
Abstract Factory Builder

Factory Method Prototype

Singleton Adapter

Bridge Composite

Decorator Facade



Separates the construction of a complex object from
its representation so that the same construction

process can create different representations.

Provides an interface for creating families of related
or dependent objects without specifying their

concrete classes.

Specifies the kinds of objects to create using an
instance, and creates new objects by copying this

instance.

Defines an interface for creating an object, but lets
subclasses decide which class to instantiate. Lets a

class defer instantiation to subclasses.

Converts the interface of a class into another
interface clients expect. Lets classes work together

that couldn’t otherwise because of incompatible
interfaces.

Ensures a class has only one instance, and provides a
global point of access to it.

Organises objects into tree structures to represent
whole-part hierarchies. This pattern lets clients treat
individual objects and object compositions uniformly.

Decouples an abstraction from its implementation so
that the two can vary independently.

Provides a unified interface to a set of interfaces in a
subsystem. Defines a higher-level interface that

makes the subsystem easier to use.

Attaches additional responsibilities to an object
dynamically. Provides a flexible alternative to

subclassing for extending functionality.



Flyweight Proxy

Chain of Responsibility Command

Interpreter Iterator

Mediator Memento

Observer State



Provides a surrogate or placeholder for another
object to control access to it.

Uses sharing to support large numbers of fine-grained
objects efficiently.

Encapsulates a request as an object, thereby letting
you parameterise clients with different requests,

queue or log requests, and support undoable
operations.

Avoids coupling the sender of a request to its receiver
by giving more than one object a chance to handle

the request. Chain the receiving objects and pass the
request along the chain until an object handles it.

Provides a way to access the elements of an aggregate
object sequentially without exposing its underlying

representation.

Given a language, define a representation for its
grammar along with an interpreter that uses the

representation to interpret sentences in the language.

Without violating encapsulation, capture and
externalise an object’s internal state so that the

object can be restored to this state later.

Defines an object that encapsulates how a set of
objects interact. Promotes loose coupling by keeping
objects from referring to each other explicitly, and it

lets you vary their interaction independently.

Allows an object to alter its behaviour when its
internal state changes. The object will appear to

change its class.

Defines a one-to-many dependency between objects
so that when one object changes state, all its

dependents are notified and updated automatically.



Strategy Template Method

Visitor



Defines the skeleton of an algorithm in an operation,
deferring some steps to subclasses. Lets subclasses

redefine certain steps of an algorithm without
changing the algorithm’s structure.

Defines a family of algorithms, encapsulates each one,
and makes them interchangeable. Lets the algorithm

vary independently from the clients that use it.

Represents an operation to be performed on the
elements of an object structure. Lets you define a
new operation without changing the classes of the

elements on which it operates.


