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1 Introduction 

1.1 What is this? 

This document attempts to provide guidelines (or coding standards if you like) for coding in C# 3.0, 4.0 or 5.0 that are 
both useful and pragmatic. Of course, if you create such a document you should practice what you preach. So rest 
assured, these guidelines are representative to what we at Aviva Solutions do in our day-to-day work. Of course, not all 
coding guidelines have a clear rationale. Some of them are simply choices we made at Aviva Solutions. 

Visual Studio’s Static Code Analysis (which is also known as FxCop) and StyleCop can already automatically enforce a 
lot of coding and design rules by analyzing the compiled assemblies. You can configure to do that at compile time or as 
part of a continuous or daily build. This document just adds additional rules and recommendations but its companion 
site www.csharpcodingguidelines.com provides a list of code analysis rules depending on the type of code base you’re 
dealing with. 

1.2 Why would I use this document? 

Although some might see coding guidelines as undesired overhead or something that limits creativity, this approach 
has already proven its value for many years. Why? Well, because not every developer 

 is aware that code is generally read 10 times more than it is changed; 

 is aware of the potential pitfalls of certain constructions in C#; 

 is introduced into certain conventions when using the .NET Framework such as IDisposable or the deferred 

execution nature of LINQ; 

 is aware of the impact of using (or neglecting to use) particular solutions on aspects like security, performance, 
multi-language support, etc; 

 knows that not every developer is as capable in understanding an elegant, but abstract, solution as the original 
developer; 

1.3 Basic Principles 

There are many unexpected things I run into during my work as a consultant, each deserving at least one guideline. 
Unfortunately, I still need to keep this document within a reasonable size. But unlike to what some junior developers 
believe, that doesn’t mean that when something is not mentioned in this guidelines it must be okay.  

In general, if I have a discussion with a colleague about a smell that this document does not provide absolution for, I’ll 
refer back to a set of basic principles that apply to all situations, regardless of context. These include: 

 The Principle of Least Surprise (or Astonishment), which means that you should choose a solution that does 

include any things people might not understand, or put on the wrong track. 

 Keep It Simple Stupid (a.k.a. KISS), a funny way of saying that the simplest solution is more than sufficient. 

 You Ain’t Gonne Need It (a.k.a. YAGNI), which tells you to create a solution for the current problem rather than 

the ones you think will happen later on (since when can you predict the future?) 

 Don’t Repeat Yourself (a.k.a. DRY), which encourages you to prevent duplication in your code base without 

forgetting the Rule of Three heuristic. 

Regardless of the elegancy of somebody’s solution, if it’s too complex for the ordinary developer, exposes unusual 
behavior, or tries to solve many possible future issues, it is very likely the wrong solution and needs redesign.  

1.4 How do I get started? 

 Ask all developers to carefully read this document at least once. This will give them a sense of the kind of 
guidelines the document contains.  

 Make sure there are always a few hard copies of the Quick Reference close at hand.  

 Include the most critical coding guidelines on your Project Checklist and verify the remainder as part of your Peer 
Review.  

 Decide which CA rules are applicable for your project and write these down somewhere, such as your TFS team 
site, or create a custom Visual Studio 2010/2012 Rule Set. The companion site offers rule sets for both line-of-
business applications and more generic code bases like frameworks and class libraries. 

http://www.dennisdoomen.net/
http://msdn.microsoft.com/en-us/library/dd264939.aspx
http://stylecop.codeplex.com/
http://www.csharpcodingguidelines.com/
http://lostechies.com/derickbailey/2012/10/31/abstraction-the-rule-of-three/
http://csharpguidelines.codeplex.com/
http://www.csharpcodingguidelines.com/
http://www.dennisdoomen.net/2010/03/alm-practices-5-checklists.html
http://www.dennisdoomen.net/2010/02/tfs-development-practices-part-2-peer.html
http://www.dennisdoomen.net/2010/02/tfs-development-practices-part-2-peer.html
http://www.csharpcodingguidelines.com/
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 Add a custom Code Analysis Dictionary containing your domain- or company-specific terms, names and concepts. 
If you don’t, Static Analysis will report warnings for (parts of) phrases that are not part of its internal dictionary.  

 Configure Visual Studio to verify the selected CA rules as part of the Release build. Then they won’t interfere with 
normal developing and debugging activities, but still can be run by switching to the Release configuration.  

 Add an item to your project checklist to make sure all new code is verified against CA violations, or use the 
corresponding Check-in Policy if you want to prevent any code from violating CA rules at all.  

 ReSharper has an intelligent code inspection engine that, with some configuration, already supports many aspects 
of the Coding Guidelines. It will automatically highlight any code that does not match the rules for naming 
members (e.g. Pascal or Camel casing), detect dead code, and many other things. One click of the mouse button 
(or the corresponding keyboard shortcut) is usually enough to fix it.  

 ReSharper also has a File Structure window that shows an overview of the members of your class or interface and 
allows you to easily rearrange them using a simple drag-and-drop action.  

 Using GhostDoc you can generate XML comments for any member using a keyboard shortcut. The beauty of it, is 
that it closely follows the MSDN-style of documentation. However, you have to be careful not to misuse this tool, 
and use it as a starter only.  

1.5 Why did you create it? 

The idea started in 2002 when Vic Hartog (Philips Medical Systems) and I were assigned the task of writing up a 
coding standard for C# 1.0. Since then, I've regularly added, removed and changed rules based on experiences, 
feedback from the community and new tooling support such as offered by Visual Studio 2010. 

Additionally, after reading Robert C. Martin’s book Clean Code: A Handbook of Agile Software Craftsmanship, I 
became a big fan of his ideas and decided to include some of his smells and heuristics as guidelines. Notice though 
that this document is in no way a replacement for his book. I sincerely recommend that you read his book to gain a 
solid understanding of the rationale behind his recommendations. 

I’ve also decided to include some design guidelines in addition to simple coding guidelines. They are too important to 
ignore and have a big influence in reaching high quality code. 

1.6 Is this a coding standard? 

The document does not state that projects must comply with these guidelines, neither does it say which guidelines are 
more important than others. However, we encourage projects to decide themselves what guidelines are important, 
what deviations a project will use, who is the consultant in case doubts arise, and what kind of layout must be used for 
source code. Obviously, you should make these decisions before starting the real coding work.  

To help you in this decision, I’ve assigned a level of importance to each guideline: 

  Guidelines that you should never skip and should be applicable to all situations 

  Strongly recommended guidelines 

  Recommended guidelines that may not be applicable in all situations 

In general, generated code should not need to comply with coding guidelines. However, if it is possible to modify the 
templates used for generation, try to make them generate code that complies as much as possible. 

1.7 Feedback and disclaimer 

This document has been compiled using many contributions from community members, blog posts, on-line 
discussions and many years of developing in C#. If you have questions, comments or suggestions, just let me know by 
sending me an email at dennis.doomen@avivasolutions.nl or tweet me at http://twitter.com/ddoomen. I will try to revise 
and republish this document with new insights, experiences and remarks on a regular basis.  

Notice though that it merely reflects my view on proper C# code so Aviva Solutions will not be liable for any direct or 
indirect damages caused by applying the guidelines of this document. 

It is allowed to copy, adapt, and redistribute this document and its companion quick reference guide for non-
commercial purposes or internal usage. However, you may not republish this document, or publish or distribute any 
adaptation of this document for commercial use without first obtaining express written approval from Aviva Solutions. 

 

  

http://www.dennisdoomen.net/
http://msdn.microsoft.com/en-us/library/bb514188.aspx
http://www.dennisdoomen.net/2010/03/alm-practices-5-checklists.html
http://msdn.microsoft.com/en-us/library/ms182075(v=vs.110).aspx
http://www.jetbrains.com/resharper/
http://www.jetbrains.com/resharper/features/navigation_search.html#File_Structure
http://submain.com/products/ghostdoc.aspx
http://www.tiobe.com/content/paperinfo/gemrcsharpcs.pdf
http://www.objectmentor.com/omTeam/martin_r.html
http://www.amazon.com/Clean-Code-Handbook-Software-Craftsmanship/dp/0132350882
mailto:dennis.doomen@avivasolutions.nl
http://twitter.com/ddoomen
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2 Class Design Guidelines 

AV1000 A class or interface should have a single purpose  

A class or interface should have a single purpose within the system it participates in. In general, a class is either 
representing a primitive type like an email or ISBN number, an abstraction of some business concept, a plain data 
structure or responsible for orchestrating the interaction between other classes. It is never a combination of those. This 
rule is widely known as the Single Responsibility Principle, one of the SOLID principles.  

Tip A class with the word And in it is an obvious violation of this rule. 

Tip Use Design Patterns to communicate the intent of a class. If you can’t assign a single design pattern to a class, 

chances are that it is doing more than one thing. 

Note If you create a class representing a primitive type you can greatly simplify it usage by making it immutable.  

AV1001 Only create a constructor that returns a useful object  

There should be no need to set additional properties before the object can be used for whatever purpose it was 
designed. However, if you your constructor needs more than three parameters (which violates AV1561), your class 
might have too much responsibility (and violate AV1000).  

AV1003 An interface should be small and focused  

Interfaces should have a name that clearly explains the purpose or role of that interface within the system. Do not 
combine many vaguely related members on the same interface just because they were all on the same class. Separate 
the members based on the responsibility of those members so that callers only need to call or implement the interface 
related to a particular task. This rule is more commonly known as the Interface Segregation Principle. 

AV1004 Use an interface rather than a base class to support multiple implementations  

If you want to expose an extension point from your class, expose it as an interface rather than a base class. You don’t 
want to force users of that extension point to derive their implementations from a base-class that might have undesired 
behavior. However, for their convenience you may implement an (abstract) default implementation that can serve as a 
starting point. 

AV1005 Use an interface to decouple classes from each other  

Interfaces are a very effective mechanism for decoupling classes from each other.  

 They can prevent bidirectional associations;  

 They simplify the replacement of one implementation with another;  

 They allow replacing an expensive external service or resource with a temporary stub for use in a non-production 
environment. 

 They allow replacing the actual implementation with a dummy implementation or a fake object in a unit test;  

 Using a dependency injection framework you can centralize the choice which class is going to be used whenever a 
specific interface is requested. 

AV1008 Avoid static classes  

With the exception of extension method containers static classes very often lead to badly designed code. They are also 
very difficult, if not impossible, to test in isolation unless you’re willing to use some very hacky tools. 

Note If you really need that static class, mark it as static so that the compiler can prevent instance members and 

instantiating your class. This relieves you of creating an explicit private constructor.  

AV1010 Don’t hide inherited members with the new keyword  

Not only does the new keyword break Polymorphism, one of the most essential object-orientation principles, it also 

makes subclasses more difficult to understand. Consider the following two classes: 

public class Book 
{ 
 public virtual void Print() 
  { 

http://www.dennisdoomen.net/
http://www.objectmentor.com/resources/articles/srp.pdf
http://en.wikipedia.org/wiki/Design_pattern_(computer_science)
http://www.objectmentor.com/resources/articles/isp.pdf
http://en.wikipedia.org/wiki/Polymorphism_in_object-oriented_programming
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  Console.WriteLine("Printing Book"); 
 } 
} 
 
public class PocketBook : Book 
{ 
 public new void Print() 
 { 
  Console.WriteLine("Printing PocketBook"); 
 } 
} 

This will cause behavior that you would not normally expect from class hierarchies: 

PocketBook pocketBook = new PocketBook();   
 
pocketBook.Print();   // Will output "Printing PocketBook " 
((Book)pocketBook).Print();  // Will output "Printing Book" 

It should not make a difference whether you call Print through a reference to the base class or through the derived 

class. 

AV1011 It should be possible to treat a derived object as if it were a base class object  

In other words, you should be able to use a reference to an object of a derived class wherever a reference to its base 
class object is used without knowing the specific derived class. A very notorious example of a violation of this rule is 
throwing a NotImplementedException when overriding some of the base-class methods. A less subtle example is not 

honoring the behavior expected by the base-class.  
 
Note This rule is also known as the Liskov Substitution Principle, one of the S.O.L.I.D. principles. 

AV1013 Don’t refer to derived classes from the base class  

Having dependencies from a base class to its sub-classes goes against proper object-oriented design and might 
prevent other developers from adding new derived classes. 

AV1014 Avoid exposing the other objects an object depends on  

If you find yourself writing code like this then you might be violating the Law of Demeter. 

someObject.SomeProperty.GetChild().Foo() 

An object should not expose any other classes it depends on because callers may misuse that exposed property or 
method to access the object behind it. By doing so, you allow calling code to become coupled to the class you are 
using, and thereby limiting the chance you can easily replace it in a future stage. 

Note Using a class that is designed using the Fluent Interface pattern does seem to violate this rule, but it is simply 

returning itself so that method chaining is allowed.  

Exception Inversion of Control or Dependency Injection frameworks often require you to expose a dependency as a 

public property. As long as this property is not used for anything else than dependency injection I would not consider it 
a violation. 

AV1020 Avoid bidirectional dependencies  

This means that two classes know about each other’s public members or rely on each other’s internal behavior. 
Refactoring or replacing one of those two classes requires changes on both parties and may involve a lot of 
unexpected work. The most obvious way of breaking that dependency is introducing an interface for one of the classes 
and using Dependency Injection. 

Exception Domain models such as defined in Domain Driven Design tend to occasionally involve bidirectional 

associations that model real-life associations. In those cases, I would make sure they are really necessary, but if they 
are, keep them in. 

http://www.dennisdoomen.net/
http://www.lostechies.com/blogs/chad_myers/archive/2008/03/07/pablo-s-topic-of-the-month-march-solid-principles.aspx
http://en.wikipedia.org/wiki/Law_of_Demeter
http://en.wikipedia.org/wiki/Fluent_interface
http://domaindrivendesign.org/
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AV1025 Classes should have state and behavior  

In general, if you find a lot of data-only classes in your code base, you probably also have a few (static) classes with a 
lot of behavior (see AV1008). Use the principles of object-orientation explained in this section and move the logic as 
close to the data it applies to.  

Exception The only exception to this rule are classes that are used to transfer data over a communication channel, 

also called Data Transfer Objects, or a class that wraps several parameters of a method. 

 

http://www.dennisdoomen.net/
http://martinfowler.com/eaaCatalog/dataTransferObject.html
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3 Member Design Guidelines 

AV1100 Allow properties to be set in any order  

Properties should be stateless with respect to other properties, i.e. there should not be a difference between first 
setting property DataSource and then DataMember or vice versa.  

AV1105 Use a method instead of a property  

 If the work is more expensive than setting a field value.  

 If it represents a conversion such as the Object.ToString method. 

 If it returns a different result each time it is called, even if the arguments didn’t change. For example, the NewGuid 

method returns a different value each time it is called. 

 If the operation causes a side effect such as changing some internal state not directly related the property (which 
violates the Command Query Separation).  

Exception Populating an internal cache or implementing lazy-loading is a good exception.  

AV1110 Don’t use mutual exclusive properties  

Having properties that cannot be used at the same time typically signals a type that is representing two conflicting 
concepts. Even though those concepts may share some of the behavior and state, they obviously have different rules 
that do not cooperate.  

This violation is often seen in domain models and introduces all kinds of conditional logic related to those conflicting 
rules, causing a ripple effect that significantly worsens the maintenance burden. 

AV1115 A method or property should do only one thing  

Similarly to rule AV1000, a method should have a single responsibility. 

AV1125 Don’t expose stateful objects through static members  

A stateful object is an object that contains many properties and lots of behavior behind that. If you expose such an 
object through a static property or method of some other object, it will be very difficult to refactor or unit test a class that 
relies on such a stateful object. In general, introducing a construction like that is a great example of violating many of 
the guidelines of this chapter. 

A classic example of this is the HttpContext.Current property, part of ASP.NET. Many see the HttpContext class 

as a source for a lot of ugly code. In fact, the testing guideline Isolate the Ugly Stuff often refers to this class. 

AV1130 Return an IEnumerable<T> or ICollection<T> instead of a concrete collection class  

In general, you don’t want callers to be able to change an internal collection, so don’t return arrays, lists or other 
collection classes directly. Instead, return an IEnumerable<T>, or, if the caller must be able to determine the count, an 

ICollection<T>. 

Note If you’re using .NET 4.5, you can also use IReadOnlyCollection<T>, IReadOnlyList<T> or 

IReadOnlyDictionary<TKey, TValue>.  

AV1135 Properties, methods and arguments representing strings or collections should never be null  

Returning null can be unexpected by the caller. Always return an empty collection or an empty string instead of a 

null reference. This also prevents cluttering your code base with additional checks for null, or even worse, 

string.IsNotNullOrEmpty(). 

AV1137 Define parameters as specific as possible 

If your member needs a specific piece of data, define parameters as specific as that and don’t take a container object 
instead. For instance, consider a method that needs a connection string that is exposed through some central 
IConfiguration interface. Rather than taking a dependency on the entire configuration, just define a parameter for 

the connection string. This not only prevents unnecessary coupling, it also improved maintainability in the long run. 

http://www.dennisdoomen.net/
http://martinfowler.com/bliki/CommandQuerySeparation.html
http://www.martinfowler.com/eaaCatalog/lazyLoad.html
http://msdn.microsoft.com/en-us/magazine/dd263069.aspx#id0070015
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AV1140 Consider using domain-specific value types rather than primitives  

Instead of using strings, integers and decimals for representing domain specific types such as an ISBN number, an 
email address or amount of money, consider created dedicated value objects that wrap both the data and the validation 
rules that apply to it. By doing this, you prevent ending up having multiple implementations of the same business rules, 
which both improves maintainability and prevents bugs. 

http://www.dennisdoomen.net/
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4 Miscellaneous Design Guidelines 

AV1200 Throw exceptions rather than returning some kind of status value  

A code base that uses return values for reporting the success or failure tends to have nested if-statements sprinkled 

all over the code. Quite often, a caller forgets to check the return value anyhow. Structured exception handling has 
been introduced to allow you to throw exceptions and catch or replace exceptions at a higher layer. In most systems it 
is quite common to throw exceptions whenever an unexpected situations occurs. 

AV1202 Provide a rich and meaningful exception message text  

The message should explain the cause of the exception and clearly describe what needs to be done to avoid the 
exception. 

AV1205 Throw the most specific exception that is appropriate  

For example, if a method receives a null argument, it should throw ArgumentNullException instead of its base type 

ArgumentException.  

AV1210 Don’t swallow errors by catching generic exceptions  

Avoid swallowing errors by catching non-specific exceptions, such as Exception, SystemException, and so on, in 

application code. Only top-level code, such as a last-chance exception handler, should catch a non-specific exception 
for logging purposes and a graceful shutdown of the application. 

AV1215 Properly handle exceptions in asynchronous code  

When throwing or handling exceptions in code that uses async/await or a Task remember the following two rules 

 Exceptions that occur within an async/await block and inside a Task's action are propagated to the awaiter. 

 Exceptions that occur in the code preceding the asynchronous block are propagated to the caller. 

AV1220 Always check an event handler delegate for null  

An event that has no subscribers is null, so before invoking, always make sure that the delegate list represented by 

the event variable is not null. Furthermore, to prevent conflicting changes from concurrent threads, use a temporary 

variable to prevent concurrent changes to the delegate.  

event EventHandler<NotifyEventArgs> Notify; 
 
void RaiseNotifyEvent(NotifyEventArgs args) 
{ 
 EventHandler<NotifyEventArgs> handlers = Notify; 
  if (handlers != null) 
  { 
       handlers(this, args);    
   } 
} 

Tip You can prevent the delegate list from being empty altogether. Simply assign an empty delegate like this: 

event EventHandler<NotifyEventArgs> Notify = delegate {}; 

AV1225 Use a protected virtual method to raise each event  

Complying with this guideline allows derived classes to handle a base class event by overriding the protected method. 
The name of the protected virtual method should be the same as the event name prefixed with On. For example, the 
protected virtual method for an event named TimeChanged is named OnTimeChanged.  

Note Derived classes that override the protected virtual method are not required to call the base class implementation. 

The base class must continue to work correctly even if its implementation is not called.  

AV1230 Consider providing property-changed events  

Consider providing events that are raised when certain properties are changed. Such an event should be named 
PropertyChanged, where Property should be replaced with the name of the property with which this event is 

associated 

http://www.dennisdoomen.net/
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Note If your class has many properties that require corresponding events, consider implementing the 

INotifyPropertyChanged interface instead. It is often used in the Presentation Model and Model-View-ViewModel 

patterns. 

AV1235 Don’t pass null as the sender argument when raising an event  

Often, an event handler is used to handle similar events from multiple senders. The sender argument is then used to 
get to the source of the event. Always pass a reference to the source (typically this) when raising the event. 

Furthermore don’t pass null as the event data parameter when raising an event. If there is no event data, pass 

EventArgs.Empty instead of null. 

Exception On static events, the sender argument should be null.  

AV1240 Use generic constraints if applicable  

Instead of casting to and from the object type in generic types or methods, use where constraints or the as operator 

to specify the exact characteristics of the generic parameter. For example: 

class SomeClass 
{} 
 
// Don't 
class MyClass<T> 
{ 
 void SomeMethod(T t) 
  { 
    object temp = t; 
    SomeClass obj = (SomeClass) temp; 
  } 
} 
 
// Do 
class MyClass<T> where T : SomeClass 
{ 
 void SomeMethod(T t) 
  { 
    SomeClass obj = t; 
  } 
} 

AV1250 Evaluate the result of a LINQ expression before returning it  

Consider the following code snippet 

public IEnumerable<GoldMember> GetGoldMemberCustomers() 
{ 
 const decimal GoldMemberThresholdInEuro = 1000000; 
 
 var q = from customer in db.Customers 
    where customer.Balance > GoldMemberThresholdInEuro 
    select new GoldMember(customer.Name, customer.Balance); 
 
 return q;      
} 

Since LINQ queries use deferred execution, returning q will actually return the expression tree representing the above 

query. Each time the caller evaluates this result using a foreach or something similar, the entire query is re-executed 

resulting in new instances of GoldMember every time. Consequently, you cannot use the == operator to compare 

multiple GoldMember instances. Instead, always explicitly evaluate the result of a LINQ query using ToList(), 

ToArray() or similar methods. 

http://www.dennisdoomen.net/
http://martinfowler.com/eaaDev/PresentationModel.html
http://msdn.microsoft.com/en-us/magazine/dd419663.aspx
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5 Maintainability Guidelines 

AV1500 Methods should not exceed 7 statements  

A method that requires more than 7 statements is simply doing too much or has too many responsibilities. It also 
requires the human mind to analyze the exact statements to understand what the code is doing. Break it down in 
multiple small and focused methods with self-explaining names, but make sure the high-level algorithm is still clear. 

AV1501 Make all members private and types internal by default  

To make a more conscious decision on which members to make available to other classes first restrict the scope as 
much as possible. Then carefully decide what to expose as a public member or type. 

AV1502 Avoid conditions with double negatives  

Although a property like customer.HasNoOrders make sense, avoid using it in a negative condition like this: 

bool hasOrders = !customer.HasNoOrders; 

Double negatives are more difficult to grasp than simple expressions, and people tend to read over the double negative 
easily. 

AV1505 Name assemblies after their contained namespace  

All DLLs should be named according to the pattern <Company>.<Component>.dll where <Company> refers to your 
company’s name and <Component> contains one or more dot-separated clauses. For example 
AvivaSolutions.Web.Controls.dll. 

As an example, consider a group of classes organized under the namespace AvivaSolutions.Web.Binding exposed 

by a certain assembly. According to this guideline, that assembly should be called 
AvivaSolutions.Web.Binding.dll.   

Exception If you decide to combine classes from multiple unrelated namespaces into one assembly, consider post 

fixing the assembly with Core, but do not use that suffix in the namespaces. For instance, 

AvivaSolutions.Consulting.Core.dll. 

AV1506 Name a source file to the type it contains  

Use Pascal casing for naming the file and don’t use underscores.  

AV1507 Limit the contents of a source code file to one type  

Exception Nested types should, for obvious reasons, be part of the same file. 

AV1508 Name a source file to the logical function of the partial type  

When using partial types and allocating a part per file, name each file after the logical part that part plays. For example: 

// In MyClass.cs 
public partial class MyClass 
{...} 
  
// In MyClass.Designer.cs 
public partial class MyClass 
{...}  

AV1510 Use using statements instead of fully qualified type names  

Limit usage of fully qualified type names to prevent name clashing. For example, don’t do this 

var list = new System.Collections.Generic.List<string>(); 

Instead, do this 

using System.Collections.Generic; 
var list = new List<string>(); 
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If you do need to prevent name clashing, use a using directive to assign an alias: 

using Label = System.Web.UI.WebControls.Label; 

AV1515 Don’t use "magic” numbers  

Don’t use literal values, either numeric or strings, in your code other than to define symbolic constants. For example: 

public class Whatever 
{ 
 public static readonly Color PapayaWhip = new Color(0xFFEFD5); 
 public const int MaxNumberOfWheels = 18; 
} 

Strings intended for logging or tracing are exempt from this rule. Literals are allowed when their meaning is clear from 
the context, and not subject to future changes, For example: 

mean = (a + b) / 2;           // okay 
WaitMilliseconds(waitTimeInSeconds * 1000);    // clear enough 

If the value of one constant depends on the value of another, do attempt to make this explicit in the code.  

public class SomeSpecialContainer 
{ 
  public const int MaxItems = 32; 
  public const int HighWaterMark = 3 * MaxItems / 4;  // at 75% 
} 

Note An enumeration can often be used for certain types of symbolic constants.  

AV1520 Only use var when the type is very obvious  

Only use var as the result of a LINQ query, or if the type is very obvious from the same statement and using it would 

improve readability. So don't 

var i = 3;  // what type? int? uint? float? 
var myfoo = MyFactoryMethod.Create("arg"); // Not obvious what base-class or  
     // interface to expect. Also difficult 
     // to refactor if you can't search for 
     // the class 

Instead, use var like this. 

var q = from order in orders where order.Items > 10 and order.TotalValue > 1000; 
var repository = new RepositoryFactory.Get<IOrderRepository>(); 
var list = new ReadOnlyCollection<string>(); 

In all of three above examples it is clear what type to expect. For a more detailed rationale about the advantages and 
disadvantages of using var, read Eric Lippert’s Uses and misuses of implicit typing. 

AV1521 Declare and initialize variables as late as possible  

Avoid the C and Visual Basic styles where all variables have to be defined at the beginning of a block, but rather define 
and initialize each variable at the point where it is needed.  

AV1522 Assign each variable in a separate statement 

Don’t use confusing constructs like the one below. 

var result = someField = GetSomeMethod(); 

AV1523 Favor Object and Collection Initializers over separate statements  

Instead of 

var startInfo = new ProcessStartInfo(“myapp.exe”); 
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startInfo.StandardOutput = Console.Output; 
startInfo.UseShellExecute = true; 

Use Object Initializers 

var startInfo = new ProcessStartInfo(“myapp.exe”) 
{ 
 StandardOutput = Console.Output, 
 UseShellExecute = true 
}; 

Similarly, instead of 

var countries = new List<string>(); 
countries.Add(“Netherlands”); 
countries.Add(“United States”); 

Use collection or dictionary initializers 

var countries = new List<string> { “Netherlands”, “United States” }; 

AV1525 Don’t make explicit comparisons to true or false  

It is usually bad style to compare a bool-type expression to true or false. For example: 

while (condition == false)      // wrong; bad style 
while (condition != true)      // also wrong 
while (((condition == true) == true) == true)  // where do you stop? 
while (condition)          // OK 

AV1530 Don’t change a loop variable inside a for or foreach loop  

Updating the loop variable within the loop body is generally considered confusing, even more so if the loop variable is 
modified in more than one place. Although this rule also applies to foreach loops, an enumerator will typically detect 

changes to the collection the foreach loop is iteration over. 

for (int index = 0; index < 10; ++index) 
{ 
  if (some condition)  
 { 
   index = 11; // Wrong! Use ‘break’ or ‘continue’ instead. 
 }  
}  

AV1532 Avoid nested loops  

A method that nests loops is more difficult to understand than one with only a single loop. In fact, in most cases having 
nested loops can be replaced with a much simpler LINQ query that uses the from keyword twice or more to join the 

data. 

AV1535 Always add a block after keywords such if, else, while, for, foreach and case  

Please note that this also avoids possible confusion in statements of the form: 

if (b1) if (b2) Foo(); else Bar();  // which ‘if’ goes with the ‘else’? 
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// The right way: 
if (b1) 
{ 
  if (b2) 
  { 
    Foo(); 
  } 
  else 
  { 
    Bar(); 
  } 
}  

AV1536 Always add a default block after the last case in a switch statement  

Add a descriptive comment if the default block is supposed to be empty. Moreover, if that block is not supposed to be 
reached throw an InvalidOperationException to detect future changes that may fall through the existing cases. This 

ensures better code, because all paths the code can travel has been thought about. 

void Foo(string answer) 
{ 
  switch (answer) 
  { 
    case "no": 
         Console.WriteLine("You answered with No"); 
         break; 
    
    case "yes": 
         Console.WriteLine("You answered with Yes"); 
         break; 
 
    default: 
         // Not supposed to end up here. 
         throw new InvalidOperationException("Unexpected answer " + answer); 
  } 
} 

AV1537 Finish every if-else-if statement with an else-part  

For example. 

void Foo(string answer) 
{ 
  if (answer == "no") 
  { 
    Console.WriteLine("You answered with No"); 
  } 
  else if (answer == "yes") 
  { 
    Console.WriteLine("You answered with Yes"); 
  } 
  else 
  { 
      // What should happen when this point is reached? Ignored? If not,  
    // throw an InvalidOperationException. 
  } 
}  

AV1540 Be reluctant with multiple return statements  

One entry, one exit is a sound principle and keeps control flow readable. However, if the method is very small and 
complies with guideline AV1500 then multiple return statements may actually improve readability over some central 
boolean flag that is updated at various points. 

AV1545 Don’t use if-else statements instead of a simple (conditional) assignment  

Express your intentions directly. For example, rather than  

bool pos; 
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if (val > 0) 
{ 
  pos = true; 
} 
else 
{ 
  pos = false; 
} 

write  

bool pos = (val > 0); // initialization 

Or instead of 

string result; 
 
if (someString != null) 
{ 
 result = someString; 
} 
else 
{ 
 result = “Unavailable”; 
} 
 
return result; 

write 

return someString ?? “Unavailable”; 

AV1547 Encapsulate complex expressions in a method or property  

Consider the following example: 

if (member.HidesBaseClassMember && (member.NodeType != NodeType.InstanceInitializer)) 
{ 
 // do something 
} 

In order to understand what this expression is about, you need to analyze its exact details and all the possible 
outcomes. Obviously, you could add an explanatory comment on top of it, but it is much better to replace this complex 
expression with a clearly named method: 

if (NonConstructorMemberUsesNewKeyword(member)) 
{ 
 // do something 
} 
 
private bool NonConstructorMemberUsesNewKeyword(Member member) 
{ 
 return  
  (member.HidesBaseClassMember &&  
  (member.NodeType != NodeType.InstanceInitializer) 
} 

You still need to understand the expression if you are modifying it, but the calling code is now much easier to grasp. 

AV1551 Call the most overloaded method from other overloads  

This guideline only applies to overloads that are intended for providing optional arguments. Consider for example the 
following code snippet: 

public class MyString 
{ 
 private string someText; 
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 public MyString(string text) 
  { 
    this.someText = text; 
  } 
  
  public int IndexOf(string phrase) 
  { 
    return IndexOf(phrase, 0, someText.Length); 
  } 
  
 public int IndexOf(string phrase, int startIndex) 
  { 
    return IndexOf(phrase, startIndex, someText.Length - startIndex ); 
  } 
  
 public virtual int IndexOf(string phrase, int startIndex, int count) 
  { 
    return someText.IndexOf(phrase, startIndex, count); 
  } 
} 

The class MyString provides three overloads for the IndexOf method, but two of them simply call the one with the 

most parameters. Notice that the same rule applies to class constructors; implement the most complete overload and 
call that one from the other overloads using the this() operator. Also notice that the parameters with the same name 

should appear in the same position in all overloads. 

Important If you also want to allow derived classes to override these methods, define the most complete overload as a 

protected virtual method that is called by all overloads. 

AV1553 Only use optional arguments to replace overloads  

The only valid reason for using C# 4.0’s optional arguments is to replace the example from rule AV1551 with a single 
method like: 

public virtual int IndexOf(string phrase, int startIndex = 0, int count = 0) 
{ 
 return someText.IndexOf(phrase, startIndex, count); 
} 

If the optional parameter is a reference type then it can only have a default value of null. But since strings, lists and 

collections should never be null according to rule AV1235, you must use overloaded methods instead. 

Note The default values of the optional parameters are stored at the caller side. As such, changing the default value 

without recompiling the calling code will not apply the new default value properly. 

Note When an interface method defines an optional parameter, its default value is not considered during overload 

resolution unless you call the concrete class through the interface reference. See this post by Eric Lippert for more 
details. 

AV1555 Avoid using named arguments  

C# 4.0’s named arguments have been introduced to make it easier to call COM components that are known for offering 
tons of optional parameters. If you need named arguments to improve the readability of the call to a method, that 
method is probably doing too much and should be refactored. 

The only exception where named arguments improve readability is when a constructor that yields a valid object is 
called like this: 

Person person = new Person 
( 
 firstName: "John",  
 lastName: "Smith",  
 dateOfBirth: new DateTime(1970, 1, 1) 
); 
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AV1561 Don’t allow methods and constructors with more than three parameters  

If you end up with a method with more than three parameters, use a structure or class for passing multiple arguments 
such as explained in the Specification design pattern. In general, the fewer the number of parameters, the easier it is to 
understand the method. Additionally, unit testing a method with many parameters requires many scenarios to test. 

AV1562 Don’t use ref or out parameters  

They make code less understandable and might cause people to introduce bugs. Prefer returning compound objects 
instead. 

AV1564 Avoid methods that take a bool flag  

Consider the following method signature: 

public Customer CreateCustomer(bool platinumLevel) {} 

 

On first sight this signature seems perfectly fine, but when calling this method you will lose this purpose completely: 

Customer customer = CreateCustomer(true); 

Often, a method taking such a flag is doing more than one thing and needs to be refactored into two or more methods. 
An alternative solution is to replace the flag with an enumeration.  

AV1568 Don’t use parameters as temporary variables  

Never use a parameter as a convenient variable for storing temporary state. Even though the type of your temporary 
variable may be the same, the name usually does not reflect the purpose of the temporary variable. 

AV1570 Always check the result of an as operation  

If you use as to obtain a certain interface reference from an object, always ensure that this operation does not return 

null. Failure to do so may cause a NullReferenceException at a much later stage if the object did not implement 

that interface. 

AV1575 Don’t comment out code  

Never check-in code that is commented-out, but instead use a work item tracking system to keep track of some work to 
be done. Nobody knows what to do when they encounter a block of commented-out code. Was it temporarily disabled 
for testing purposes? Was it copied as an example? Should I delete it?  
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6 Naming Guidelines 

AV1701 Use US-English  

All type members, parameters and variables should be named using words from the American English language.  

 Choose easily readable, preferably grammatically correct names. For example, HorizontalAlignment is more 

readable than AlignmentHorizontal. 

 Favor readability over brevity. The property name CanScrollHorizontally is better than ScrollableX (an 

obscure reference to the X-axis). 

 Avoid using names that conflict with keywords of widely used programming languages. 

Exception In most projects, you will use words and phrases from your domain and names specific to your company. 

Visual Studio’s Static Code Analysis will perform a spelling check on all code, so you may need to add those terms to a 
Custom Code Analysis Dictionary. 

AV1702 Use proper casing for language elements  

Language element Casing   Example 

Class, Struct Pascal  AppDomain 

Interface Pascal IBusinessService 

Enumeration type Pascal  ErrorLevel 

Enumeration values Pascal  FatalError 

Event Pascal  Click 

Private field Camel listItem 

Protected field Pascal MainPanel 

Const field Pascal MaximumItems 

Const variable Camel maximumItems 

Read-only static field Pascal RedValue 

Variable Camel  listOfValues 

Method Pascal  ToString 

Namespace Pascal  System.Drawing 

Parameter Camel  typeName 

Type Parameter Pascal TView 

Property Pascal  BackColor 

AV1704 Don’t include numbers in variables, parameters and type members  

In most cases they are a lazy excuse for not defining a clear and intention-revealing name. 

AV1705 Don’t prefix fields  

For example, don’t use g_ or s_ to distinguish static versus non-static fields. In general, a method in which it is difficult 

to distinguish local variables from member fields is too big. Examples of incorrect identifier names are: _currentUser, 

mUserName, m_loginTime. 

AV1706 Don’t use abbreviations  

For example, use OnButtonClick rather than OnBtnClick. Avoid single character variable names, such as i or q. 

Use index or query instead. 

Exceptions Use well-known abbreviations that are widely accepted or well-known within the domain you work. For 

instance, use UI instead of UserInterface.  

AV1707 Name a member, parameter or variable according its meaning and not its type  

 Use functional names. For example, GetLength is a better name than GetInt. 

 Don’t use terms like Enum, Class or Struct in a name. 

 Identifiers that refer to a collection type should have a plural name. 
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AV1708 Name types using nouns, noun phrases or adjective phrases  

Bad examples include SearchExamination (a page for searching for examinations), Common (does not end with a 

noun, and does not explain its purpose) and SiteSecurity (although the name is technically okay, it does not say 

anything about its purpose). Good examples include BusinessBinder, SmartTextBox, or EditableSingleCustomer. 

Don’t include terms like Utility or Helper in classes. Classes with a name like that are usually static classes and are 

introduced without considering the object-oriented principles (see also AV1008).  

AV1709 Name generic type parameters with descriptive names  

 Always prefix descriptive type parameter names with the letter T. 

 Always use a descriptive names unless a single-letter name is completely self-explanatory and a longer name 
would not add value. Use the single letter T as the type parameter in that case. 

 Consider indicating constraints placed on a type parameter in the name of parameter. For example, a parameter 
constrained to ISession may be called TSession. 

AV1710 Don’t repeat the name of a class or enumeration in its members  

class Employee 
{ 
 // Wrong!  
   static GetEmployee() {} 
   DeleteEmployee() {} 
  
   // Right 
   static Get() {...} 
   Delete() {...} 
  
   // Also correct. 
   AddNewJob() {...} 
   RegisterForMeeting() {...} 
}       

AV1711 Name members similarly to members of related .NET Framework classes  

.NET developers are already accustomed to the naming patterns the framework uses, so following this same pattern 
helps them find their way in your classes as well. For instance, if you define a class that behaves like a collection, 
provide members like Add, Remove and Count instead of AddItem, Delete or NumberOfItems. 

AV1712 Avoid short names or names that can be mistaken with other names  

Although technically correct, the following statement can be quite confusing. 

bool b001 = (lo == l0) ? (I1 == 11) : (lOl != 101); 

AV1715 Properly name properties  

 Do name properties with nouns, noun phrases, or occasionally adjective phrases.  

 Do name Boolean properties with an affirmative phrase. E.g. CanSeek instead of CantSeek. 

 Consider prefixing Boolean properties with Is, Has, Can, Allows, or Supports. 

 Consider giving a property the same name as its type. When you have a property that is strongly typed to an 
enumeration, the name of the property can be the same as the name of the enumeration. For example, if you have 
an enumeration named CacheLevel, a property that returns one of its values can also be named CacheLevel. 

AV1720 Name methods using verb-object pair  

Name methods using a verb-object pair such as ShowDialog. A good name should give a hint on the what of a 

member, and if possible, the why. Also, don’t include And in the name of the method. It implies that the method is doing 

more than one thing, which violates the single responsibility principle explained in AV1115. 
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AV1725 Name namespaces using names, layers, verbs and features  

For instance, the following namespaces are good examples of that guideline. 

AvivaSolutions.Commerce.Web 
NHibernate.Extensibility 
Microsoft.ServiceModel.WebApi 
Microsoft.VisualStudio.Debugging 
FluentAssertion.Primitives 
CaliburnMicro.Extensions 

Note Never allow namespaces to contain the name of a type, but a noun in its plural form, e.g. Collections, is usually 

okay. 

AV1735 Use a verb or verb phrase to name an event  

Name events with a verb or a verb phrase. For example: Click, Deleted, Closing, Minimizing, and Arriving. For 

example, the declaration of the Search event may look like this:  

public event EventHandler<SearchArgs> Search; 

AV1737 Use -ing and -ed to express pre-events and post-events  

For example, a close event that is raised before a window is closed would be called Closing and one that is raised 

after the window is closed would be called Closed. Don’t use Before or After prefixes or suffixes to indicate pre and 

post events.  

Suppose you want to define events related to the deletion process of an object. Avoid defining the Deleting and 

Deleted events as BeginDelete and EndDelete. Define those events as follows: 

 Deleting: Occurs just before the object is getting deleted 

 Delete: Occurs when the object needs to be deleted by the event handler. 

 Deleted: Occurs when the object is already deleted. 

AV1738 Prefix an event handler with On  

It is good practice to prefix the method that handles an event with On. For example, a method that handles the Closing 

event could be named OnClosing. 

AV1739 Use an underscore for irrelevant lambda parameters  

If you use a lambda statement, for instance, to subscribe to an event, and the actual parameters of the event are 
irrelevant, use the following convention to make that more explicit. 

button.Click += (_, __) => HandleClick(); 

AV1745 Group extension methods in a class suffixed with Extensions  

If the name of an extension method conflicts with another member or extension method, you must prefix the call with 
the class name. Having them in a dedicated class with the Extensions suffix improves readability. 

AV1755 Postfix asynchronous methods with Async of TaskAsync  

The general convention for methods that return Task or Task<TResult> is to post-fix them with Async, but if such a 

method already exist, use TaskAsync instead. 
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7 Performance Guidelines 

AV1800 Consider using Any() to determine whether an IEnumerable<T> is empty  

When a method or other member returns an IEnumerable<T> or other collection class that does not expose a Count 

property, use the Any() extension method rather than Count() to determine whether the collection contains items. If 

you do use Count(), you risk that iterating over the entire collection might have a significant impact (such as when it 

really is an IQueryable<T> to a persistent store).  

Note If you return an IEnumerable<T> to prevent editing from outside the owner as explained in AV1130 and you’re 

developing in .NET 4.5 or higher, consider the new read-only classes.  

AV1820 Only use async for low-intensive long-running activities 

The usage of async won’t automagically run something on a worker thread like Task.Run does. It just adds the 

necessary logic to allow releasing the current thread and marshal the result back on that same thread if a long-running 
asynchronies operation has completed. In other words, use async only for I/O bound operations.  

AV1825 Prefer Task.Run for CPU intensive activities 

If you do need to execute a CPU bound operation, use Task.Run to offload the work to a thread from the Thread Pool. 

Just don’t forget that you have to marshal the result back to your main thread manually. 

AV1830 Beware of mixing up await/async with Task.Wait 

await will not block the current thread but simply instruct to compiler to generate a state-machine. However, 

Task.Wait will block the thread and may even cause dead-locks (see AV1835). 

AV1835 Beware of async/await deadlocks in single-threaded environments 

Consider the following asynchronous method:  

private async Task<string> GetDataAsync() 
{ 
 var result = await MyWebService.GetDataAsync(); 
 return result.ToString(); 
} 

Now when an ASP.NET MVC controller action does this: 

public ActionResult ActionAsync() 
{ 
 var data = GetDataAsync().Result; 
   
 return View(data); 
} 

You’ll end up with a deadlock. Why? Because the Result property getter will block until the async operation has 

completed, but since an async method will automatically marshal the result back to the original thread and ASP.NET 
uses a single-threaded synchronization context, they’ll be waiting on each other. A similar problem can also happen on 
WPF, Silverlight or a Windows Store C#/XAML app. Read more about this here. 
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8 Framework Guidelines 

AV2201 Use C# type aliases instead of the types from the System namespace  

For instance, use object instead of Object, string instead of String, and int instead of Int32. These aliases have 

been introduced to make the primitive types a first class citizen of the C# language so use them accordingly, 

Exception When referring to static members of those types, it is custom to use the full CLS name, e.g. 

Int32.Parse() instead of int.Parse(). 

AV2205 Properly name properties, variables or fields referring to localized resources  

The guidelines in this topic apply to localizable resources such as error messages and menu text.  

 Use Pascal casing in resource keys. 

 Provide descriptive rather than short identifiers. Keep them concise where possible, but don’t sacrifice readability. 

 Use only alphanumeric characters in naming resources. 

AV2207 Don’t hardcode strings that change based on the deployment  

Examples include connection strings, server addresses, etc. Use Resources, the ConnectionStrings property of the 

ConfigurationManager class, or the Settings class generated by Visual Studio. Maintain the actual values into the 

app.config or web.config (and most definitely not in a custom configuration store).  

AV2210 Build with the highest warning level  

Configure the development environment to use Warning Level 4 for the C# compiler, and enable the option Treat 
warnings as errors. This allows the compiler to enforce the highest possible code quality.  

AV2215 Properly fill the attributes of the AssemblyInfo.cs file  

Ensure that the attributes for the company name, description, copyright statement, version, etc. are filled. One way to 
ensure that version and other fields that are common to all assemblies have the same values, is to move the 
corresponding attributes out of the AssemblyInfo.cs into a SolutionInfo.cs file that is shared by all projects within 

the solution.   

AV2220 Avoid LINQ for simple expressions  

Rather than 

var query = from item in items where item.Length > 0; 

prefer using the extension methods from the System.Linq namespace. 

var query = items.Where(i => i.Length > 0); 

Since LINQ queries should be written out over multiple lines for readability, the second example is a bit more readable. 

AV2221 Use Lambda expressions instead of delegates  

Lambda expressions provide a much more elegant alternative for anonymous delegates. So instead of 

Customer c = Array.Find(customers, delegate(Customer c)  
{  
 return c.Name == “Tom”;  
}); 

use a Lambda expression: 

Customer c = Array.Find(customers, c => c.Name == “Tom”);  

Or even better 

var customer = customers.Where(c => c.Name == “Tom”); 
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AV2230 Only use the dynamic keyword when talking to a dynamic object  

The dynamic keyword has been introduced for working with dynamic languages. Using it introduces a serious 

performance bottleneck because the compiler has to generate some complex Reflection code.  

Use it only for calling methods or members of a dynamically created instance (using the Activator) class as an 

alternative to Type.GetProperty() and Type.GetMethod(), or for working with COM Interop types. 

AV2235 Favor async/await over the Task 

Using the new C# 5.0 keywords results in code that can still be read sequentially and also improves maintainability a 
lot, even if you need to chain multiple asynchronous operations. For example, rather than defining your method like 
this: 

public Task<Data> GetDataAsync() 
{ 
    return MyWebService.FetchDataAsync() 
        .ContinueWith(t => new Data (t.Result)); 
} 

define it like this: 

public async Task<Data> GetDataAsync() 
{ 
    var result = await MyWebService.FetchDataAsync(); 
 
    return new Data (result); 
} 
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9 Documentation Guidelines 

AV2301 Write comments and documentation in US English  

AV2305 Document all public, protected and internal types and members  

Documenting your code allows Visual Studio to pop-up the documentation when your class is used somewhere else. 
Furthermore, by properly documenting your classes, tools can generate professionally looking class documentation.  

AV2306 Write XML documentation with another developer in mind  

Write the documentation of your type with another developer in mind. Assume he or she will not have access to the 
source code and try to explain how to get the most out of the functionality of your type. 

AV2307 Write MSDN-style documentation  

Following the MSDN on-line help style and word choice helps the developer to find its way through your documentation 
more easily.  

Tip The tool GhostDoc can generate a starting point for documenting code with a shortcut key. 

AV2310 Avoid inline comments  

If you feel the need to explain a block of code using a comment, consider replacing that block with a method having a 
clear name. 

AV2316 Only write comments to explain complex algorithms or decisions  

Try to focus comments on the why and what of a code block and not the how. Avoid explaining the statements in 

words, but instead help the reader understand why you chose a certain solution or algorithm and what you are trying to 
achieve. If applicable, also mention that you chose an alternative solution because you ran into a problem with the 
obvious solution. 

AV2318 Don’t use comments for tracking work to be done later  

Annotating a block of code or some work to be done using a TODO or similar comment may seem a reasonable way of 
tracking work-to-be-done. But in reality, nobody really searches for comments like that. Use a work item tracking 
system such as Team Foundation Server to keep track of left overs. 
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10 Layout Guidelines 

AV2400 Use a common layout  

 Keep the length of each line under 130 characters. 

 Use an indentation of 4 whitespaces, and don’t use tabs 

 Keep one whitespace between keywords like if and the expression, but don’t add whitespaces after ( and before 

) such as: if (condition == null). 

 Add a whitespace around operators, like +, -, ==, etc. 

 Always succeed the keywords if, else, do, while, for and foreach, with opening and closing parentheses, even 

though the language does not require it.   

 Always put opening and closing parentheses on a new line. 

 Don’t indent object Initializers and initialize each property on a new line, so use a format like this:  
 
var dto = new ConsumerDto() 
{ 
    Id = 123, 
    Name = “Microsoft”, 
    PartnerShip = PartnerShip.Gold, 
} 

 Don’t indent lambda statements and use a format like this: 
 
methodThatTakesAnAction.Do(x => 
{ 
  // do something like this  
} 

 Put the entire LINQ statement on one line, or start each keyword at the same indentation, like this: 
 

var query = from product in products where product.Price > 10 select product; 

 

or 
 

var query = 

    from product in products 

    where product.Price > 10 

    select product; 

 Start the LINQ statement with all the from expressions and don’t interweave them with where restrictions. 

 Add braces around every comparison condition, but don’t add braces around a singular condition. For example 
if (!string.IsNullOrEmpty(str) && (str != “new”)) 

 Add an empty line between multi-line statements, between members, after the closing parentheses, between 
unrelated code blocks, around the #region keyword, and between the using statements of different companies. 

AV2402 Order and group namespaces according the company  

// Microsoft namespaces are first 
using System; 
using System.Collections; 
using System.XML; 
  
// Then any other namespaces in alphabetic order 
using AvivaSolutions.Business; 
using AvivaSolutions.Standard; 
 
using Telerik.WebControls; 
using Telerik.Ajax; 
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AV2406 Place members in a well-defined order  

Maintaining a common order allows other team members to find their way in your code more easily. In general, a 
source file should be readable from top to bottom, as if you are reading a book. This prevents readers from having to 
browse up and down through the code file. 

1. Private fields and constants (in a region) 

2. Public constants 

3. Public read-only static fields 

4. Factory Methods 

5. Constructors and the Finalizer 

6. Events  

7. Public Properties 

8. Other methods and private properties in calling order 

AV2407 Be reluctant with #regions  

Regions can be helpful, but can also hide the main purpose of a class. Therefore, use #regions only for: 

 Private fields and constants (preferably in a Private Definitions region). 

 Nested classes 

 Interface implementations (only if the interface is not the main purpose of that class)  
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11 Important Resources 

11.1 The companion website 

This document is part of an effort to increase the consciousness with which C# developers do their daily job on a 
professional level. Therefor I’ve started a dedicated CodePlex site that can be easily found using the URL 
www.csharpcodingguidelines.com.  

In addition to the most up to date version of this document, you’ll find: 

 A companion quick-reference sheet 

 Visual Studio 2010/2012 Rule Sets for different types of systems. 

ReSharper layout configurations matching the rules in chapter 10. 

 A place to have discussions on C# coding quality. 

11.2 Useful links 

In addition to the many links provided throughout this document, I’d like to recommend the following books, articles and 
sites for everyone interests in software quality, 

Code Complete: A Practical Handbook of Software Construction (Steve McConnel) 
One of the best books I’ve ever read. It deals with all aspects of software development, and even though the book was 
originally written in 2004, but you’ll be surprised when you see how accurate it still is. I wrote a review in 2009 if you 
want to get a sense of its contents. 

The Art of Agile Development (James Shore) 
Another great all-encompassing trip through the many practices preached by processes like Scrum and Extreme 
Programming. If you’re looking for a quick introduction with a pragmatic touch, make sure you read James’ book. 

Applying Domain Driven-Design and Patterns: With Examples in C# and .NET (Jimmy Nilsson) 
The book that started my interest for both Domain Driven Design and Test Driven Development. It’s one of those books 
that I wished I had read a few years earlier. It would have saved me from many mistakes.. 

Jeremy D. Miller’s Blog 
Although he is not that active anymore, in the last couple of years he has written some excellent blog posts on Test 
Driven Development, Design Patterns and design principles. I’ve learned a lot from his real-life and practical insights. 

LINQ Framework Design Guidelines 
A set of rules and recommendations that you should adhere to when creating your own implementations of 
IQueryable<T>.  

Best Practices for c# async/await 
The rationale and source of several of the new guidelines in this documented, written by Jon Wagner. 
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