

DZone, Inc. | www.dzone.com

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#149
C

h
e

f

By Jeffrey Hulten

Chef
An Open Source Tool for Scalable

Cloud and Data Center Automation

INTRODUCTION

Systems administrators have always tried to automate repetitive tasks. Some
use BASH and Perl with SSH to loop through a list of servers one at a time.
This has some limitations and doesn’t scale particularly well, especially in a
medium to large datacenter or cloud deployment.

So what is a forward-thinking system administrator to do? Let’s take a look at a
tool called Chef.

What is Chef?
Chef (http://www.opscode.com/chef) is one of a new breed of open-source
“infrastructure as code” tools to manage infrastructures of any size. It provides
administrators with the capability to define “cookbooks” that can be applied
repeatedly and consistently to server and application configurations.

Unlike some other “infrastructure as code” tools, Chef was designed from
the beginning with systems integration in mind. This allows Chef to gather
the information a server needs to configure itself. For instance, if you were
to configure Apache httpd as a proxy for a farm of Tomcat instances, your
configuration could ask the Chef server for a list of all the installations of
Tomcat, their hostnames, and port number.

Common Terminology
The following are some Chef terms that will be helpful to know before we
start.

Node: A managed machine. When the Chef client runs, it executes the
configuration for a node.

Client: An authorized user of the Chef API. In most cases, every machine you
manage will be represented by: a) a client for logging into the API and b) a
node configuration to apply. Administrators and the web interface are also
clients.

Cookbook: A collection of attributes, recipes, custom resources, and
definitions to configure a certain application or service. For instance you will
find shared cookbooks available on the web for NTP, Apache httpd, MySQL,
nginx, and other common services.

Recipe: A list of resources that should be applied to a node. Recipes are
written in normal Ruby extended by the Chef resource domain-specific
language. This gives you the power of anything you can do in Ruby
(conditionals, using gems, etc.) while not having to be verbose in managing
the resources that make up your configuration.

Three Ways to Slice It
There is more than one way to bring Chef to your environment. You can
use a local set of cookbooks with the Chef client (Chef Solo), a central set of
cookbooks on a local Chef server, or a central set of cookbooks on the Hosted
Chef

Chef Solo
If you are thinking this is too complicated, check out chef-solo (http://
wiki.opscode.com/display/chef/Chef+Solo). It allows you to pass a set of
cookbooks (either in a local directory or in a tarball on a server) and a JSON
file to configure your system. While this is the simplest thing that could
possibly work, you give up the ability to search for other nodes or look up
items in data bags to configure your nodes.

Local Chef Server
Setting up your own Chef server has been streamlined by a cookbook
provided by Opscode. The cookbook can set up the Chef server on Ubuntu
8.10+, Debian 6, and CentOS 5.

Information about bootstrapping your own Chef server can be found at http://
wiki.opscode.com/display/chef/Bootstrap+Chef+RubyGems+Installation

If you need to setup your Chef server on a different platform, check out http://
wiki.opscode.com/display/chef/Manual+Chef+Server+Configuration.

Hosted Chef
Hosted Chef is a service provided by Opscode, the makers of Chef, which
frees you from configuring your own Chef server. You can find out more at
http://www.opscode.com/hosted-chef/.

COMPONENTS OF CHEF

When using Chef as a client-server application, either with a local Chef server
or the Hosted Chef, there are a few moving parts to keep track of.

Knife
Knife is the tool you will use as a system administrator to interact with
the server most often, especially taking cookbooks and other custom
configurations and loading them into the server for distribution to clients.
You can also bootstrap new servers with the Chef client components, start
new instances on the major cloud providers (AWS, Rackspace, SliceHost, and
Terremark), and search for nodes or other data. Running knife --help will give
you a list of supported commands.

Chef Client
The Chef client runs on the servers you are managing. It gathers information
about itself using Ohai, synchronizes the cookbooks it needs from the Chef
server, compiles the collection of resources that make up the configuration,
and then “converges” the resources it has compiled with the state of the
current machine

Web-UI
Chef includes a web interface that lets you browse cookbooks and browse and
edit nodes, roles, and clients.

Server/API
The Chef server sits at the center of the system. The Chef server exposes
a RESTful API, which is used by the other components in the system. Your
managed nodes, knife, and the web interface are all clients of the API. While

brought to you by...

CONTENTS INCLUDE:
n	 Components of Chef
n	 	OHAI
n	 Run List
n	 Cookbooks
n	 Writing a Cookbook
n	 Roles

http://www.dzone.com/mz/devops

2 Chef: An Open Source Tool for Scalable Cloud and Data Center Automation

DZone, Inc. | www.dzone.com

you will probably not need to access the API directly, it is good to know that all
of your data and more advanced automation are available using the API.

OHAI

Knowing the current state of your machine is a big part of any configuration
management system. Ohai is a Ruby library that gathers information about
your system and formats it as JSON for use by the Chef client and for storage
on the Chef server. To see for yourself, type ohai at the command prompt. This
information is exposed in your recipes through the node object. For instance if
a particular piece of a recipe should only be called when the node is on a
specific network you can use the ipaddress property as follows:

if node[:ipaddress] =~ /^10\.10\./

 # do something

end

This would check to see if the IP address of the node was a part of the
10.10.0.0 network before attempting the steps inside the block.

Ohai also allows you to write custom plug-ins for your specific environment or
equipment. See: http://wiki.opscode.com/display/chef/Writing+Ohai+Plugins

RUN LIST

Each node has a run list, which provides the recipes and roles for a node in
the order they should be applied. This is a key difference from some other
configuration management tools, which attempt to have you define the
relationship between every resource. While both approaches have their
strengths and weaknesses, the ordered run list is easiest for most people to
understand.

As of 0.10, the knife command produces cleaner output for human
consumption by default. You can use the knife command to get information
about a node, including its run list, as follows:

$ knife node show s1.mydomain.com

Node Name: s1.mydomain.com

Environment: _default

FQDN: s1.mydomain.com

IP: 1.2.3.4

Run List: role[common]

Roles: common

Recipes: chef-client, users::sysadmins, sudo

Platform: ubuntu 10.10

As you can see, the server in question had a run list that includes one role
(common) that expands to the recipes chef-client, users::sysadmins, and sudo.
If we want to add a new role to the node, we can use knife again:

$ knife node run_list add s1.mydomain.com “role[profit]”

run_list:

 role[common]

 role[profit]

The run list is immediately modified and will be applied to the node the next
time chef-client runs.

COOKBOOKS

Anatomy of a Cookbook
When you run knife cookbook create [NAME], a new directory structure
is created with some sane defaults for your new cookbook. Most of the
directories will be addressed in later sections, but there are two files created in
the top-level directory for your cookbook that are important.

metadata.rb
The metadata.rb file is converted to JSON when the cookbook is uploaded
to the Chef server. It provides critical information about the name, version,

dependencies, and other properties of the cookbook.

name “myservice”

maintainer “My Name”

maintainer_email “me@sample.com”

license “Apache v2.0”

description “Installs/Configures myservice”

long_description IO.read(File.join(File.dirname(__FILE__), ‘

README.rdoc’))

version “0.0.2”

depends “ntpd”

depends “java”, “~> 1.1”

Much of the information in the metadata.rb file is for human consumption and
is displayed in the Chef web interface. The main pieces that influence the chef-
client behavior as of 0.10 are the version and depends statements.

The version field is important with the introduction of environments in 0.10.
It allows you to pin an environment to a specific version of a cookbook. This
way your production environment can remain on a tested version of your
configuration while you are improving your development version.

Versions have to be managed by hand right now. When you use knife to
upload a cookbook to the Chef server it will replace any files or recipes it finds
that were uploaded with the same version number. You can prevent yourself
and others from overwriting a given version of a cookbook by passing knife the
--freeze flag.

The depends property specifies what other cookbooks are required on the
client for this cookbook to work. The second depends clause in the example
includes a version number. This is optional but will allow you to keep major
changes to your cookbooks from breaking others if you manage your version
numbers well.

NOTE: Cookbook versions are supported as of Chef 0.10

README.rdoc
If you look again at the long_description property of the metadata.
rb file you will see some Ruby code reading a file called README.rdoc.
The README.rdoc file is the place for your documentation on how to use
your cookbook and is especially important if you are sharing your cookbooks
with others, either inside your company or on the Internet. While RDoc is the
default for the README, Markdown is supported and will probably become
the default in a future release.

Borrowing and Sharing Cookbooks
One of the greatest assets of any open-source project is the way the
community shares knowledge. Chef helps you take advantage of other
people’s work and share your work with the community, using the http://
community.opscode.com/ site and a set of knife commands.

$ knife cookbook site --help

Available cookbook site subcommands: (for details, knife SUB-COMMAND

--help)

** COOKBOOK SITE COMMANDS **

knife cookbook site install COOKBOOK [VERSION] (options)

knife cookbook site share COOKBOOK CATEGORY (options)

knife cookbook site search QUERY (options)

knife cookbook site show COOKBOOK [VERSION] (options)

knife cookbook site unshare COOKBOOK

knife cookbook site list (options)

knife cookbook site download COOKBOOK [VERSION] (options)

As you can see, knife supports downloading cookbooks and sharing your
cookbooks with others. The knife commands use the Opscode community
site at http://community.opscode.com/ to store, rate, and search shared
cookbooks.

Much of the community uses Git as version control for their Chef repository,
so knife provides the knife cookbook site install command that downloads
the cookbook and places it in a vendor branch within your Git repository and
then merges it into the master branch. This allows local modifications to persist
even if you upgrade the underlying cookbook.

3 Chef: An Open Source Tool for Scalable Cloud and Data Center Automation

DZone, Inc. | www.dzone.com

For those who use Subversion or other version control system, you can use the
knife cookbook site download command to bring down a tarball that you can
unpack where you wish.Likewise you may spend hours building a cookbook
and want to share it with the community. Please do! You can either make a tgz
file of your cookbooks directory or use the knife cookbook site share command
to upload it to the community site.

Hot
Tip

When you develop an interesting cookbook, consider sharing it with
the community. Also consider placing the source on GitHub or a
similar public service so that others can contribute.

File Specificity
http://wiki.opscode.com/display/chef/File+Distribution

Chef provides a way to place different versions of files and templates to
specific hosts or platforms. The default/ folder under files/ and templates/
is created for you if you if you used `knife` to create your cookbook. You can
override a file in this default directory with a version that is host specific, OS
and version specific, or just OS specific.

The utility versus the complexity of the file specificity system is in
discussion in the community at the moment. There are clearer ways
to specify template and file resources (like in the resource itself), so
I caution users to not make heavy use of this functionality. It is more
likely to confuse those that come after you. Just remember to place

your files and templates in the default/ directory.

RESOURCES

http://wiki.opscode.com/display/chef/Resources

When you start composing your configuration, you will declare resources,
which are essentially Ruby objects with the code behind them to configure
your system. Behind each resource are one or more providers that tell Chef
how to execute the actions you require against a certain type of system. For
instance, the package resource has providers for yum, apt, gems, and more.

Log
The Log resource is the simplest resource there is. All it does is print a logging
message at the level you provide (defaulting to INFO).

log “This is a message from chef”

This will generate the following message amidst the rest of the output when
chef-client runs.

INFO: This is a message from chef

You can specify the level you want the message to be logged at with the level
parameter.

log “Bad stuff happened” do

 level :error

end

Packages
Chef includes providers for most major package management systems. These
multiple providers allow the single package resource to be used on most
major UNIX-based operating systems. Since the default action for a package is
“install”, the simplest use is as follows:
 package “autoconf”

This is equivalent to:

package “autoconf” do

 action :install

end

You can even specify the version you want and the provider that should be
used (such as YUM, rubygems, etc.):

package “cucumber” do

 version “0.9.4”

 provider Chef::Provider::Package::Rubygems

 action :install

end

There are also shortcut resources that force a particular package provider to be
used. For instance, the Ruby gem example above is the same as saying:

gem_package “cucumber” do

 version “0.9.4”

 action :install

end

As always, you have the full power of Ruby to handle edge cases, such as the
package name to use when installing Apache httpd.

package “apache2” do

 case node[‘platform’]

 when “centos”,”redhat”,”fedora”,”suse”

 package_name “httpd”

 when “debian”,”ubuntu”

 package_name “apache2”

 end

 action :install

end

In the example above, we use a Ruby case statement to look at the node
object, which represents the system we are currently configuring. The node
object includes all the data discovered by the Ohai application. Ohai sets the
platform element to the name of the distribution.

Files, Directories and Templates
Configuration on Linux and *NIX systems often starts with managing files
and directories. Chef provides the file, remote_file, and cookbook_file
resources to manage static files and a directory resource for managing
directories.

Directory
The directory resource lets us create, remove, and manage the permissions on
directories. If you need a temporary directory, you can create one as follows:

directory “/tmp/mydirectory” do

 action :create

end

The owner and group of the directory will be the defaults for the user running
the Chef client, usually root. The create action is the default, so that could be
rewritten as:

directory “/tmp/mydirectory”

Hot
Tip

Using the defaults can make your cookbooks more concise, but make
sure they aren’t more confusing for your future self and your team.

In defining your resources, you have the full power of Ruby available to you.
For instance, this allows you to loop through entries in an array to build a set of
directories.

[“site1”, “site2”, “site3”].each do |dir|

 directory “/srv/vhosts/#{dir}” do

 mode 0775

 owner “root”

 group “root”

 action :create

 recursive true

 end

end

4 Chef: An Open Source Tool for Scalable Cloud and Data Center Automation

DZone, Inc. | www.dzone.com

In the example above, three directories will be created under /srv/vhosts.
In this case we used the recursive true property of the directories to ensure that
the base directories (/srv and /srv/vhosts) are created if they do not
exist.

File
The file resource allows you to manage the permissions and ownership of
files on the node, with the option to pass content from inside your recipe.
To retrieve a file from a URL or the cookbook, use the remote_file or
cookbook_file resources respectively.

The parameters for a file are the same as a directory with a couple of
exceptions. Files have a touch action that updates the modified time
and last accessed time of the file, they don’t have a recursive attribute
so the target directory must exist, and they have a backup attribute
that defines how many backup versions of the file should be kept if the

contents change.

NOTE: Backups are saved to the directory specified by file_backup_path in
your client.rb file. This defaults to /var/chef/backup.

file “/etc/nologin” do

 backups false

 owner “root”

 group “root”

 mode “0755”

 action :create

end

The resource above creates a file called /etc/banner with the content set
to the string provided. It will not back up the file if it changes.

Remote File
The remote_file resource is identical to the file resource, except instead of
having a content parameter, remote_file has a source parameter that is the
URL of the file to transfer. It also has an optional checksum parameter that, if
the managed file’s checksum matches, will prevent Chef from downloading the
file an extra time. Chef uses SHA-256 for its checksums, but only the first 5-10
characters of the hash are usually needed to ensure consistency.

Also, the actions on a remote_file are limited to create and create_if_
missing. To delete a file created by remote_file, change it to a standard file
resource.

Cookbook File
A cookbook_file resource is largely the same as a remote_file resource,
with the exception that files will be retrieved from the files/ directory structure
(respecting File Specificity) of the cookbook. An additional cookbook attribute
is available to fetch files from cookbooks other than the one you are currently
running.

Hot
Tip

As a rule, do not store large binaries in Chef. It can handle it, but the
side effects (larger database size, slower repository checkouts) make
it less desirable than many alternatives such as a package repository,

Templates
http://wiki.opscode.com/display/chef/Templates

Chef supports templating text based configuration files using ERB. In its
simplest form, Ruby code is wrapped in special brackets.

<% x = “This is Ruby code” %>

Things that are not wrapped in the tags are not parsed as Ruby code. A similar
tag is used to put a value into the resulting file.

The value of x is: <%= x %>

Notice the equals sign after the opening tag. ERB will parse the statement
included in that tag and replace the tag with the return value.

By combining these elements with regular Ruby conditionals and flow control,
we can create templates for even complex configuration. Let us stick with the
simple case for now, a resolv.conf file used by *NIX systems to define their
DNS servers.

domain <%= node[‘domain’] %>

search <%= node[‘domain’] %>

<% @nameservers.each do |server_ip| -%>

nameserver <%= server_ip %>

<% end -%>

You can see that the domain and search lines are adding the value returned
by node[‘domain’] to the end of their lines. This shows the first way Chef
makes templating a little easier. The node object with its extensive hashmap of
attributes and Ohai values is injected into your template’s namespace.

The second piece is a loop over each item in an array called @nameservers.
The template resource has a variables attribute that you can pass other data to
for use in your templates without inserting it into the node object itself.

You may have noticed that the each do and end statements have an extra
hyphen attached to the end tag. This prevents the newline character outside
the tag from being printed, keeping you from having extra blank lines in your
template.

Lets take a quick look at how to declare the template resource for the file
above. Remember that templates respect File Specificity, so we will need to
put it in template/default/resolv.conf.erb.

template “/etc/resolv.conf” do

 source “resolv.conf.erb”

 mode “0644”

 variables(:nameservers => [‘8.8.8.8’, ‘8.8.4.4’])

end

We set the source and mode, just like a cookbook_file resource. Then we
add a variables attribute that assigns an array to the symbol nameservers.
This array will be made available, as you saw in our template, as the variable @
nameservers.

For more on ERB, see the documentation at http://www.ruby-doc.org/stdlib/
libdoc/erb/rdoc/.

Services
Once the package is installed and you have put your configurations (either as
files or templates) in place, it is time to manage the services you intend to
provide. Again, Chef providers are available for most of the major service
management schemes.

service “ntpd” do

 action [:start, :enable]

end

This will start the service (if it is not running) and make sure it will restart when
the node is rebooted.

If it appears that Chef is attempting to start your service every time it runs,
check the resources wiki page for the `supports`, `pattern`, and `status_
command` attributes.

Execute
So far we can manage files, install packages, and restart services. But
sometimes you just need to run a real command. Perhaps it is an installer for
your monitoring system or to add records to an LDAP server.

execute “bundle install --deployment” do

 cwd “/srv/app”

 environment ({‘HOME’ => ‘/home/myhome’})

 user “appuser”

 group “appgroup”

end

In the example above, the Chef client will switch to the user and group
provided, add HOME to the environment variables, and change directories
to “/srv/app” before running the command provided as the name of the
resource.

Script (bash, csh, perl, python, ruby)
The script resource is an extension of the execute resource, supporting all of
parameters of the latter, while allowing you to pass a block of commands
inside the resource. This works well for running a custom compile of an

5 Chef: An Open Source Tool for Scalable Cloud and Data Center Automation

DZone, Inc. | www.dzone.com

application that you do not have a package for or for running a set of tasks
every time the Chef client runs.

script “git update and garbage collection” do

interpreter “bash”

 user “root”

 cwd “/srv/app”

 code <<-EOH

 git pull stage

 git gc

 EOH

end

You can see the added code block with the Ruby specific <<- annotation to
create a string out of everything it sees until the pattern provided (EOH in this
case) is reached.

WRITING A COOKBOOK

Attributes
Other than Ohai, we really haven’t talked about variables and how you provide
different values to different machines depending on location, purpose or other
metadata.

Attributes extend the node model just like Ohai does but are set or changed
inside of cookbooks and roles. Cookbook attributes will generally go in the
attributes/default.rb file.Once again, the attributes file is just Ruby with some
shortcuts built in. You can use Ohai information to make decisions about the
values you want to assign to your attributes.

Default, Normal and Override
Chef allows us to set defaults and provide overrides for attributes at the
cookbook, environment, role, and node level. Of course if there is more than
one value for an attribute we need to know which one wins. That brings us to…

Precedence
Attribute precedence can get tricky. Not only do override attributes take
precedence over normal attributes (which beat out default attributes),
but where an attribute is declared matters as well. As you explore more
complicated infrastructure, you will need to become comfortable with attribute
precedence. Instead of trying to explain it here, check out http://wiki.opscode.
com/display/chef/Setting+Attributes+%28Examples%29 and try some
experimentation.

Conditional Execution
There will be many cases where you want a resource to execute its action only
if certain conditions are met. While some resources cover the simple cases
of this (the execute resource has a property called creates that prevents the
command from running if a given file already exists), you will come up with
other cases in modeling your configuration that aren’t covered.

Chef provides two conditional execution attributes on every resource: not_if
and only_if. Both will take either a string, which will be executed as a shell
command, or a Ruby block. A return code of 0 from the shell command is
treated like a value of true from the Ruby block. For instance, you might only
want a particular script to run if the /etc/hosts file contains the right
machine name.

execute “run the script” do

 command “runme --now”

 only_if “grep myserver /etc/hosts”

end

An experienced BASH scripter knows that the grep command returns 0 if it
finds what you were looking for. The resource above will execute the command
runme --now only when the /etc/hosts file contains the string “myserver”.
Passing a Ruby block is similar but gives you the full power of the Ruby
language as part of your conditional.

execute “run the script again” do

 command “runme --now”

 not_if { File.exists?(“/etc/passwd”) }

end

In this case, we are trying to run the same script, but we aren’t going to do it if
the file /etc/passwd exists. Since we are using Ruby we can call the exists?
static method on the File class.

Notifications
Sometimes you want an action to be applied to a resource if something
changes. For example, if your httpd.conf file changed you would want to
restart Apache. All resources support the notifies attribute that takes an action,
a service, and optional timing.

template “/etc/httpd/conf/httpd.conf” do

 source “httpd.conf.erb”

 notifies :restart, “service[apache2]”, :delayed

end

In the example above we declare a template resource that, when it changes,
will tell the apache2 service to restart. The last parameter tells Chef to delay
the restart to the end of the client run, which keeps you from restarting a
service over and over if multiple configuration files change during one client
run.

Putting it Together
So lets string together the things we have covered and create a simple
cookbook for managing the NTP daemon on our servers.

First lets create a couple of attributes, specifically an array of servers to poll for
time changes and if we want to enable statistics on our ntpd server.

attributes/default.db

default[‘ntpd’][‘servers’] = [‘tick.ucla.edu’,

 ‘tick.uh.edu’]

default[‘ntpd’][‘stats_enabled’] = false

By defining these as default attributes, they can be overridden later with
servers that are closer, based on role or environment.

Now lets create a recipe with three resources in it: a package, a template, and
a service.

recipes/default.rb

package “ntpd” do

 action :install

end

template “/etc/ntpd.conf” do

 source “ntpd.conf.erb”

 owner “0755”

 notifies :restart, “service[ntpd]”

end

service “ntpd” do

 action [:start, :enable]

end

The package resource installs the NTP, while the template and service make
sure it is configured and running. When the template is updated it notifies the
service to restart.

The only thing we need now is our NTP configuration template (snipped for
length).

templates/default/ntpd.conf.erb

driftfile /var/lib/ntp/ntp.drift

<% if node[‘ntpd’][‘stats_enabled’] -%>

statsdir /var/log/ntpstats/

<% end -%>

statistics loopstats peerstats clockstats

filegen loopstats file loopstats type day enable

filegen peerstats file peerstats type day enable

filegen clockstats file clockstats type day enable

<% node[‘ntpd’][‘servers’].each do |srv| -%>

server <%= srv %>

<% end -%>

--- SNIP ---

6 Chef: An Open Source Tool for Scalable Cloud and Data Center Automation

DZone, Inc.
140 Preston Executive Dr.
Suite 100
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2011 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise,
without prior written permission of the publisher.

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to
more than 3.3 million software developers, architects and decision
makers. DZone offers something for everyone, including news,
tutorials, cheat sheets, blogs, feature articles, source code and more.
“DZone is a developer’s dream,” says PC Magazine.

RECOMMENDED BOOK

ROLES

http://wiki.opscode.com/display/chef/Roles

The run list of a node either contains recipes or roles. Roles have their own run
list, allowing you to group common functions or service types together and not
repeating yourself with a long run list on each of your application servers.

name “webservers”

description “HTTP server role”

run_list “recipe[apache2]”, “recipe[ntpd]”

default_attributes “ntpd” => { “stats_enabled” => true }

--- SNIP ---

This role applies the apache2 and ntpd recipes and changes the value of the
stats_enabled attribute to true. Roles can contain other roles as well as
recipes in their run list, which allows you to build a hierarchy of roles to model
your environment. Most environments start with a base or common role that
holds the pieces that apply to every node and then grow to include individual
application.

ADVANCED CHEF

So now you have an idea how to build your cookbooks. There are other pieces
to make your life easier and your automation cleaner. Since I cannot cover
them all, here is a quick list so you know what you can look for.

Data Bags: http://wiki.opscode.com/display/chef/Data+Bags

Search: http://wiki.opscode.com/display/chef/Search

Environments: http://wiki.opscode.com/display/chef/Environments

Definitions: http://wiki.opscode.com/display/chef/Definitions

Lightweight Resources and Providers: http://wiki.opscode.com/display/
chef/Lightweight+Resources+and+Providers+%28LWRP%29

By Paul M. Duvall

ABOUT CONTINUOUS INTEGRATION

 G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#84

Continuous Integration:

Patterns and Anti-Patterns

CONTENTS INCLUDE:

■ About Continuous Integration

■ Build Software at Every Change

■ Patterns and Anti-patterns

■ Version Control

■ Build Management

■ Build Practices and more...

Continuous Integration (CI) is the process of building software

with every change committed to a project’s version control

repository.

CI can be explained via patterns (i.e., a solution to a problem

in a particular context) and anti-patterns (i.e., ineffective

approaches sometimes used to “fi x” the particular problem)

associated with the process. Anti-patterns are solutions that

appear to be benefi cial, but, in the end, they tend to produce

adverse effects. They are not necessarily bad practices, but can

produce unintended results when compared to implementing

the pattern.

Continuous Integration

While the conventional use of the term Continuous Integration

efers to the “build and test” cycle, this Refcard

expands on the notion of CI to include concepts such as

Aldon®

Change. Collaborate. Comply.

Pattern

Description

Private Workspace
Develop software in a Private Workspace to isolate changes

Repository

Commit all fi les to a version-control repository

Mainline

Develop on a mainline to minimize merging and to manage

active code lines

Codeline Policy

Developing software within a system that utilizes multiple

codelines

Task-Level Commit
Organize source code changes by task-oriented units of work

and submit changes as a Task Level Commit

Label Build

Label the build with unique name

Automated Build

Automate all activities to build software from source without

manual confi guration

Minimal Dependencies
Reduce pre-installed tool dependencies to the bare minimum

Binary Integrity

For each tagged deployment, use the same deployment

package (e.g. WAR or EAR) in each target environment

Dependency Management Centralize all dependent libraries

Template Verifi er

Create a single template fi le that all target environment

properties are based on

Staged Builds

Run remote builds into different target environments

Private Build

Perform a Private Build before committing changes to the

Repository

Integration Build

Perform an Integration Build periodically, continually, etc.

Send automated feedback from CI server to development team

ors as soon as they occur

Generate developer documentation with builds based on

brought to you by...

By Andy Harris

HTML BASICS

e.
co

m

G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#64

Core HTMLHTML and XHTML are the foundation of all web development.

HTML is used as the graphical user interface in client-side

programs written in JavaScript. Server-side languages like PHP

and Java also receive data from web pages and use HTML

as the output mechanism. The emerging Ajax technologies

likewise use HTML and XHTML as their visual engine. HTML

was once a very loosely-defi ned language with very little

standardization, but as it has become more important, the

need for standards has become more apparent. Regardless of

whether you choose to write HTML or XHTML, understanding

the current standards will help you provide a solid foundation

that will simplify all your other web coding. Fortunately HTML

and XHTML are actually simpler than they used to be, because

much of the functionality has moved to CSS.

common elements
Every page (HTML or XHTML shares certain elements in

common.) All are essentially plain text

extension. HTML fi les should not be cr

processor

CONTENTS INCLUDE:
■ HTML Basics■ HTML vs XHTML

■ Validation■ Useful Open Source Tools

■ Page Structure Elements
■ Key Structural Elements and more...

The src attribute describes where the image fi le can be found,

and the alt attribute describes alternate text that is displayed if

the image is unavailable.Nested tagsTags can be (and frequently are) nested inside each other. Tags

cannot overlap, so <a> is not legal, but <a></

b> is fi ne.

HTML VS XHTMLHTML has been around for some time. While it has done its

job admirably, that job has expanded far more than anybody

expected. Early HTML had very limited layout support.

Browser manufacturers added many competing standar

web developers came up with clever workar

result is a lack of standar
The latest web standar

Browse our collection of over 100 Free Cheat Sheets
Upcoming Refcardz
Java EE 6
MySQL 5.5
HTML 5 Canvas
Android

By Daniel Rubio

ABOUT CLOUD COMPUTING

 C
lo

u
d

 C
o

m
p

u
ti

n
g

w

w
w

.d
zo

n
e.

co
m

 G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#82

Getting Started with
Cloud Computing

CONTENTS INCLUDE:
■ About Cloud Computing
■ Usage Scenarios
■ Underlying Concepts
■ Cost
■ Data Tier Technologies
■ Platform Management and more...

Web applications have always been deployed on servers
connected to what is now deemed the ‘cloud’.

However, the demands and technology used on such servers
has changed substantially in recent years, especially with
the entrance of service providers like Amazon, Google and
Microsoft.

These companies have long deployed web applications
that adapt and scale to large user bases, making them
knowledgeable in many aspects related to cloud computing.

This Refcard will introduce to you to cloud computing, with an
emphasis on these providers, so you can better understand
what it is a cloud computing platform can offer your web
applications.

USAGE SCENARIOS

Pay only what you consume
Web application deployment until a few years ago was similar
to most phone services: plans with alloted resources, with an
incurred cost whether such resources were consumed or not.

Cloud computing as it’s known today has changed this.
The various resources consumed by web applications (e.g.
bandwidth, memory, CPU) are tallied on a per-unit basis
(starting from zero) by all major cloud computing platforms.

also minimizes the need to make design changes to support
one time events.

Automated growth & scalable technologies
Having the capability to support one time events, cloud
computing platforms also facilitate the gradual growth curves
faced by web applications.

Large scale growth scenarios involving specialized equipment
(e.g. load balancers and clusters) are all but abstracted away by
relying on a cloud computing platform’s technology.

In addition, several cloud computing platforms support data
tier technologies that exceed the precedent set by Relational
Database Systems (RDBMS): Map Reduce, web service APIs,
etc. Some platforms support large scale RDBMS deployments.

CLOUD COMPUTING PLATFORMS AND
UNDERLYING CONCEPTS

Amazon EC2: Industry standard software and virtualization
Amazon’s cloud computing platform is heavily based on
industry standard software and virtualization technology.

Virtualization allows a physical piece of hardware to be
utilized by multiple operating systems. This allows resources
(e.g. bandwidth, memory, CPU) to be allocated exclusively to
individual operating system instances.

As a user of Amazon’s EC2 cloud computing platform, you are
assigned an operating system in the same way as on all hosting

Jeffrey recently started his own consultancy
to help companies automate infrastructure,
increase application performance, and bring an
experimental mindset to adding value. Prior to
hanging his own shingle, he spent over 15 years
writing software and managing systems for various
industries including telecommunications and
finance.

A long-time supporter of open-source solutions, he has presented his
ideas at user groups across the country and co-founded the Seattle
DevOps interest group. He can be reached at jeffh@automatedlabs
com.

Test-Driven Infrastructure with Chef demonstrates a
radical approach to developing web infrastructure
that combines the powerful Chef configuration
management framework with Cucumber, the leading
Behavior-driven development (BDD) tool. Learn
how to deliver real business value by developing
infrastructure code test-first.

Infrastructure consultant Stephen Nelson-Smith shows
you how this unique approach allows you to make significant changes
without the fear of unexpected side effects—a great benefit when
you’re developing code to control your production infrastructures.
By using the test-first approach introduced in this book, you gain
increased security, code quality, and peace of mind.

ABOUT THE AUTHOR

