in the Information box at the top of the page to view the provisioning
status of the shardspace.

When the shardspace is created successfully it appears in the Shardspaces list. You
might need to refresh the page to see the updates.

9.11 Shardgroup Management
You can add, edit, and remove shardgroups in your Oracle Sharding deployment with
Oracle Enterprise Manager Cloud Control.

The following topics describe shardgroup management tasks:

• Creating a Shardgroup
Create shardgroups in your Oracle Sharding deployment using Oracle Enterprise
Manager Cloud Control.

9.11.1 Creating a Shardgroup
Create shardgroups in your Oracle Sharding deployment using Oracle Enterprise
Manager Cloud Control.

1. Select a shardspace to which to add the shardgroup.

2. Open the Shardspace menu, located in the top left corner of the shardspace
target page, and choose Manage Shardgroups.

3. Click Create.

4. Enter values in the Create Shardgroup dialog, and click OK.

5. Click the link in the Information box at the top of the page to view the provisioning
status of the shardgroup.

For example, with the values entered in the screenshots above, the following
command is run:

GDSCTL Command: ADD SHARDGROUP -SHARDGROUP 'north' -SHARDSPACE 'shardspaceora'
 -REGION 'north' -DEPLOY_AS 'STANDBY'

When the shardgroup is created successfully it appears in the Manage Shardgroups
list. You might need to refresh the page to see the updates.

9.12 Services Management
You can manage services in your Oracle Sharding deployment with Oracle Enterprise
Manager Cloud Control.

To manage Oracle Sharding services, open the Sharded Database menu, located in
the top left corner of the Sharded Database target page, and choose Services. On the
Services page, using the controls at the top of the list of services, you can start, stop,
enable, disable, create, edit, and delete services.

Chapter 9
Shardgroup Management

9-35

Selecting a service opens a service details list which displays the hosts and shards on
which the service is running, and the status, state, and Data Guard role of each of
those instances. Selecting a shard in this list allows you to enable, disable, start, and
stop the service on the individual shards.

The following topics describe services management tasks:

• Creating a Service
Create services in your Oracle Sharding deployment using Oracle Enterprise
Manager Cloud Control.

9.12.1 Creating a Service
Create services in your Oracle Sharding deployment using Oracle Enterprise Manager
Cloud Control.

1. Open the Sharded Database menu, located in the top left corner of the Sharded
Database target page, and choose Services.

2. If prompted, enter the shard catalog credentials, select the shard director to
manage under Shard Director Credentials, select the shard director host
credentials, and log in.

3. Click Create, or select a service from the list and click Create Like.

Choosing Create opens the Create Service dialog with default configuration
values in the fields.

Choosing Create Like opens the Create Like Service dialog with configuration
values from the selected service in the fields. You must select a service from the
list to enable the Create Like option.

4. Enter the required information in the dialog, and click OK.

Note:

If you do not want the service to start running immediately upon creation,
you must uncheck the Start service on all shards after creation
checkbox.

5. Click the link in the Information box at the top of the page to view the provisioning
status of the service.

When the service is created successfully it appears in the Services list. You might
need to refresh the page to see the updates.

Chapter 9
Services Management

9-36

10
Troubleshooting Oracle Sharding

For information about how to troubleshoot typical errors, enable tracing, and locate log
and trace files, see the following topics.

• Oracle Sharding Tracing and Debug Information
The following topics explain how to enable tracing and find the logs.

• Troubleshooting Common Errors in Oracle Sharding
See the following topics for information about troubleshooting common errors in
Oracle Sharding.

10.1 Oracle Sharding Tracing and Debug Information
The following topics explain how to enable tracing and find the logs.

• Enabling Tracing for Oracle Sharding
Enable PL/SQL tracing to track down issues in the sharded database.

• Where to Find Oracle Sharding Alert Logs and Trace Files
There are several places to look for trace and alert logs in the Oracle Sharding
environment.

10.1.1 Enabling Tracing for Oracle Sharding
Enable PL/SQL tracing to track down issues in the sharded database.

To get full tracing, set the GWM_TRACE level as shown here. The following statement
provides immediate tracing, but the trace is disabled after a database restart.

ALTER SYSTEM SET EVENTS 'immediate trace name GWM_TRACE level 7';

The following statement enables tracing that continues in perpetuity, but only after
restarting the database.

ALTER SYSTEM SET EVENT='10798 trace name context forever, level 7' SCOPE=spfile;

It is recommended that you set both of the above traces to be thorough.

To trace everything in the Oracle Sharding environment, you must enable tracing on
the shard catalog and all of the shards. The traces are written to the RDBMS session
trace file for either the GDSCTL session on the shard catalog, or the session(s)
created by the shard director (a.k.a. GSM) on the individual shards.

10.1.2 Where to Find Oracle Sharding Alert Logs and Trace Files
There are several places to look for trace and alert logs in the Oracle Sharding
environment.

Standard RDBMS trace files located in diag/rdbms/.. will contain trace output.

10-1

Output from ‘deploy’ will go to job queue trace files db_unique_name_jXXX_PID.trc.

Output from other GDSCTL commands will go to either a shared server trace file
db_unique_name_sXXX_PID.trc or dedicated trace file db_unique_name_ora_PID.trc
depending on connect strings used.

Shared servers are typically used for many of the connections to the catalog and
shards, so the tracing is in a shared server trace file named SID_s00*.trc.

GDSCTL has several commands that can display status and error information.

Use GDSCTL STATUS GSM to view locations for shard director (GSM) trace and log files.

GDSCTL> status
Alias SHARDDIRECTOR1
Version 18.0.0.0.0
Start Date 25-FEB-2016 07:27:39
Trace Level support
Listener Log File /u01/app/oracle/diag/gsm/slc05abw/sharddirector1/alert/
log.xml
Listener Trace File /u01/app/oracle/diag/gsm/slc05abw/sharddirector1/trace/
ora_10516_139939557888352.trc
Endpoint summary (ADDRESS=(HOST=shard0)(PORT=1571)(PROTOCOL=tcp))
GSMOCI Version 2.2.1
Mastership N
Connected to GDS catalog Y
Process Id 10535
Number of reconnections 0
Pending tasks. Total 0
Tasks in process. Total 0
Regional Mastership TRUE
Total messages published 71702
Time Zone +00:00
Orphaned Buddy Regions: None
GDS region region1
Network metrics:
 Region: region2 Network factor:0

The non-XML version of the alert.log file can be found in the /trace directory as shown
here.

/u01/app/oracle/diag/gsm/shard-director-node/sharddirector1/trace/alert*.log

To decrypt log output in GSM use the following command.

GDSCTL> set _event 17 -config_only

Master shard director (GSM) trace/alert files include status and errors on any and all
asynchronous commands or background tasks (move chunk, split chunk, deploy,
shard registration, Data Guard configuration, shard DDL execution, etc.)

To find pending AQ requests for the shard director, including error status, use
GDSCTL CONFIG.

To see ongoing and scheduled chunk movement, use GDSCTL CONFIG CHUNKS -
show_reshard

To see shards with failed DDLs, use GDSCTL SHOW DDL -failed_only

To see the DDL error information for a given shard, use GDSCTL CONFIG SHARD -
shard shard_name

Chapter 10
Oracle Sharding Tracing and Debug Information

10-2

10.2 Troubleshooting Common Errors in Oracle Sharding
See the following topics for information about troubleshooting common errors in Oracle
Sharding.

• Errors During Deployment
The following are some errors that typically occur when deploying the sharded
database.

10.2.1 Errors During Deployment
The following are some errors that typically occur when deploying the sharded
database.

• Issues Starting Remote Scheduler Agent
If you encounter issues starting Remote Scheduler Agent on all the shard hosts,
try the following:

• Shard Director Fails to Start
If you encounter issues starting the shard director, try the following:

• Errors From Shards Created with CREATE SHARD
For errors that occur during a DEPLOY from shards created with the GDSCTL
CREATE SHARD command check the following:

• Issues Using Create Shard
The following are solutions to some issues that occur when using the GDSCTL
CREATE SHARD command..

• Issues Using Deploy Command

10.2.1.1 Issues Starting Remote Scheduler Agent
If you encounter issues starting Remote Scheduler Agent on all the shard hosts, try
the following:

To start Scheduler you must be inside ORACLE_HOME on each shard server.

[oracle@shard2 ~]$ echo welcome | schagent -registerdatabase 192.0.2.24 8080
Agent Registration Password?
Failed to get agent Registration Info from db: No route to host

Solution: Disable firewall

service ipchains stop
service iptables stop
chkconfig ipchains off
chkconfig iptables off

10.2.1.2 Shard Director Fails to Start
If you encounter issues starting the shard director, try the following:

To start Scheduler you must be inside ORACLE_HOME on each shard server.

Chapter 10
Troubleshooting Common Errors in Oracle Sharding

10-3

GDSCTL>start gsm -gsm shardDGdirector
GSM-45054: GSM error
GSM-40070: GSM is not able to establish connection to GDS catalog

GSM alert log, /u01/app/oracle/diag/gsm/shard1/sharddgdirector/trace/alert_gds.log
GSM-40112: OCI error. Code (-1). See GSMOCI trace for details.
GSM-40122: OCI Catalog Error. Code: 12514. Message: ORA-12514: TNS:listener does not
currently know of service requested in connect descriptor
GSM-40112: OCI error. Code (-1). See GSMOCI trace for details.
2017-04-20T22:50:22.496362+05:30
Process 1 in GSM instance is down
GSM shutdown is successful
GSM shutdown is in progress
NOTE : if not message displayed in the GSM log then enable GSM trace level to 16
while adding GSM itself.

1. Remove the newly created shard director (GSM) that failed to start.

GDSCTL> remove gsm -gsm shardDGdirector

2. Add the shard director using trace level 16.

GDSCTL> add gsm -gsm shardDGdirector -listener port_num -pwd gsmcatuser_password
 -catalog hostname:port_num:shard_catalog_name
 -region region1 -trace_level 16

3. If the shard catalog database is running on a non-default port (other than 1521),
set the remote listener.

SQL> alter system set local_listener='(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)
(HOST=hostname)(PORT=port_num)))';

10.2.1.3 Errors From Shards Created with CREATE SHARD
For errors that occur during a DEPLOY from shards created with the GDSCTL
CREATE SHARD command check the following:

• Remote Scheduler Agent logs on shard hosts

• DBA_SCHEDULER_JOB_RUN_DETAILS view on shard catalog

• NETCA/DBCA output files in $ORACLE_BASE/cfgtoollogs on shard hosts

10.2.1.4 Issues Using Create Shard
The following are solutions to some issues that occur when using the GDSCTL
CREATE SHARD command..

Make sure to create $ORACLE_BASE/oradata and $ORACLE_BASE/
fast_recovery_area directories to avoid the following errors

GDSCTL> create shard -shardgroup primary_shardgroup -destination che -osaccount
 oracle -ospassword oracle
GSM-45029: SQL error
ORA-03710: directory does not exist or is not writeable at destination:
 $ORACLE_BASE/oradata
ORA-06512: at "GSMADMIN_INTERNAL.DBMS_GSM_POOLADMIN", line 6920
ORA-06512: at "SYS.DBMS_SYS_ERROR", line 86
ORA-06512: at "GSMADMIN_INTERNAL.DBMS_GSM_POOLADMIN", line 4730
ORA-06512: at line 1

GDSCTL>create shard -shardgroup primary_shardgroup -destination che -osaccount oracle

Chapter 10
Troubleshooting Common Errors in Oracle Sharding

10-4

 -ospassword oracle
GSM-45029: SQL error
ORA-03710: directory does not exist or is not writeable at destination:
 $ORACLE_BASE/fast_recovery_area
ORA-06512: at "GSMADMIN_INTERNAL.DBMS_GSM_POOLADMIN", line 6920
ORA-06512: at "SYS.DBMS_SYS_ERROR", line 86
ORA-06512: at "GSMADMIN_INTERNAL.DBMS_GSM_POOLADMIN", line 4755
ORA-06512: at line 1

Solution: Create oradata,fast_recovery_area under $ORACLE_BASE on all the shard
hosts.

Privilege issues

GDSCTL>create shard -shardgroup primary_shardgroup -destination blr -credential cred
GSM-45029: SQL error
ORA-02610: Remote job failed with error:
EXTERNAL_LOG_ID="job_79126_3",
USERNAME="oracle",
STANDARD_ERROR="Launching external job failed: Login executable not setuid-root"
ORA-06512: at "GSMADMIN_INTERNAL.DBMS_GSM_POOLADMIN", line 6920
ORA-06512: at "SYS.DBMS_SYS_ERROR", line 86
ORA-06512: at "GSMADMIN_INTERNAL.DBMS_GSM_POOLADMIN", line 4596
ORA-06512: at line 1

Solution: Make sure to have root privilege on following directories,

chown root $ORACLE_HOME/bin/extjob
chmod 4750 $ORACLE_HOME/bin/extjob
chown root $ORACLE_HOME/rdbms/admin/externaljob.ora
chmod 640 $ORACLE_HOME/rdbms/admin/externaljob.ora
chown root $ORACLE_HOME/bin/jssu
chmod 4750 $ORACLE_HOME/bin/jssu

Error on create shard

GDSCTL>create shard -shardgroup primary_shardgroup -destination mysql02 -osaccount
 oracle -ospassword oracle
GSM-45029: SQL error
ORA-03719: Shard character set does not match catalog character set.
ORA-06512: at "GSMADMIN_INTERNAL.DBMS_GSM_POOLADMIN", line 7469
ORA-06512: at "SYS.DBMS_SYS_ERROR", line 79
ORA-06512: at "GSMADMIN_INTERNAL.DBMS_GSM_POOLADMIN", line 5770
ORA-06512: at line 1

Solution: Check the JAVA version, it must be the same on the shard catalog and all
shard servers.

rpm -qa|grep java

10.2.1.5 Issues Using Deploy Command

GDSCTL> deploy
GSM-45029: SQL error
ORA-29273: HTTP request failed
ORA-06512: at "SYS.DBMS_ISCHED", line 3715
ORA-06512: at "SYS.UTL_HTTP", line 1267
ORA-29276: transfer timeout
ORA-06512: at "SYS.UTL_HTTP", line 651
ORA-06512: at "SYS.UTL_HTTP", line 1257

Chapter 10
Troubleshooting Common Errors in Oracle Sharding

10-5

ORA-06512: at "SYS.DBMS_ISCHED", line 3708
ORA-06512: at "SYS.DBMS_SCHEDULER", line 2609
ORA-06512: at "GSMADMIN_INTERNAL.DBMS_GSM_POOLADMIN", line 14284
ORA-06512: at line 1

Solution : Check the $ORACLE_HOME/data/pendingjobs for the exact error.
ORA-1017 is thrown if any issues on wallet.

1. On problematic Shard host stop the remote scheduler agent.

schagent -stop

2. rename wallet direcotry on Database home

mv $ORACLE_HOME/data/wallet $ORACLE_HOME/data/wallet.old

3. start the remote scheduler agent and it will create new wallet directory

schagent -start
schagent -status
echo welcome | schagent -registerdatabase 10.10.10.10 8080

Chapter 10
Troubleshooting Common Errors in Oracle Sharding

10-6

Index

A
about, 1-3
Active Data Guard, 7-2
advantages, 1-3
architecture, 1-3

B
benefits, 1-2

C
candidates for sharding, 1-7
CDB, 8-3
chunk management, 9-28
chunks

moving, 9-29
splitting, 9-30

consistency levels in multi-shard queries, 6-11

D
data encryption, 2-19, 2-20
Data Guard

in Oracle Sharding, 9-16
data routing, 6-1
deployment

add shard, 8-2
create shard, 8-2

direct routing, 6-1
discovering sharded database, 9-8
downgrade, 9-13

E
encrypted data, 2-19, 2-20
Enterprise Manager Cloud Control

monitoring Oracle Sharding with, 9-3
sharded database discovery, 9-8

F
features, 1-3

G
GDSCTL

ADD SHARD, 9-25
GoldenGate, 7-7

H
high availability, 7-2, 7-7

K
key-based routing, 6-1

M
moving a shard, 9-25
multi-shard query consistency, 6-11
multi-shard query consistency level, 6-11
MULTISHARD_QUERY_DATA_CONSISTENCY,

6-11
multitenant, 8-3

O
Oracle Data Guard, 7-2
Oracle Enterprise Manager Cloud Control

chunk management, 9-28
chunks

moving, 9-29
splitting, 9-30

region
creating, 9-33
editing, 9-33
removing, 9-34

region management, 9-32
services

create, 9-36
services management, 9-35
shard

adding, 9-18, 9-19
deploy, 9-20
validate, 9-17

shard director

Index-1

Oracle Enterprise Manager Cloud Control (continued)
shard director (continued)
creating, 9-31
removing, 9-32
updating, 9-32

shard director management, 9-30
shard management, 9-13
shardgroup

creating, 9-35
shardgroup management, 9-35
shardspace

creating, 9-34
shardspace management, 9-34

Oracle GoldenGate, 7-2, 7-7
Oracle Multitenant, 8-3
Oracle Sharding

>NET support for, 6-2
about, 1-1
add shard, 9-14
application development, 5-1
backup and recovery, 9-10
chunk, 2-1
chunk management, 9-28
chunks, 3-2

moving, 9-29
splitting, 9-30

Cloud Control, 9-3
composite sharding

method
composite sharding, 4-6

configure, 8-8
coordinator, 6-8
Data Guard standby, 9-16
data routing

proxy routing, 6-7
DDL, 2-15
DDL execution, 2-10
deployment, 8-1

composite SDB, 8-38
system-managed SDB, 8-12
user-defined SDB, 8-26

discovery in Cloud Control, 9-8
distributed partitioning, 3-1
duplicated objects, 2-9
duplicated table, 2-7
elastic scaling, 9-21
hardware, 8-5
high availability, 7-1, 7-2
hot spots, 9-14
installation

composite SDB, 8-38
system-managed SDB, 8-12
user-defined SDB, 8-26

installing
shard director, 8-7

Oracle Sharding (continued)
JDBC support for, 6-2
method

system-managed, 4-1
monitoring, 9-2, 9-9
monitoring with Cloud Control, 9-3
moving chunks, 9-28
multi-shard queries, 6-10
networking, 8-5
Oracle Call Interface APIs for, 6-2
Oracle Database install, 8-5
Oracle UCP APIs for, 6-2
partitions, 3-2
prerequisites, 8-5
proxy routing, 6-8–6-10

queries shapes supported in, 6-11
region

creating, 9-33
editing, 9-33
removing, 9-34

region management, 9-32
remove shard, 9-16
replication, 7-1, 7-2
request routing

statement-level, 6-9
requirements, 8-5
resharding, 9-14
root table, 2-3
scaling, 9-21
schema changes, 9-10
schema creation

composite SDB, 8-43
system-managed SDB, 8-19
user-defined SDB, 8-32

schema design, 2-1
schema design considerations, 5-1
services

create, 9-36
services management, 9-35
shard

adding, 9-14, 9-18, 9-19
deploy, 9-20
standby, 9-16
validate, 9-17

shard catalog
creating, 8-7

shard director
creating, 9-31
removing, 9-32
updating, 9-32

shard director management, 9-30
shard management, 9-13
shard validation, 9-20
sharded table, 2-1
shardgroup

Index

Index-2

Oracle Sharding (continued)
shardgroup (continued)
creating, 9-35

shardgroup management, 9-35
shards

adding, 9-21
shardspace

creating, 9-34
shardspace management, 9-34
single-shard queries, 6-10
splitting chunks, 9-29
SQL, 2-15
standby shard, 9-16
subpartitions, 4-8
system-managed, 4-1
table family, 2-3
tables duplicated in, 2-7
tablespace set, 2-1
tablespaces, 3-2
user-defined

method
user-defined, 4-4

validate shard, 9-20
with Oracle Data Guard, 7-1, 7-2
with Oracle GoldenGate, 7-1

overview, 1-3

P
patching, 9-11
PDB, 8-3

R
region

creating, 9-33
editing, 9-33
removing, 9-34

region management, 9-32
replacing s shard, 9-25
replication, 7-7
routing

direct, 6-1

routing (continued)
key-based, 6-1

S
security, 2-19, 2-20
services

create, 9-36
services management, 9-35
shard

adding, 9-18, 9-19
deploy, 9-20
validate, 9-17

shard director
creating, 9-31
removing, 9-32
updating, 9-32

shard director management, 9-30
shard management, 9-13
shard replacement, 9-25
sharded database (SDB), 1-1
sharded database discovery, 9-8
sharded tables, 1-1
shardgroup

creating, 9-35
shardgroup management, 9-35
shards, 1-1
shards as PDBs, 8-3
SHARDS clause, 9-9
shardspace

creating, 9-34
shardspace management, 9-34

T
Transparent Data Encryption, 2-19, 2-20

U
upgrade

order, 9-12
upgrading, 9-11

Index

3

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Changes in This Release for Oracle Sharding
	Changes in Oracle Database 18c
	New Features
	User-Defined Sharding Method
	Support for PDBs as Shards
	Support for Oracle GoldenGate Replication
	Centralized Diagnostics
	Multi-Shard Query Consistency Level
	Sharding Support for JSON, LOBs and Spatial Objects
	Optimizer Enhancements for Multi-Shard Queries
	Shard Replacement
	Oracle RAC Sharding

	Other Changes

	1 Overview of Oracle Sharding
	1.1 About Sharding
	1.2 Benefits of Sharding
	1.3 Components of the Oracle Sharding Architecture
	1.4 Application Suitability for Sharding

	2 Sharded Database Schema Design
	2.1 Sharded Tables
	2.2 Sharded Table Family
	2.3 Duplicated Tables
	2.4 Non-Table Objects Created on All Shards
	2.5 DDL Execution in a Sharded Database
	2.6 DDL Syntax Extensions for the Sharded Database
	2.7 Using Transparent Data Encryption with Oracle Sharding
	2.7.1 Creating a Single Encryption Key on All Shards

	3 Physical Organization of a Sharded Database
	3.1 Sharding as Distributed Partitioning
	3.2 Partitions, Tablespaces, and Chunks

	4 Sharding Methods
	4.1 System-Managed Sharding
	4.2 User-Defined Sharding
	4.3 Composite Sharding
	4.4 Using Subpartitions with Sharding

	5 Design Considerations for Sharded Database Applications
	5.1 Considerations for Sharded Database Schema Design
	5.2 Developing Applications for Oracle Sharding

	6 Routing in an SDB Environment
	6.1 Direct Routing to a Shard
	6.1.1 About Direct Routing to a Shard
	6.1.2 Sharding APIs

	6.2 Queries and DMLs with Proxy Routing in an SDB
	6.2.1 About Proxy Routing in a Sharded Database
	6.2.2 Oracle Sharding Coordinator
	6.2.2.1 Resiliency of Proxy Routing

	6.2.3 Querying and DMLs Using Proxy Routing
	6.2.4 Proxy Routing for Single-Shard Queries
	6.2.5 Proxy Routing for Multi-Shard Queries
	6.2.5.1 Specifying Consistency Levels in a Multi-Shard Query

	6.2.6 Supported Query Shapes in Proxy Routing
	6.2.7 Execution Plans for Proxy Routing

	7 Shard-Level High Availability
	7.1 About Sharding and Replication
	7.1.1 When To Choose Oracle GoldenGate for Shard High Availability

	7.2 Using Oracle Data Guard with an SDB
	7.3 Using Oracle GoldenGate with a Sharded Database

	8 Sharded Database Deployment
	8.1 Introduction to SDB Deployment
	8.1.1 Choosing a Deployment Method
	8.1.2 Using Oracle Multitenant with Oracle Sharding

	8.2 Oracle Sharding Prerequisites
	8.3 Installing Oracle Database Software
	8.4 Installing the Shard Director Software
	8.5 Creating the Shard Catalog Database
	8.6 Setting Up the Oracle Sharding Management and Routing Tier
	8.7 Creating and Deploying a System-Managed SDB
	8.7.1 Deploying a System-Managed SDB
	8.7.2 Creating a Schema for a System-Managed SDB
	8.7.3 System-Managed SDB Demo Application

	8.8 Creating and Deploying a User-Defined SDB
	8.8.1 Deploying a User-Defined SDB
	8.8.2 Creating a Schema for a User-Defined SDB

	8.9 Creating and Deploying a Composite SDB
	8.9.1 Deploying a Composite SDB
	8.9.2 Creating a Schema for a Composite SDB

	9 Sharded Database Lifecycle Management
	9.1 Managing the Sharding-Enabled Stack
	9.1.1 Starting Up the Sharding-Enabled Stack
	9.1.2 Shutting Down the Sharding-Enabled Stack

	9.2 Monitoring a Sharded Database
	9.2.1 Monitoring a Sharded Database with GDSCTL
	9.2.2 Monitoring a Sharded Database with Enterprise Manager Cloud Control
	9.2.2.1 Discovering Sharded Database Components

	9.2.3 Querying System Objects Across Shards

	9.3 Backing Up and Recovering a Sharded Database
	9.4 Modifying a Sharded Database Schema
	9.5 Managing Sharded Database Software Versions
	9.5.1 Patching and Upgrading a Sharded Database
	9.5.2 Upgrading Sharded Database Components
	9.5.3 Downgrading a Sharded Database

	9.6 Shard Management
	9.6.1 About Adding Shards
	9.6.2 Resharding and Hot Spot Elimination
	9.6.3 Removing a Shard From the Pool
	9.6.4 Adding Standby Shards
	9.6.5 Managing Shards with Oracle Enterprise Manager Cloud Control
	9.6.5.1 Validating a Shard
	9.6.5.2 Adding Primary Shards
	9.6.5.3 Adding Standby Shards
	9.6.5.4 Deploying Shards

	9.6.6 Managing Shards with GDSCTL
	9.6.6.1 Validating a Shard
	9.6.6.2 Adding Shards to a System-Managed SDB
	9.6.6.3 Replacing a Shard

	9.7 Chunk Management
	9.7.1 About Moving Chunks
	9.7.2 Moving Chunks
	9.7.3 About Splitting Chunks
	9.7.4 Splitting Chunks

	9.8 Shard Director Management
	9.8.1 Creating a Shard Director
	9.8.2 Editing a Shard Director Configuration
	9.8.3 Removing a Shard Director

	9.9 Region Management
	9.9.1 Creating a Region
	9.9.2 Editing a Region Configuration
	9.9.3 Removing a Region

	9.10 Shardspace Management
	9.10.1 Creating a Shardspace

	9.11 Shardgroup Management
	9.11.1 Creating a Shardgroup

	9.12 Services Management
	9.12.1 Creating a Service

	10 Troubleshooting Oracle Sharding
	10.1 Oracle Sharding Tracing and Debug Information
	10.1.1 Enabling Tracing for Oracle Sharding
	10.1.2 Where to Find Oracle Sharding Alert Logs and Trace Files

	10.2 Troubleshooting Common Errors in Oracle Sharding
	10.2.1 Errors During Deployment
	10.2.1.1 Issues Starting Remote Scheduler Agent
	10.2.1.2 Shard Director Fails to Start
	10.2.1.3 Errors From Shards Created with CREATE SHARD
	10.2.1.4 Issues Using Create Shard
	10.2.1.5 Issues Using Deploy Command

	Index

