

DZone, Inc. | www.dzone.com

By Mike Keith

G
e

tt
in

g
 S

ta
rt

e
d

 w
it

h
 J

PA
 2

.0

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#127

CONTENTS INCLUDE:
n	 Whats New in JPA 2.0
n	 JDBC Properties
n	 Access Mode
n	 Mappings
n	 Shared Cache
n	 Additional API and more...

Getting Started with
 JPA 2.0

http://www.refcardz.com
http://www.dzone.com
http://www.refcardz.com
http://answerhub.com/

DZone, Inc. | www.dzone.com

G
et

 M
o

re
 R

ef
ca

rd
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#167
S

C
M

 P
at

te
rn

s

By Steve Berczuk

ABOUT SCM PATTERNS

Software configuration management enables team members to work
together more effectively. SCM touches on all aspects of the development
process; so well-done SCM can improve productivity. Done poorly, SCM
can slow a project down and cause frustration. Effective SCM makes use
of more than just the source code management system. It requires that
you think about the build and testing process, and also that you continually
evaluate how modular your architecture is.

The software configuration management patterns are most applicable to
small teams that favor an agile software development approach, but they
can help any team identify bottlenecks and work more effectively. If your
team isn’t agile, but wants to be, following these patterns will provide a
framework for your team to develop more agile technical practices.

This Refcard describes some patterns that enable teams to work
effectively. These patterns are described in detail in the book Software
Configuration Management Patterns: Effective Teamwork, Practical
Integration.

PATTERNS, PRACTICES, AND TOOLS

The patterns in this Refcard are mostly tool-agnostic. Some tools support
the practices implicitly, but any team can implement these patterns using
any tool set. You want to think about how you work first, and then look into
tools.

The tools you will want to have in place are:

•	 A source code management system. Either a centralized SCM such
as Subversion or a distributed one such as Git will work.

•	 A build tool that defines dependencies between components and
allows for simple build and test execution. Maven and Make are two
examples.

•	 A continuous integration server, e.g., Cruise Control, Anthill, or
Bamboo.

•	 A documentation system such as a Wiki or a well-known location in
the SCM repository will do.

•	 An artifact repository to keep built and third party artifacts. A
Maven repository manager or an SCM repository that can store
binary files will work.

The operations you need to be able to do are:

•	 Add code to and checkout code from an SCM repository.

•	 Commit changes to the SCM repository.

•	 Create a source code branch.

•	 Create a checkpoint (a label tag) in the SCM repository.

•	 Monitor a code line for changes to trigger a build using the CI
server.

•	 Build a project when changes are detected using the CI server.

•	 Alert the team when a build or its tests fail.

There are a number of commercial and open-source solutions that provide
this functionality. If you have an existing tool set it is likely that you can
implement the patterns with your tools.

THE PATTERNS

Pattern Supported By

Main Line Active Development Line

Active Development Line Private Workspace
Private Versions
Task Branch
Release Line
Release Prep Code Line
Code Line Policy

Private Workspace Third Party Code Line
Repository
Integration Build
Private System Build

Repository Third Party Code Line

Private Build Smoke Test

Integration Build Task Level Commit
Smoke Test

Third Party Code Line

Task Level Commit

Code Line Policy

Smoke Test Unit Test
Regression Test

Unit Test

Regression Test

Private Versions Code Line Policy

Release Line Code Line Policy

Release Prep Code Line Code Line Policy

Task Branch Code Line Policy

Software Configuration
Management Patterns

CONTENTS INCLUDE:

❱ Patterns, Practices and Tools

❱ The Patterns

❱ Core Patterns

❱ Workspace Patterns

❱ Code Line Patterns

❱ General Guidlines...and more!

http://www.refcardz.com
http://www.dzone.com
http://www.refcardz.com
http://www.answerhub.com
mailto:info@cloudbees.com

2 SCM Patterns

DZone, Inc. | www.dzone.com

The SCM Patterns can help any team to be more productive, and they
especially work well with agile technical practices such as unit testing and
continuous integration.

The patterns can be grouped into 3 parts:

•	 Core patterns that the rest of the language support
•	 Workspace patterns that describe how developers work
•	 Code line patterns that describe how to structure supporting code

lines to enable delivery of new software from the main line

CORE PATTERNS

The first decision you need to make is how to structure your code lines. The
SCM Patterns describe how to work with fewer code lines, emphasizing
integration over isolation.

Main Line
The more code lines you have, the harder it is to understand the state of the
project. While tools can help manage multiple code lines, the simplest way
to minimize the overhead of branch management and context switching is
to develop on a single Main Line.

The Main Line pattern can help you to deliver rapidly with a team focused
on a single project. With a main line, all changes end up on a single stream
of development. This provides the following advantages:

•	 Reduced merging and synchronization effort; fewer code lines mean
fewer merges.

•	 More consistent integration, reducing the schedule risk of
integrating late in the release cycle.

If you are using the Main Line development model, strive to reduce
branching to special situations such as:

•	 Releases. Create a release line to manage fixes to released code.

•	 Long-lived parallel efforts. Use a task branch for this.

•	 Integration and stabilization. A release prep code line has
advantages over a code freeze for stabilization.

Since each branch is a potential distraction, limit branching to situations
where the advantages outweigh potential issues.

The risk with main line development is that developers might commit
changes that break the code line. For development on a single code line to
be effective you need to give this code line a place where developers can
feel confident that the code is working. An active development line provides
a framework for a more stable main line.

Active Development Line
An active development line is a main line in which developers use practices
to ensure that the code is in a working state. An active development line
can support you when you need to do frequent releases and it is essential
for agile software development. The patterns that support these practices
are:

•	 Code line policy

•	 Unit test

•	 Integration build

•	 Private workspaces

•	 Private build

To maintain the activity on the code line, define a code line policy that will
keep serious defects out of the code line and integration build, but be willing
to ignore trivial defects, as being too strict can paralyze the team.

The Code Line Policy for an Active Development Line could include the
following rules:

•	 The code should run through the Private Build in a Private
Workspace successfully before a commit.

•	 All changes will be accompanied by appropriate tests, or a
comment explaining why a test is not being done.

•	 If the common Integration Build fails, the team will address it
immediately.

Since the goal of Active Development line is to err on the side of progress,
an occasional broken build is less disruptive than merging uncommitted
changes.

WORKSPACE PATTERNS

Build and test practices are essential to maintaining active code lines. The
workspace patterns define these.

Figure 1: Workspace Patterns

Private Workspace
To maintain an active development line, you need an environment where
developers can identify integration issues before code is shared with the
team. Developers need control over the state of the code they are working
with so that they can work without distraction.

A private workspace is an environment in which developers can build
and test before accepting changes from the active development line, or
publishing them to the active development line.

A private workspace has all of the dependencies a developer needs to work
independently including:

•	 Code

•	 Tools

•	 The correct version of build tools

•	 The correct version of dependencies

•	 Configuration files

A developer needs to easily create the workspace from a simple set of
instructions using the repository.

The private workspace is useful for developers to get work done. For
the team to work effectively, developers need to follow the process in
the private build pattern by updating their workspace frequently and
committing changes frequently when the code is working. This ensures
that the status of the code accurately reflects the state of the active
development line.

Repository
To set up a new private workspace or an Integration build, you need to
populate it from a repository that contains everything you need to build the
code, including:

•	 Source code

•	 Build scripts

•	 Configuration

•	 Third party components.

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com

3 SCM Patterns

DZone, Inc. | www.dzone.com

The repository can be composed of a number of tools. Source code can be
in a source code management system. Components can be in an artifact
repository such as a Maven repository or a source code management
system.

Ideally, a developer should be able to create a workspace for a project in
two steps:

•	 Check out a copy of the code from your SCM system.

•	 Build the project.

The only documentation you should need is:

•	 The path to the project in the SCM System.

•	 The build command.

•	 Configuration changes to make for different environments
(optional).

You can document the workspace creation process in a well know
location in the SCM repository, or on a CMS such as a wiki. A common
convention would be to have a Getting Started page. Fewer, self running
scripts are better than a longer documented process, but the key attribute
of a successful Getting Started process is that it can be executed without
assistance from anyone else.

Having all dependencies in a single repository and simple procedure for
creating a workspace will minimize the risk of introducing bugs that are
related to environmental differences and improve efficiency when people
join or move between projects.

Private Build
To avoid breaking the active development line, perform a private build in
your private workspace before committing changes. This will allow you to
detect integration errors before they affect other developers.

The private build:

•	 Builds the code.

•	 Runs smoke tests.

•	 Runs unit tests.

•	 Creates a deployable artifact.

The private build should be identical to the integration build, or at least as
close as possible. If the integration build skips some tests in the interest of
speed, periodically run these tests in the private build.

To avoid checking in code that will break the integration build developers
run the Private Build as they develop. Before anything, commit developers
should:

•	 Update their private workspace from the active development line.

•	 Run the private build.

•	 Commit their changes only when the build passes.

The private build should be able to grab all dependencies automatically,
and not rely on manual installs. A common mechanism for this is to pull
dependencies from a Maven or Ivy repository.

Integration Build
Building in a private workspace provides some assurance that all of the
code works together. However, you still want an automated mechanism
to verify that the code that is in the version management system always
builds and passes tests. An integration build runs automatically when
changes are detected in the code line.

The integration build:

•	 Updates the source in an integration workspace.

•	 Builds the code.

•	 Runs unit, smoke, and integration tests.

The integration build should be automated, fairly quick, and failures should
be addressed immediately. If running a complete suite of tests takes too
long, split the integration build into two phases: one that runs smoke tests,
and one that runs more thorough unit and regression tests.

Third Party Code Line
All of your locally developed code is in your repository. Code from outside
the organization that you depend on should also be there, as you need a
way to manage dependencies. For binary dependencies, you can identify
versions in your build configurations and use a repository manager. When
you need to make customizations to open source code, you might want to
manage the source code in your repository. A third party code line is a way
you can easily manage local customizations to code:

•	 Add the third party source to your SCM repository.

•	 Label the original source.

•	 Create a branch for your local changes.

•	 When there is a new release of the third party code, add it to the
mainline. Create a new branch for this code.

•	 Merge any relevant changes from the old branch to the new branch.

Once this is done, create an integration build for the code and a mechanism
for developers to reference the third-party artifacts.

Task Level Commit
To help ensure that the integration build line reflects the current state of the
code, organize code changes by task-oriented units of work by committing
frequently and by associating each task level commit with an issue from
your issue tracking system. A task level commit is:

•	 Small. Commit changes when you have completed a unit of work.

•	 Frequent. Commit code as often as possible while maintaining
working code.

•	 Associated with a feature being developed. For example; each
commit could have an issue number mentioned.

For instance, you might commit after each of these steps:

•	 Adding a method and unit test.

•	 Using the new method.

Many issue-tracking systems can associate commits with the issue
identifiers either by metadata or by finding issue IDs in the commit
comments. Associating each commit with an issue is important in:

•	 Identifying code changes that went into implementing an issue. This
is useful for auditing and research.

•	 Identifying the effort required for features.

•	 Helping developers focus their efforts on useful features.

Be sure to update and build code before committing changes to the main
line.

Smoke Test
An Integration Build and Private Build use testing to help ensure that your
code line is an Active Development Line. To verify that the code line still
works after a change, run a Smoke Test after each change as part of the
build. A Smoke Test is:

•	 Quick Running
•	 Self Scoring
•	 Providing broad coverage
•	 Runnable by developers as part of a build-time test

Smoke Tests do not replace all manual quality assurance efforts, but allow
for a way to catch common, critical errors quickly after each change.

Unit Test
Smoke Tests provide a quick way to make sure that the application
works at a high level. You can rely on smoke tests only if you also have
a mechanism to verify that your modules still works after you make a
change. Unit Tests are tests that test low level APIs and contracts.

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com

4 SCM Patterns

DZone, Inc. | www.dzone.com

Unit Tests are:

•	 Automated and self-evaluating
•	 Fine grained
•	 Isolated, A unit test does not interact with other tests

Unit tests test the contract that a class has with other components. Run
Unit tests while you are coding, before you check in changes, and as part of
the build.

Writing unit tests as you code will also help you to identify coupling
between modules so that you can remove it if it is inappropriate. Applying
practices such as Test Driven Development where you write tests before
you write code can be one way to ensure that you have good test coverage.

Unit Tests can also help to identify when integrating conflicting changes
from a code merge is successful. If the existing tests and the tests that
went with the change you are merging both pass, you can be more
confident that you merged changes correctly.

Using a framework like xUnit can simplify your unit testing process.

Regression Test
Unit Tests and Smoke Tests are designed to be fast and meant to be run
frequently. You still need a more comprehensive way to ensure that existing
code does not get worse as you make other improvements.

Regression tests are a kind of integration test. Regression tests are often
driven by problems that you found reactively, and might take longer to run
than a build time test should. Ideally, regression tests will be automated.

Regression tests should cover:

•	 Problems you find in the QA process
•	 User-reported problems
•	 System level requirements

When you find an error in a released build, it’s a good practice to add a test
that identifies the issue to the build.

If the Regression Tests don’t take too long to run, add them to the main
integration build. Otherwise run them as a second stage build, and consider
adding “run regression tests on build” to the code line policy of a Release
Line.

CODE LINE PATTERNS

While a single main line that always builds is ideal, there are times when
you may want to create branches for certain classes of work to make
it easier to keep the main line stable and active. The code line patterns
describe these code lines as well as the concept of a code line policy.

Figure 2: Code Line Patterns

Release Line
Active Development Line development is a simple and powerful approach
to efficiently developing software. But developing software in a way that
you can deliver at any point in time is challenging. It is useful to have the
ability to maintain released versions without interfering with your current
development by creating a Release Line. A release line is probably of the
more commonly used patterns.

As you release code to customers, identify the version of the release by a
tag, and create a branch at that tag when you need to deliver a fix.

When appropriate, integrate changes from the Release Line into the Main
Line, either by a merge, or, if the code has diverged significantly, by a
parallel change.

A Code Line Policy for a Release Line might include:

•	 Each change should be in response to a documented issue.
•	 Each commit must reference an issue identifier.
•	 Changes should be reviewed with another team member before

commits.
•	 Any change should be accompanied by a change to an existing

test, a new test, or a reason why there is no test.
•	 Before committing a change, a developer should run additional

tests such as regression tests, in their Private Workspace.
•	 If the Integration Build fails, every team member stops to help

address the issue.

The details are team dependent; the goal is to have a stable Release Line.

In some ways, development on a Release Line is similar to a waterfall like
process, and as such release lines should be used with care.

Release Prep Code Line
The goal of Active Development Line development is to release products
from the tip of the code line. In some cases, teams still need extra time to
stabilize code before a release while also enabling new work. The traditional
approach to this, a code freeze, has a number of down sides, including
the opportunity for idle time and/or teams doing work without committing
changes to the Main Line.

You can provide for a stabilization period and avoid the downsides of a
code freeze by doing the stabilization work on a Release Prep Code line.
Create a branch when the majority of the team is ready to start work on the
next release, and the current release is feature complete.

If you have a good set of automated tests in place, you will not need to
use this pattern. But it is an alternative to a code freeze for teams that still
require an extended integration test period.

A Release Prep Code Line is a middle ground between an Active
Development Line and a Release Line, so it should have a Code Line Policy
the emphasizes that changes should be small and tactical. For example,
that policy for Release Prep Code Line might not require the same degree
of pre-commit validation as a Release Line commit, but a similar degree of
validation. An example policy could be:

•	 All Changes should be in response to a bug reported against an
issue scheduled for release.

•	 Each commit should identify the issue number it addresses.
•	 Before code is committed, it should be buddy reviewed.
•	 Follow the same pre-commit build and test process as for an

Active Development Line.

Release Prep Code Lines are a stop gap until your team is at a point where
it can release code without a code freeze or a long stabilization cycle.

Task Branch
While there are advantages to developing on an Active Development Line,
there are times when it's useful to be able to do work in parallel, isolated
from the rest of main development work. For these cases, a task branch
makes sense. Use a task branch when

•	 A subset of your team needs to collaborate on a speculative
long-lived task that is a divergence from the main line.

•	 When you are ready to start work on a feature for the next release
before the current release is done.

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com

5 SCM Patterns

DZone, Inc. | www.dzone.com

Because task branches delay integration, use them rarely and only when
the benefit outweighs the overhead of the branch. When using a task
bench, merge changes from the Main Line frequently so that you are aware
of potential conflicts. A Task Branch ends in one of the following ways:

•	 It's abandoned
•	 It is merged with the main line. When there is only 1 task branch,

the mainline accepts all of the changes.

When working on a Task Branch, it is important to merge changes from the
mainline into the task branch frequently. At the end of the task branch, the
changes are merged into the main line.

Private Versions
A source code management system’s primary purpose is to facilitate
collaboration among team members. The facilities it provides to checkpoint
steps along the way to implementing a feature make it easy to recover from
a mistake and help team members more willing to try things. Since you
don’t want to check in changes to Active Development Line before code
is in a consistent working state, you want to be able to experiment with a
complex change locally while still be able to take advantage of features of a
version control system.

You can implement Private Versioning either by creating a private branch
in the team repository, using a private repository, or by taking advantage of
the local history feature of an IDE.

Code Line Policy
At the core of the SCM Patterns are practices that developers follow when
working on code from a code line. To make developers aware of rules
for a code line, create a Code Line policy to help developers decide what
procedures to follow before committing changes to a code line. If possible,
automate enforcement of these policies. The code line policy identifies
differences between code lines. A code line policy specifies:

•	 The reason for the code line (for example, Active Development,
Fixes for released code, a Task Branch)

•	 Rules to follow before committing changes. (test, code review,
etc)

•	 Whether the Code Line is long-lived or transient.
•	 Access restrictions for various roles/individuals/groups

For example:

•	 An Active Development Line might have a policy that requires
Issue Numbers for every commit, Smoke and Unit Tests be run
before commit.

•	 A Release Line might also require that changes be reviewed
before being committed, and the all commits should have an
associated automated test.	

You can enforce most of these rules by tools such as build time steps or
SCM triggers. The policies define the agreement between team members
about how the code line works.

GENERAL GUIDELINES

This section describes some guidelines to consider when implementing the
patterns. The SCM Patterns are a central part of your development process,
and can highlight gaps in your process.

Principles
When using the SCM patterns, keep the following principles in mind:

•	 Fewer Code lines help you to focus on delivering customer value.
•	 Testing is as important to successful release management as

version control.
•	 Integrate early and often to identify potential problems as early

as possible and minimize schedule risk and waster effort.
•	 When you want to create a branch, consider whether or not there

is a simpler solution.

Caveats
A single Active Development Line is the best way to achieve the goals
of frequent delivery. The Release Prep Code Line and Task branch are
adaptive patterns that provide a way for a team to make progress and help
to maintain an Active Development Line, but are workarounds to problems
you may have with maintaining stability. Use these patterns sparingly with
an eye towards being able to deliver from a single code line.

Testing
Testing is essential to having the SCM Patterns work. Tests validate that
the changes in a developer’s workspace will not disrupt other developers
unexpectedly when they are committed to the Main Line, and also
provide a second level of assurance that the integration build works as
expected. Though not normally considered part of Software Configuration
Management, tests are the best way to validate that the “software
configuration” on the code line is correct.

Buddy Reviews
Rather than formal code reviews, teams can benefit from a buddy review
process in which a developer asks another developer (the “checkin-buddy”)
to listen while explains the code changes they are about to check in. While
the check-in buddy can sometimes provide suggestions, the main benefit
of this process is that the process of having to explain what you did can
force critical thinking and help you to identify problems.

Dev Ops and Continuous Delivery
The SCM Patterns can support Dev Ops practices by encouraging Private
Build and test environments that transition cleanly to production-like
environments.

Balance
The goal of a team using the Active Development Line model is to keep
the code line working. Teams should take reasonable care to ensure
that developers don’t check in broken code. But mistakes happen, and
the patterns provide for layers or checking. A developer might forget to
update code before building and testing, and an error may make it into the
integration build. The goal of the patterns is early detection of errors, not
absolute prevention of them. Erring on the side of avoiding errors can also
stop progress.

RESOURCES

The SCM Patterns describe approaches to development that are mostly
independent of tools, although the right tools will make the process simpler.
The approach also relies on a good understanding of techniques such as
unit testing and continuous integration.

Continuous Integration Practices

•	 Refcard 84: Continuous Integration Practices: http://refcardz.
dzone.com/refcardz/continuous-integration

•	 Refcard 87: Continuous Integration Servers and tools: http://
refcardz.dzone.com/refcardz/continuous-integration-servers

Continuous Integration Tools

•	 Bamboo: http://www.atlassian.com/software/bamboo/
•	 AntHill: http://www.urbancode.com/html/products/anthillpro/
•	 Cruise Control: http://cruisecontrol.sourceforge.net
•	 Hudson: http://hudson-ci.org

Build Tools

•	 Maven: http://maven.apache.org
•	 Ant: http://ant.apache.org
•	 Buildr: http://buildr.apache.org
•	 Gradle: http://www.gradle.org

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
http://refcardz.dzone.com/refcardz/continuous-integration
http://refcardz.dzone.com/refcardz/continuous-integration
http://refcardz.dzone.com/refcardz/continuous-integration-servers
http://refcardz.dzone.com/refcardz/continuous-integration-servers
http://www.atlassian.com/software/bamboo/overview
http://www.urbancode.com/html/products/anthillpro/
http://cruisecontrol.sourceforge.net/
http://hudson-ci.org/
http://maven.apache.org/
http://ant.apache.org/
http://buildr.apache.org/
http://www.gradle.org/

Browse our collection of over 150 Free Cheat Sheets
Upcoming Refcardz

Free PDF

6 SCM Patterns

DZone, Inc.
150 Preston Executive Dr.
Suite 201
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome

refcardz@dzone.com

Sponsorship Opportunities

sales@dzone.com

Copyright © 2012 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior
written permission of the publisher.

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to
more than 3.3 million software developers, architects and decision
makers. DZone offers something for everyone, including news,
tutorials, cheat sheets, blogs, feature articles, source code and more.
“"DZone is a developer's dream",” says PC Magazine.

Development Practices

•	 Test Driven Development Resources: http://www.testdriven.com
•	 Dev Ops Resources: http://devops.com
•	 Continuous Delivery: http://continuousdelivery.com

Unit Testing

•	 Refcard 28: Java Unit Testing tools: http://refcardz.dzone.com/
refcardz/junit-and-easymock

•	 The JUnit web site has links to other Unit Testing frameworks:
http://www.junit.org

•	 Guidelines on Unit Testing: http://www.extremeprogramming.
org/rules/unittests.html

•	 Guidelines on Test Driven Development: http://www.testdriven.
com

SCM Tools

•	 Refcard 94: Getting Started with Git: http://refcardz.dzone.com/
refcardz/getting-started-git

•	 Subversion: http://subversion.apache.org

CONCLUSION

Maintaining a single working code line sounds simple in theory, but has
many practical challenges. The advantages, such an approach offers in
terms of simplicity and minimizing integration costs across the team, can
make the cost worthwhile. Doing Software Configuration Management
effectively involves more than just SCM tools and code line management,
but also your approach to development, including testing.

Steve Berczuk is the author of Software Configuration
Management Patterns: Effective Teamwork,
Practical Integration and is a recognized expert
in software configuration management and agile
software development. Steve is passionate about
helping teams work effectively to produce quality
software. Steve is an engineer at Humedica where
he’s helping to build next-generation SaaS-based
clinical informatics applications. He has an M.S. in
Operations Research from Stanford University and an

S.B. in Electrical Engineering from MIT, and is a Certified Practicing Scrum
Master. Contact Steve at steve@berczuk.com or visit www.berczuk.com, or
read his blog at blog.berczuk.com.

This book describes many of the common problems
organizations face when using SCM in a way that is
not consistent with the needs of their organization.
The book presents the patterns organized in a pattern
language that shows how the various structures that
you need to use for an effective SCM system build on
each other.

			 	 BUY NOW

A B O U T T H E A U T H O R S R E C O M M E N D E D B O O K

Apache HTTPD
Mongo DB
Essential Camel Components
Debugging Patterns

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.testdriven.com/
http://devops.com/
http://continuousdelivery.com/
http://refcardz.dzone.com/refcardz/junit-and-easymock
http://refcardz.dzone.com/refcardz/junit-and-easymock
http://www.junit.org/
http://www.extremeprogramming.org/rules/unittests.html
http://www.extremeprogramming.org/rules/unittests.html
http://www.testdriven.com/
http://www.testdriven.com/
http://refcardz.dzone.com/refcardz/getting-started-git
http://refcardz.dzone.com/refcardz/getting-started-git
http://subversion.apache.org/
mailto:steve@berczuk.com
http://www.berczuk.com/
http://blog.berczuk.com/
http://www.scmpatterns.com/
http://www.scmpatterns.com/

