
Perl Predefined Variables 
 

Variable Description Example 

$ARG 
$_ 

The default input and pattern-searching space. 

(Mnemonic: underline is understood in certain 

operations.) 

while (<>) {...} #equiv. only in while 

while (defined($_ = <>)) {...} 

$a 
$b 

Special package variables when using sort(), see 

sort. 
@articles = sort {$a cmp $b} @files; 

$<digits> 

Contains the sub-pattern from the corresponding 

set of capturing parentheses from the last pattern 

match. (Mnemonic: like \digits.) 

 

$MATCH 
$& 

The string matched by the last successful pattern 

match. (Mnemonic: like & in some editors.) 

local $_ = 'abcdefghi'; 

/def/; 

print "$` : $& : $'", "\n"; 

# prints abc : def : ghi 

$PREMATCH 
$` 

The string preceding whatever was matched by the 

last successful pattern match. (Mnemonic: ` often 

precedes a quoted string.) 

$POSTMATCH 
$’ 

The string following whatever was matched by the 

last successful pattern match. (Mnemonic: ' often 

follows a quoted string.) 

$LAST_PATTERN 

  _MATCH 
$+ 

The text matched by the last bracket of the last 

successful search pattern. 

This is useful if you don't know which one of a set 

of alternative patterns matched. (Mnemonic: be 

positive and forward looking.) 

/Version: (.*)|Revision: (.*)/ 

&& 

($rev = $+); 

$^N 

The text matched by the used group most-recently 

closed (i.e. the group with the rightmost closing 

parenthesis) of the last successful search pattern. 

(Mnemonic: the (possibly) Nested parenthesis that 

most recently closed.) 

$v = "sep:2:match"; 

$v =~ /(?:(\d)(?{ $a = $^N }))/; 

print $a; # prints 2 

@LAST_MATCH_END 
@+ 

This array holds the offsets of the ends of the last 

successful submatches in the currently active 

dynamic scope. 

$+[0] is the offset into the string of 

the end of the entire match. 

$+[1] is the offset past where $1 

ends. 

You can use $#+ to determine how many 

subgroups were in the last successful 

match. 

$* 

Set to a non-zero integer value to do multi-line 

matching within a string, 0 (or undefined) to tell 

Perl that it can assume that strings contain a single 

line, for the purpose of optimizing pattern 

matches. (Mnemonic: * matches multiple things.) 

Use of $* is deprecated in modern 

Perl, supplanted by the /s and /m 

modifiers on pattern matching. 

HANDLE-> 
input_line_number(EXPR)  
$INPUT_LINE_NUMBER  
$NR  
$. 

Current line number for the last filehandle 

accessed. (Mnemonic: many programs use "." to 

mean the current line number.) 

 

IO::Handle-> 
input_record_separator 
(EXPR)  
$INPUT_RECORD 
  _SEPARATOR  

$RS  
$/ 

The input record separator, newline by default. 

Setting $/ to a reference to an integer, scalar 

containing an integer, or scalar that's convertible 

to an integer will attempt to read records instead of 

lines, with the maximum record size being the 

referenced integer. (Mnemonic: / delimits line 

boundaries when quoting poetry.) 

local $/;        # enable "slurp" mode 

local $_ = <FH>; # whole file now here 

HANDLE-> 
autoflush(EXPR)  
$OUTPUT_AUTOFLUSH  
$| 

If set to nonzero, forces a flush right away and 

after every write or print on the currently selected 

output channel. Default is 0. (Mnemonic: when 

you want your pipes to be piping hot.) 

 

IO::Handle-> 
output_field_separator 
(EXPR) 
$OUTPUT_FIELD 
  _SEPARATOR  
$OFS  

$, 

The output field separator for the print operator. If 

defined, this value is printed between each of 

print's arguments. Default is undef. (Mnemonic: 

what is printed when there is a "," in your print 

statement.) 

@arr = (1,2,3); 

$, = “ - ” 

print @arr; # prints 1 – 2 - 3 

IO::Handle-> 
output_record_separator 
(EXPR) 
$OUTPUT_RECORD 

  _SEPARATOR  
$ORS 
$\ 

The output record separator for the print operator. 

Default is undef. 

(Mnemonic: you set $\ instead of adding "\n" at 

the end of the print.) 

@arr = (1, 2, “baz”); 

$\ = “\t” 

foreach (@arr) { print } 

# prints 1 [tab] 2 [tab] baz 

© 2007 Peteris Krumins        peter@catonmat.net        http://www.catonmat.net     good coders code, great reuse 

 

http://perldoc.perl.org/functions/defined.html
http://perldoc.perl.org/functions/sort.html
http://perldoc.perl.org/functions/local.html
http://perldoc.perl.org/functions/print.html
http://perldoc.perl.org/functions/local.html
http://perldoc.perl.org/functions/local.html
http://perldoc.perl.org/functions/undef.html
http://perldoc.perl.org/functions/undef.html
mailto:peter@catonmat.net
http://www.catonmat.net/


$LIST_SEPARATOR  
$" 

This is like $, except that it applies to array and 

slice values interpolated into a double-quoted 

string (or similar interpreted string). Default is a 

space.  

@arr = (“foo”, “esr”, “rms”); 

$” = “ - ” 

print “@arr”; # prints foo – esr – rms 

$SUBSCRIPT_SEPARATOR  

$SUBSEP  
$; 

The subscript separator for multidimensional array 

emulation. Default is "\034", the same as SUBSEP 

in awk. (Mnemonic: comma (the syntactic 

subscript separator) is a semi-semicolon.) 

If you refer to a hash element as 

$foo{$a,$b,$c} it really means 

$foo{join($;, $a, $b, $c)} 

$# 

The output format for printed numbers. This 

variable is a half-hearted attempt to emulate awk's 

OFMT variable. The initial value is "%.ng", where 

n is the value of the macro DBL_DIG from your 

system's float.h. (Mnemonic: # is the number 

sign.) 

 

HANDLE-> 
format_page_number 
(EXPR)  
$FORMAT_PAGE_NUMBER  
$% 

The current page number of the currently selected 

output channel. Used with formats. (Mnemonic: % 

is page number in nroff.) 

 

HANDLE-> 
format_lines_per_page 
(EXPR)  
$FORMAT_LINES_PER_PA

GE  
$= 

The current page length (printable lines) of the 

currently selected output channel. Default is 60. 

Used with formats. (Mnemonic: = has horizontal 

lines.) 

 

HANDLE-> 
format_lines_left(EXPR)  
$FORMAT_LINES_LEFT  
$- 

The number of lines left on the page of the 

currently selected output channel. Used with 

formats. (Mnemonic: lines_on_page - 

lines_printed.) 

 

@LAST_MATCH_START  
@- 

$-[0] is the offset of the start of the last successful 

match. $-[n] is the offset of the start of the 

substring matched by n-th subpattern, or undef if 

the subpattern did not match. 

$` is same as substr($var, 0, $-[0])  

$& is the same as substr($var, $-[0], 

$+[0] - $-[0])  

$' is the same as substr($var, $+[0])  

$1 is the same as substr($var, $-[1], 

$+[1] - $-[1])  

$2 is the same as substr($var, $-[2], 

$+[2] - $-[2])  

$3 is the same as substr($var, $-[3], 

$+[3] - $-[3]) 

HANDLE-> 
format_name(EXPR)  
$FORMAT_NAME  

$~ 

The name of the current report format for the 

currently selected output channel. Default is the 

name of the filehandle. 

(Mnemonic: brother to $^ .) 

 

HANDLE-> 
format_top_name(EXPR)  
$FORMAT_TOP_NAME  
$^ 

The name of the current top-of-page format for the 

currently selected output channel. Default is the 

name of the filehandle with _TOP appended. 

(Mnemonic: points to top of page.) 

 

IO::Handle-> 
format_line_break 

  _characters(EXPR)  
$FORMAT_LINE_BREAK 
  _CHARACTERS  
$: 

The current set of characters after which a string 

may be broken to fill continuation fields (starting 

with ^) in a format. Default is " \n-", to break on 

whitespace or hyphens. (Mnemonic: a "colon" in 

poetry is a part of a line.) 

 

IO::Handle-> 

format_formfeed(EXPR)  
$FORMAT_FORMFEED  
$^L 

What formats output as a form feed. Default is \f.  

$ACCUMULATOR  
$^A 

The current value of the write() accumulator for 

format() lines. A format contains formline() calls 

that put their result into $^A . After calling its 

format, write() prints out the contents of $^A and 

empties. So you never really see the contents of 

$^A unless you call formline() yourself and then 

look at it. 

 

$CHILD_ERROR  
$? 

The status returned by the last pipe close, backtick 

(`` ) command, successful call to wait() or 

waitpid(), or from the system() operator. 

The exit value of the subprocess is 

really ($?>>8), and $? & 127 gives 

which signal, if any, the process died 

from, and $? & 128 reports whether 

there was a core dump. 

${^ENCODING} 

The object reference to the Encode object that is 

used to convert the source code to Unicode. 

Default is undef. 

 

 
 

  © 2007 Peteris Krumins        peter@catonmat.net        http://www.catonmat.net     good coders code, great reuse 

 

http://perldoc.perl.org/functions/join.html
http://perldoc.perl.org/functions/substr.html
http://perldoc.perl.org/functions/substr.html
http://perldoc.perl.org/functions/substr.html
http://perldoc.perl.org/functions/substr.html
http://perldoc.perl.org/functions/substr.html
http://perldoc.perl.org/functions/substr.html
mailto:peter@catonmat.net
http://www.catonmat.net/


$OS_ERROR  
$ERRNO  
$! 

If used numerically, yields the current value of the 

C errno variable, or in other words, if a system or 

library call fails, it sets this variable. (Mnemonic: 

What just went bang?) 

if (open(FH, $filename)) { 

    # Here $! is meaningless. 

    ... 

} else { 

    # ONLY here is $! meaningful. 

    ... 

    # Here $! might be meaningless. 

} 

%! 
Each element of %! has a true value only if $! is 

set to that value. 

For example, $!{ENOENT} is true if and 

only if the current value of $! is 

ENOENT ; that is, if the most recent 

error was "No such file or directory" 

$EXTENDED_OS_ERROR  
$^E 

Error information specific to the current operating 

system. (Mnemonic: Extra error explanation.) 
 

$EVAL_ERROR  
$@ 

The Perl syntax error message from the last eval() 

operator. (Mnemonic: Where was the syntax error 

"at"?) 

 

$PROCESS_ID  
$PID  
$$ 

The process number of the Perl running this script. 

(Mnemonic: same as shells.) 
 

$REAL_USER_ID  
$UID  
$< 

The real uid of this process. (Mnemonic: it's the 

uid you came from, if you're running setuid.) 
 

$EFFECTIVE_USER_ID  
$EUID  
$> 

The effective uid of this process. (Mnemonic: it's 

the uid you went to, if you're running setuid.) 

$< = $>; # set real to effective uid 

 

# swap real and effective uid 

($<,$>) = ($>,$<); 

   

 

$REAL_GROUP_ID  
$GID  
$( 

The real gid of this process. If you are on a 

machine that supports membership in multiple 

groups simultaneously, gives a space separated list 

of groups you are in. (Mnemonic: parentheses are 

used to group things. The real gid is the group you 

left, if you're running setgid.) 

The first number is the one returned 

by getgid(), and the subsequent ones 

by getgroups(), one of which may be 

the same as the first number. 

$EFFECTIVE_GROUP_ID  
$EGID  
$) 

The effective gid of this process. If you are on a 

machine that supports membership in multiple 

groups simultaneously, gives a space separated list 

of groups you are in. (Mnemonic: parentheses are 

used to group things. The effective gid is the 

group that's right for you, if you're running setgid.) 

$) = "5 5" 

$PROGRAM_NAME  
$0 

Contains the name of the program being executed. 

(Mnemonic: same as sh and ksh.) 
 

$[ 

The index of the first element in an array, and of 

the first character in a substring. Default is 0. 

(Mnemonic: [ begins subscripts.) 

 

$] 
The version + patchlevel / 1000 of the Perl 

interpreter. (Mnemonic: Is this version of perl in 

the right bracket?) 

 

$COMPILING  
$^C 

The current value of the flag associated with the -c 

switch. 
 

$DEBUGGING  
$^D 

The current value of the debugging flags. 

(Mnemonic: value of -D switch.) 
 

$SYSTEM_FD_MAX  

$^F 
The maximum system file descriptor, ordinarily 2.  

$^H 
This variable contains compile-time hints for the 

Perl interpreter. 

WARNING: This variable is strictly for 

internal use only. Its availability, 

behavior, and contents are subject to 

change without notice. 

%^H 

The %^H hash provides the same scoping 

semantic as $^H. This makes it useful for 

implementation of lexically scoped pragmas. 

WARNING: This variable is strictly for 

internal use only. Its availability, 

behavior, and contents are subject to 

change without notice. 

$INPLACE_EDIT  
$^I 

The current value of the inplace-edit extension. 

Use undef to disable inplace editing. (Mnemonic: 

value of -i switch.) 

 

$^M 

By default, running out of memory is an 

untrappable, fatal error. However, if suitably built, 

Perl can use the contents of $^M as an emergency 

memory pool after die()ing. 

# allocate a 64K buffer for use in 

# an emergency if Perl was compiled 

# with -DPERL_EMERGENCY_SBRK 

$^M = 'a' x (1 << 16); 

$OSNAME  
$^O 

The name of the operating system under which 

this copy of Perl was built, as determined during 

the configuration process. 

 

${^OPEN} 

An internal variable used by PerlIO. A string in 

two parts, separated by a \0 byte, 1st part describes 

input layers, 2nd part descrabe output layers. 

 

http://perldoc.perl.org/functions/open.html
http://perldoc.perl.org/functions/undef.html


$PERLDB  
$^P 

The internal variable for debugging support.  

$LAST_REGEXP_CODE 
  _RESULT  

$^R 

The result of evaluation of the last successful (?{ 

code }) regular expression assertion (see perlre). 

May be written to. 

 

$EXCEPTIONS_BEING 
  _CAUGHT  
$^S 

Current state of the interpreter. 

$^S         State 

---------   ------------------- 

undef       Parsing module/eval 

true  (1)   Executing an eval 

false (0)   Otherwise 

$BASETIME  
$^T 

The time at which the program began running, in 

seconds since the epoch (beginning of 1970). The 

values returned by the -M, -A, and -C filetests are 

based on this value. 

 

${^TAINT} 

Reflects if taint mode is on or off. 1 for on (the 

program was run with -T), 0 for off, -1 when only 

taint warnings are enabled (i.e. with -t or -TU). 

 

${^UNICODE} Reflects certain Unicode settings of Perl.  

${^UTF8LOCALE} 
This variable indicates whether an UTF-8 locale 

was detected by perl at startup. 
 

$PERL_VERSION  
$^V 

The revision, version, and subversion of the Perl 

interpreter, represented as a string composed of 

characters with those ordinals. 

 

$WARNING  
$^W 

The current value of the warning switch, initially 

true if -w was used, false otherwise, but directly 

modifiable. (Mnemonic: related to the -w switch.) 

 

${^WARNING_BITS} 
The current set of warning checks enabled by the 

use warnings pragma. 
 

$EXECUTABLE_NAME  
$^X 

The name used to execute the current copy of Perl, 

from C's argv[0] or (where supported) 

/proc/self/exe. 

 

ARGV 

The special filehandle that iterates over command-

line filenames in @ARGV. Usually written as the 

null filehandle in the angle operator <> 

 

$ARGV 
Contains the name of the current file when reading 

from <>. 
 

@ARGV 

The array @ARGV contains the command-line 

arguments intended for the script. $#ARGV is 

generally the number of arguments minus one, 

because $ARGV[0] is the first argument, not the 

program's command name itself. 

 

ARGVOUT 

The special filehandle that points to the currently 

open output file when doing edit-in-place 

processing with -i. Useful when you have to do a 

lot of inserting and don't want to keep modifying 

$_. 

 

@F 

The array @F contains the fields of each line read 

in when autosplit mode is turned on. See perlrun 

for the -a switch. 

 

@INC 

The array @INC contains the list of places that the 

do EXPR , require, or use constructs look for their 

library files. It initially consists of the arguments 

to any -I command-line switches, followed by the 

default Perl library. 

 

@_ 
Within a subroutine the array @_ contains the 

parameters passed to that subroutine. 
 

%INC 
The hash %INC contains entries for each 

filename included via the do, require, or use 

operators. 

 

%ENV  
$ENV{expr} 

The hash %ENV contains your current 

environment. Setting a value in ENV changes the 

environment for any child processes you 

subsequently fork() off. 

 

%SIG  
$SIG{expr} 

The hash %SIG contains signal handlers for 

signals. 

sub handler { 

# 1st argument is signal name 

  my($sig) = @_; 

  print "Caught a SIG$sig\n"; 

  close(LOG); 

  exit(0); 

} 

$SIG{'INT'}  = \&handler; 

$SIG{'QUIT'} = \&handler; 

# restore default action 

$SIG{'INT'}  = 'DEFAULT'; 

# ignore SIGQUIT 

$SIG{'QUIT'} = 'IGNORE'; 

http://perldoc.perl.org/perlre.html
http://perldoc.perl.org/functions/use.html
http://perldoc.perl.org/warnings.html
http://perldoc.perl.org/perlrun.html
http://perldoc.perl.org/functions/do.html
http://perldoc.perl.org/functions/require.html
http://perldoc.perl.org/functions/use.html
http://perldoc.perl.org/functions/do.html
http://perldoc.perl.org/functions/require.html
http://perldoc.perl.org/functions/use.html
http://perldoc.perl.org/functions/my.html
http://perldoc.perl.org/functions/print.html
http://perldoc.perl.org/functions/close.html
http://perldoc.perl.org/functions/exit.html


 


