
 

 

DZone, Inc.  |   www.dzone.com

By Mike Keith

G
e

tt
in

g
 S

ta
rt

e
d

 w
it

h
 J

PA
 2

.0
 

G
e

t 
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#127

CONTENTS INCLUDE:
n	 Whats New in JPA 2.0
n	 JDBC Properties
n	 Access Mode
n	 Mappings
n	 Shared Cache
n	 Additional API and more...

Getting Started with
 JPA 2.0

http://www.refcardz.com
http://www.dzone.com
http://www.refcardz.com
http://answerhub.com/


  

DZone, Inc.  |   www.dzone.com

G
et

 M
o

re
 R

ef
ca

rd
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#167
S

C
M

 P
at

te
rn

s

By Steve Berczuk

ABOUT SCM PATTERNS

Software configuration management enables team members to work 
together more effectively. SCM touches on all aspects of the development 
process; so well-done SCM can improve productivity. Done poorly, SCM 
can slow a project down and cause frustration. Effective SCM makes use 
of more than just the source code management system. It requires that 
you think about the build and testing process, and also that you continually 
evaluate how modular your architecture is. 

The software configuration management patterns are most applicable to 
small teams that favor an agile software development approach, but they 
can help any team identify bottlenecks and work more effectively. If your 
team isn’t agile, but wants to be, following these patterns will provide a 
framework for your team to develop more agile technical practices.

This Refcard describes some patterns that enable teams to work 
effectively. These patterns are described in detail in the book Software 
Configuration Management Patterns: Effective Teamwork, Practical 
Integration.

PATTERNS, PRACTICES, AND TOOLS

The patterns in this Refcard are mostly tool-agnostic. Some tools support 
the practices implicitly, but any team can implement these patterns using 
any tool set. You want to think about how you work first, and then look into 
tools.

The tools you will want to have in place are:

•	 A	source	code	management	system.	Either	a	centralized	SCM	such	
as	Subversion	or	a	distributed	one	such	as	Git	will	work.

•	 A	build	tool	that	defines	dependencies	between	components	and	
allows	for	simple	build	and	test	execution.	Maven	and	Make	are	two	
examples.

•	 A	continuous	integration	server,	e.g.,	Cruise	Control,	Anthill,	or	
Bamboo.

•	 A	documentation	system	such	as	a	Wiki	or	a	well-known	location	in	
the	SCM	repository	will	do.

•	 An	artifact	repository	to	keep	built	and	third	party	artifacts.	A	
Maven	repository	manager	or	an	SCM	repository	that	can	store	
binary	files	will	work.

The operations you need to be able to do are:

•	 Add	code	to	and	checkout	code	from	an	SCM	repository.

•	 Commit	changes	to	the	SCM	repository.	

•	 Create	a	source	code	branch.

•	 Create	a	checkpoint	(a	label	tag)	in	the	SCM	repository.

•	 Monitor	a	code	line	for	changes	to	trigger	a	build	using	the	CI	
server.

•	 Build	a	project	when	changes	are	detected	using	the	CI	server.

•	 Alert	the	team	when	a	build	or	its	tests	fail.

There are a number of commercial and open-source solutions that provide 
this functionality. If you have an existing tool set it is likely that you can 
implement the patterns with your tools.

THE PATTERNS

Pattern Supported By

Main Line Active Development Line

Active Development Line Private Workspace
Private Versions
Task Branch
Release Line
Release Prep Code Line
Code Line Policy

Private Workspace Third Party Code Line
Repository
Integration Build
Private System Build

Repository Third Party Code Line

Private Build Smoke Test

Integration Build Task Level Commit
Smoke Test

Third Party Code Line

Task Level Commit

Code Line Policy

Smoke Test Unit Test
Regression Test

Unit Test

Regression Test

Private Versions Code Line Policy

Release Line Code Line Policy

Release Prep Code Line Code Line Policy

Task Branch Code Line Policy

Software Configuration  
Management Patterns

CONTENTS INCLUDE:

❱	Patterns, Practices and Tools

❱	The Patterns

❱	Core Patterns

❱ Workspace Patterns

❱	Code Line Patterns

❱	General Guidlines...and more!

http://www.refcardz.com
http://www.dzone.com
http://www.refcardz.com
http://www.answerhub.com
mailto:info@cloudbees.com


2 SCM Patterns

DZone, Inc.  |   www.dzone.com

The SCM Patterns can help any team to be more productive, and they 
especially work well with agile technical practices such as unit testing and 
continuous integration.

The patterns can be grouped into 3 parts: 

•	 Core	patterns	that	the	rest	of	the	language	support
•	 Workspace	patterns	that	describe	how	developers	work
•	 Code	line	patterns	that	describe	how	to	structure	supporting		code	

lines	to	enable	delivery	of	new	software	from	the	main	line

CORE PATTERNS

The first decision you need to make is how to structure your code lines. The 
SCM Patterns describe how to work with fewer code lines, emphasizing 
integration over isolation.

Main Line
The more code lines you have, the harder it is to understand the state of the 
project. While tools can help manage multiple code lines, the simplest way 
to minimize the overhead of branch management and context switching is 
to develop on a single Main Line. 

The Main Line pattern can help you to deliver rapidly with a team focused 
on a single project. With a main line, all changes end up on a single stream 
of development. This provides the following advantages:

•	 Reduced	merging	and	synchronization	effort;	fewer	code	lines	mean	
fewer	merges.

•	 More	consistent	integration,	reducing	the	schedule	risk	of	
integrating	late	in	the	release	cycle.

If you are using the Main Line development model, strive to reduce 
branching to special situations such as:

•	 Releases.	Create	a	release	line	to	manage	fixes	to	released	code.

•	 Long-lived	parallel	efforts.	Use	a	task	branch	for	this.

•	 Integration	and	stabilization.	A	release	prep	code	line	has	
advantages	over	a	code	freeze	for	stabilization.

Since each branch is a potential distraction, limit branching to situations 
where the advantages outweigh potential issues.

The risk with main line development is that developers might commit 
changes that break the code line. For development on a single code line to 
be effective you need to give this code line a place where developers can 
feel confident that the code is working. An active development line provides 
a framework for a more stable main line.

Active Development Line
An active development line is a main line in which developers use practices 
to ensure that the code is in a working state. An active development line 
can support you when you need to do frequent releases and it is essential 
for agile software development. The patterns that support these practices 
are:

•	 Code	line	policy	

•	 Unit	test

•	 Integration	build

•	 Private	workspaces

•	 Private	build

To maintain the activity on the code line, define a code line policy that will 
keep serious defects out of the code line and integration build, but be willing 
to ignore trivial defects, as being too strict can paralyze the team.

The Code Line Policy for an Active Development Line could include the 
following rules:

•	 The	code	should	run	through	the	Private	Build	in	a	Private	
Workspace	successfully	before	a	commit.

•	 All	changes	will	be	accompanied	by	appropriate	tests,	or	a	
comment	explaining	why	a	test	is	not	being	done.

•	 If	the	common	Integration	Build	fails,	the	team	will	address	it	
immediately.

Since the goal of Active Development line is to err on the side of progress,  
an occasional broken build is less disruptive than merging uncommitted 
changes.

WORKSPACE PATTERNS

Build and test practices are essential to maintaining active code lines. The 
workspace patterns define these.

Figure 1: Workspace Patterns

Private Workspace
To maintain an active development line, you need an environment where 
developers can identify integration issues before code is shared with the 
team. Developers need control over the state of the code they are working 
with so that they can work without distraction. 

A private workspace is an environment in which developers can build 
and test before accepting changes from the active development line, or 
publishing them to the active development line.

A private workspace has all of the dependencies a developer needs to work 
independently including:

•	 Code

•	 Tools

•	 The	correct	version	of	build	tools

•	 The	correct	version	of	dependencies

•	 Configuration	files

A developer needs to easily create the workspace from a simple set of 
instructions using the repository. 

The private workspace is useful for developers to get work done. For 
the team to work effectively, developers need to follow the process in 
the private build pattern by updating their workspace frequently and 
committing changes frequently when the code is working. This ensures 
that the status of the code accurately reflects the state of the active 
development line.

Repository
To set up a new private workspace or an Integration build, you need to 
populate it from a repository that contains everything you need to build the 
code, including:

•	 Source	code

•	 Build	scripts

•	 Configuration

•	 Third	party	components.

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com


3 SCM Patterns

DZone, Inc.  |   www.dzone.com

The repository can be composed of a number of tools. Source code can be 
in a source code management system. Components can be in an artifact 
repository such as a Maven repository or a source code management 
system. 

Ideally, a developer should be able to create a workspace for a project in 
two steps:

•	 Check	out	a	copy	of	the	code	from	your	SCM	system.

•	 Build	the	project.	

The only documentation you should need is:

•	 The	path	to	the	project	in	the	SCM	System.	

•	 The	build	command.

•	 Configuration	changes	to	make	for	different	environments	
(optional).

You can document the workspace creation process in a well know 
location in the SCM repository, or on a CMS such as a wiki. A common 
convention would be to have a Getting Started page. Fewer, self running 
scripts are better than a longer documented process, but the key attribute 
of a successful Getting Started process is that it can be executed without 
assistance from anyone else.

Having all dependencies in a single repository and simple procedure for 
creating a workspace will minimize the risk of introducing bugs that are 
related to environmental differences and improve efficiency when people 
join or move between projects.

Private Build
To avoid breaking the active development line, perform a private build in 
your private workspace before committing changes. This will allow you to 
detect integration errors before they affect other developers. 

The private build:

•	 Builds	the	code.	

•	 Runs	smoke	tests.

•	 Runs	unit	tests.	

•	 Creates	a	deployable	artifact.

The private build should be identical to the integration build, or at least as 
close as possible. If the integration build skips some tests in the interest of 
speed, periodically run these tests in the private build.

To avoid checking in code that will break the integration build developers 
run the Private Build as they develop. Before anything, commit developers 
should:

•	 Update	their	private	workspace	from	the	active	development	line.	

•	 Run	the	private	build.

•	 Commit	their	changes	only	when	the	build	passes.

The private build should be able to grab all dependencies automatically, 
and not rely on manual installs. A common mechanism for this is to pull 
dependencies from a Maven or Ivy repository.

Integration Build
Building in a private workspace provides some assurance that all of the 
code works together. However, you still want an automated mechanism 
to verify that the code that is in the version management system always 
builds and passes tests. An integration build runs automatically when 
changes are detected in the code line. 

The integration build:

•	 Updates	the	source	in	an	integration	workspace.

•	 Builds	the	code.	

•	 Runs	unit,	smoke,	and	integration	tests.

The integration build should be automated, fairly quick, and failures should 
be addressed immediately. If running a complete suite of tests takes too 
long, split the integration build into two phases: one that runs smoke tests, 
and one that runs more thorough unit and regression tests.

Third Party Code Line
All of your locally developed code is in your repository. Code from outside 
the organization that you depend on should also be there, as you need a 
way to manage dependencies. For binary dependencies, you can identify 
versions in your build configurations and use a repository manager. When 
you need to make customizations to open source code, you might want to 
manage the source code in your repository. A third party code line is a way 
you can easily manage local customizations to code:

•	 Add	the	third	party	source	to	your	SCM	repository.

•	 Label	the	original	source.

•	 Create	a	branch	for	your	local	changes.

•	 When	there	is	a	new	release	of	the	third	party	code,	add	it	to	the	
mainline.	Create	a	new	branch	for	this	code.

•	 Merge	any	relevant	changes	from	the	old	branch	to	the	new	branch.

Once this is done, create an integration build for the code and a mechanism 
for developers to reference the third-party artifacts.

Task Level Commit
To help ensure that the integration build line reflects the current state of the 
code, organize code changes by task-oriented units of work by committing 
frequently and by associating each task level commit with an issue from 
your issue tracking system. A task level commit is:

•	 Small.	Commit	changes	when	you	have	completed	a	unit	of	work.	

•	 Frequent.	Commit	code	as	often	as	possible	while	maintaining	
working	code.	

•	 Associated	with	a	feature	being	developed.	For	example;	each	
commit	could	have	an	issue	number	mentioned.	

For instance, you might commit after each of these steps:

•	 Adding	a	method	and	unit	test.

•	 Using	the	new	method.

Many issue-tracking systems can associate commits with the issue 
identifiers either by metadata or by finding issue IDs in the commit 
comments. Associating each commit with an issue is important in:

•	 Identifying	code	changes	that	went	into	implementing	an	issue.	This	
is	useful	for	auditing	and	research.

•	 Identifying	the	effort	required	for	features.

•	 Helping	developers	focus	their	efforts	on	useful	features.

Be sure to update and build code before committing changes to the main 
line.

Smoke Test
An Integration Build and Private Build use testing to help ensure that your 
code line is an Active Development Line. To verify that the code line still 
works after a change, run a Smoke Test after each change as part of the 
build. A Smoke Test is:

•	 Quick	Running
•	 Self	Scoring
•	 Providing	broad	coverage	
•	 Runnable	by	developers	as	part	of	a	build-time	test

Smoke Tests do not replace all manual quality assurance efforts, but allow 
for a way to catch common, critical errors quickly after each change.

Unit Test
Smoke Tests provide a quick way to make sure that the application 
works at a high level. You can rely on smoke tests only if you also have 
a mechanism to verify that your modules still works after you make a 
change. Unit Tests are tests that test low level APIs and contracts.

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com


4 SCM Patterns

DZone, Inc.  |   www.dzone.com

Unit Tests are:

•	 Automated	and	self-evaluating
•	 Fine	grained
•	 Isolated,	A	unit	test	does	not	interact	with	other	tests

Unit tests test the contract that a class has with other components. Run 
Unit tests while you are coding, before you check in changes, and as part of 
the build. 

Writing unit tests as you code will also help you to identify coupling 
between modules so that you can remove it if it is inappropriate. Applying 
practices such as Test Driven Development where you write tests before 
you write code can be one way to ensure that you have good test coverage.

Unit Tests can also help to identify when integrating conflicting changes 
from a code merge is successful. If the existing tests and the tests that 
went with the change you are merging both pass, you can be more 
confident that you merged changes correctly.

Using a framework like xUnit can simplify your unit testing process.

Regression Test
Unit Tests and Smoke Tests are designed to be fast and meant to be run 
frequently. You still need a more comprehensive way to ensure that existing 
code does not get worse as you make other improvements.

Regression tests are a kind of integration test. Regression tests are often 
driven by problems that you found reactively, and might take longer to run 
than a build time test should. Ideally, regression tests will be automated. 

Regression tests should cover:

•	 Problems	you	find	in	the	QA	process
•	 User-reported	problems
•	 System	level	requirements

When you find an error in a released build, it’s a good practice to add a test 
that identifies the issue to the build.

If the Regression Tests don’t take too long to run, add them to the main 
integration build. Otherwise run them as a second stage build, and consider 
adding “run regression tests on build” to the code line policy of a Release 
Line.

CODE LINE PATTERNS

While a single main line that always builds is ideal, there are times when 
you may want to create branches for certain classes of work to make 
it easier to keep the main line stable and active. The code line patterns 
describe these code lines as well as the concept of a code line policy.

Figure 2: Code Line Patterns

Release Line
Active Development Line development is a simple and powerful approach 
to efficiently developing software. But developing software in a way that 
you can deliver at any point in time is challenging. It is useful to have the 
ability to maintain released versions without interfering with your current 
development by creating a Release Line. A release line is probably of the 
more commonly used patterns.

As you release code to customers, identify the version of the release by a 
tag, and create a branch at that tag when you need to deliver a fix.

When appropriate, integrate changes from the Release Line into the Main 
Line, either by a merge, or, if the code has diverged significantly, by a 
parallel change.

A Code Line Policy for a Release Line might include:

•	 Each	change	should	be	in	response	to	a	documented	issue.
•	 Each	commit	must	reference	an	issue	identifier.
•	 Changes	should	be	reviewed	with	another	team	member	before	

commits.
•	 Any	change	should	be	accompanied	by	a	change	to	an	existing	

test,	a	new	test,	or	a	reason	why	there	is	no	test.
•	 Before	committing	a	change,	a	developer	should	run	additional	

tests	such	as	regression	tests,	in	their	Private	Workspace.
•	 If	the	Integration	Build	fails,	every	team	member	stops	to	help	

address	the	issue.

The details are team dependent; the goal is to have a stable Release Line.
 
In some ways, development on a Release Line is similar to a waterfall like 
process, and as such release lines should be used with care.

Release Prep Code Line
The goal of Active Development Line development is to release products 
from the tip of the code line. In some cases, teams still need extra time to 
stabilize code before a release while also enabling new work. The traditional 
approach to this, a code freeze, has a number of down sides, including 
the opportunity for idle time and/or teams doing work without committing 
changes to the Main Line. 

You can provide for a stabilization period and avoid the downsides of a 
code freeze by doing the stabilization work on a Release Prep Code line. 
Create a branch when the majority of the team is ready to start work on the 
next release, and the current release is feature complete.

If you have a good set of automated tests in place, you will not need to 
use this pattern. But it is an alternative to a code freeze for teams that still 
require an extended integration test period.

A Release Prep Code Line is a middle ground between an Active 
Development Line and a Release Line, so it should have a Code Line Policy 
the emphasizes that changes should be small and tactical. For example, 
that policy for Release Prep Code Line might not require the same degree 
of pre-commit validation as a Release Line commit, but a similar degree of 
validation. An example policy could be:

•	 All	Changes	should	be	in	response	to	a	bug	reported	against	an	
issue	scheduled	for	release.

•	 Each	commit	should	identify	the	issue	number	it	addresses.
•	 Before	code	is	committed,	it	should	be	buddy	reviewed.
•	 Follow	the	same	pre-commit	build	and	test	process	as	for	an	

Active	Development	Line.

Release Prep Code Lines are a stop gap until your team is at a point where 
it can release code without a code freeze or a long stabilization cycle.

Task Branch
While there are advantages to developing on an Active Development Line, 
there are times when it's useful to be able to do work in parallel, isolated 
from the rest of main development work. For these cases, a task branch 
makes sense. Use a task branch when

•	 A	subset	of	your	team	needs	to	collaborate	on	a	speculative	
long-lived	task	that	is	a	divergence	from	the	main	line.

•	 When	you	are	ready	to	start	work	on	a	feature	for	the	next	release	
before	the	current	release	is	done.

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com


5 SCM Patterns

DZone, Inc.  |   www.dzone.com

Because task branches delay integration, use them rarely and only when 
the benefit outweighs the overhead of the branch. When using a task 
bench, merge changes from the Main Line frequently so that you are aware 
of potential conflicts. A Task Branch ends in one of the following ways:

•	 It's	abandoned
•	 It	is	merged	with	the	main	line.	When	there	is	only	1	task	branch,	

the	mainline	accepts	all	of	the	changes.

When working on a Task Branch, it is important to merge changes from the 
mainline into the task branch frequently. At the end of the task branch, the 
changes are merged into the main line.

Private Versions
A source code management system’s primary purpose is to facilitate 
collaboration among team members. The facilities it provides to checkpoint 
steps along the way to implementing a feature make it easy to recover from 
a mistake and help team members more willing to try things. Since you 
don’t want to check in changes to Active Development Line before code 
is in a consistent working state, you want to be able to experiment with a 
complex change locally while still be able to take advantage of features of a 
version control system. 

You can implement Private Versioning either by creating a private branch 
in the team repository, using a private repository,  or by taking advantage of 
the local history feature of an IDE.

Code Line Policy
At the core of the SCM Patterns are practices that developers follow when 
working on code from a code line. To make developers aware of rules 
for a code line, create a Code Line policy to help developers decide what 
procedures to follow before committing changes to a code line. If possible, 
automate enforcement of these policies. The code line policy identifies 
differences between code lines. A code line policy specifies:

•	 The	reason	for	the	code	line	(for	example,	Active	Development,	
Fixes	for	released	code,	a	Task	Branch)

•	 Rules	to	follow	before	committing	changes.	(test,	code	review,	
etc)

•	 Whether	the	Code	Line	is	long-lived	or	transient.
•	 Access	restrictions	for	various	roles/individuals/groups

For example:

•	 An	Active	Development	Line	might	have	a	policy	that	requires	
Issue	Numbers	for	every	commit,	Smoke	and	Unit	Tests	be	run	
before	commit.

•	 A	Release	Line	might	also	require	that	changes	be	reviewed	
before	being	committed,	and	the	all	commits	should	have	an	
associated	automated	test.	

You can enforce most of these rules by tools such as build time steps or 
SCM triggers. The policies define the agreement between team members 
about how the code line works.

GENERAL GUIDELINES

This section describes some guidelines to consider when implementing the 
patterns. The SCM Patterns are a central part of your development process, 
and can highlight gaps in your process. 

Principles
When using the SCM patterns, keep the following principles in mind:

•	 Fewer	Code	lines	help	you	to	focus	on	delivering	customer	value.
•	 Testing	is	as	important	to	successful	release	management	as	

version	control.
•	 Integrate	early	and	often	to	identify	potential	problems	as	early	

as	possible	and	minimize	schedule	risk	and	waster	effort.	
•	 When	you	want	to	create	a	branch,	consider	whether	or	not	there	

is	a	simpler	solution.

Caveats
A single Active Development Line is the best way to achieve the goals 
of frequent delivery. The Release Prep Code Line and Task branch are 
adaptive patterns that provide a way for a team to make progress and help 
to maintain an Active Development Line, but are workarounds to problems 
you may have with maintaining stability. Use these patterns sparingly with 
an eye towards being able to deliver from a single code line.

Testing
Testing is essential to having the SCM Patterns work. Tests validate that 
the changes in a developer’s workspace will not disrupt other developers 
unexpectedly when they are committed to the Main Line, and also 
provide a second level of assurance that the integration build works as 
expected. Though not normally considered part of Software Configuration 
Management, tests are the best way to validate that the “software 
configuration” on the code line is correct.

Buddy Reviews
Rather than formal code reviews, teams can benefit from a buddy review 
process in which a developer asks another developer (the “checkin-buddy”) 
to listen while explains the code changes they are about to check in. While 
the check-in buddy can sometimes provide suggestions, the main benefit 
of this process is that the process of having to explain what you did can 
force critical thinking and help you to identify problems.

Dev Ops and Continuous Delivery
The SCM Patterns can support Dev Ops practices by encouraging Private 
Build and test environments that transition cleanly to production-like 
environments.

Balance
The goal of a team using the Active Development Line model is to keep 
the code line working. Teams should take reasonable care to ensure 
that developers don’t check in broken code. But mistakes happen, and 
the patterns provide for layers or checking. A developer might forget to 
update code before building and testing, and an error may make it into the 
integration build. The goal of the patterns is early detection of errors, not 
absolute prevention of them. Erring on the side of avoiding errors can also 
stop progress.

RESOURCES

The SCM Patterns describe approaches to development that are mostly 
independent of tools, although the right tools will make the process simpler. 
The approach also relies on a good understanding of techniques such as 
unit testing and continuous integration.

Continuous Integration Practices

•	 Refcard	84:	Continuous	Integration	Practices:	http://refcardz.
dzone.com/refcardz/continuous-integration

•	 Refcard	87:	Continuous	Integration	Servers	and	tools:	http://
refcardz.dzone.com/refcardz/continuous-integration-servers

Continuous Integration Tools

•	 Bamboo:	http://www.atlassian.com/software/bamboo/
•	 AntHill:	http://www.urbancode.com/html/products/anthillpro/
•	 Cruise	Control:	http://cruisecontrol.sourceforge.net
•	 Hudson:	http://hudson-ci.org

Build Tools

•	 Maven:	http://maven.apache.org
•	 Ant:	http://ant.apache.org
•	 Buildr:	http://buildr.apache.org
•	 Gradle:	http://www.gradle.org

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
http://refcardz.dzone.com/refcardz/continuous-integration
http://refcardz.dzone.com/refcardz/continuous-integration
http://refcardz.dzone.com/refcardz/continuous-integration-servers
http://refcardz.dzone.com/refcardz/continuous-integration-servers
http://www.atlassian.com/software/bamboo/overview
http://www.urbancode.com/html/products/anthillpro/
http://cruisecontrol.sourceforge.net/
http://hudson-ci.org/
http://maven.apache.org/
http://ant.apache.org/
http://buildr.apache.org/
http://www.gradle.org/


Browse our collection of over 150 Free Cheat Sheets
Upcoming Refcardz

Free PDF

6 SCM Patterns

 

DZone, Inc.
150 Preston Executive Dr.
Suite 201
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome

refcardz@dzone.com 

Sponsorship Opportunities 

sales@dzone.com 

Copyright © 2012 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval 
system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior 
written permission of the publisher. 

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to 
more than 3.3 million software developers, architects and decision 
makers. DZone offers something for everyone, including news, 
tutorials, cheat sheets, blogs, feature articles, source code and more. 
“"DZone is a developer's dream",” says PC Magazine.

Development Practices

•	 Test	Driven	Development	Resources:	http://www.testdriven.com	
•	 Dev	Ops	Resources:	http://devops.com
•	 Continuous	Delivery:	http://continuousdelivery.com

Unit Testing

•	 Refcard	28:	Java	Unit	Testing	tools:	http://refcardz.dzone.com/
refcardz/junit-and-easymock

•	 The	JUnit	web	site	has	links	to	other	Unit	Testing	frameworks:	
http://www.junit.org

•	 Guidelines	on	Unit	Testing:	http://www.extremeprogramming.
org/rules/unittests.html

•	 Guidelines	on	Test	Driven	Development:		http://www.testdriven.
com

SCM Tools

•	 Refcard	94:	Getting	Started	with	Git:	http://refcardz.dzone.com/
refcardz/getting-started-git

•	 Subversion:	http://subversion.apache.org

CONCLUSION

Maintaining a single working code line sounds simple in theory, but has 
many practical challenges. The advantages, such an approach offers in 
terms of simplicity and minimizing integration costs across the team, can 
make the cost worthwhile. Doing Software Configuration Management 
effectively involves more than just SCM tools and code line management, 
but also your approach to development, including testing.

Steve Berczuk is the author of Software Configuration 
Management Patterns: Effective Teamwork, 
Practical Integration and is a recognized expert 
in software configuration management and agile 
software development. Steve is passionate about 
helping teams work effectively to produce quality 
software.  Steve is an engineer at Humedica where 
he’s helping to build next-generation SaaS-based 
clinical informatics applications.  He has an M.S. in 
Operations Research from Stanford University and an 

S.B. in Electrical Engineering from MIT, and is a Certified Practicing Scrum 
Master. Contact Steve at steve@berczuk.com or visit www.berczuk.com, or 
read his blog at blog.berczuk.com.

This book describes many of the common problems 
organizations face when using SCM in a way that is 
not consistent with the needs of their organization. 
The book presents the patterns organized in a pattern 
language that shows how the various structures that 
you need to use for an effective SCM system build on 
each other.

    BUY NOW

A B O U T  T H E  A U T H O R S R E C O M M E N D E D  B O O K

Apache HTTPD
Mongo DB
Essential Camel Components
Debugging Patterns

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.testdriven.com/
http://devops.com/
http://continuousdelivery.com/
http://refcardz.dzone.com/refcardz/junit-and-easymock
http://refcardz.dzone.com/refcardz/junit-and-easymock
http://www.junit.org/
http://www.extremeprogramming.org/rules/unittests.html
http://www.extremeprogramming.org/rules/unittests.html
http://www.testdriven.com/
http://www.testdriven.com/
http://refcardz.dzone.com/refcardz/getting-started-git
http://refcardz.dzone.com/refcardz/getting-started-git
http://subversion.apache.org/
mailto:steve@berczuk.com
http://www.berczuk.com/
http://blog.berczuk.com/
http://www.scmpatterns.com/
http://www.scmpatterns.com/

