

DZone, Inc. | www.dzone.com

By Mike Keith

G
e

tt
in

g
 S

ta
rt

e
d

 w
it

h
 J

PA
 2

.0

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#127

CONTENTS INCLUDE:
n	 Whats New in JPA 2.0
n	 JDBC Properties
n	 Access Mode
n	 Mappings
n	 Shared Cache
n	 Additional API and more...

Getting Started with
 JPA 2.0

http://www.refcardz.com
http://www.dzone.com
http://www.refcardz.com
http://answerhub.com/

DZone, Inc. | www.dzone.com

G
et

 M
o

re
 R

ef
ca

rd
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#168
R

ef
ac

to
ri

n
g

 P
at

te
rn

s

By Kevin Rutherford

INTRODUCTION

Refactoring has been described as “the art of safely improving the design
of existing code” (Martin Fowler, see refs). Refactoring is thus a process of
software source code transformation.

Refactoring does not involve adding new features. Refactoring should be
performed when the code is working and all of its tests are passing. And
it should be performed before adding the next feature. Thus, refactoring is
intended to find the “best” implementation of the features currently present
in the code.

Refactoring also does not involve rewriting or replacing large chunks of
code. Refactoring is a gradual, evolutionary process, intended to “preserve
the knowledge embedded in the existing code.”

Refactoring is the vehicle for emergent design. Knowing how and when to
refactor means that your code doesn’t need to be completely designed up
front. Refactoring makes it safe to change your design later, and indeed
makes it more cost-effective to do so.

Refactoring stops when the code’s design is as “simple” as we can
cost-effectively make it for now. Four criteria for defining “simple” are the
following rules from Extreme Programming:

1. Passes all of the tests.
2. Communicates the programmer’s intentions, i.e., has good names for

every important concept.
3. Expresses everything once and only once, i.e., it duplicates no code or

logic or knowledge.
4. Includes nothing that’s unnecessary.

These “rules” are subjective, and are listed above in order of priority. But
they do provide a good rule of thumb in helping to decide what to refactor,
and whether further refactoring is needed.

WHAT IS A REFACTORING?

At the smallest scale, a “refactoring” is a minimal, safe transformation of
your code that keeps its behavior unchanged.

Each refactoring has an inverse. For example, ExtractMethod, which moves
a code fragment into a new method and replaces the original with a call to
that method, is the inverse of InlineMethod. Neither is “better” or “worse”
than the other. Rather, each is appropriate under certain circumstances.

Each refactoring will comprise a series of steps, some of which may
temporarily break the software. The refactoring is only complete when
correct behavior has been restored by completion of all of its steps.

Some refactorings have multiple alternative “recipes” (sets of safe steps
that achieve the refactoring’s goal). The most important aspect of carrying
out a refactoring is to find a recipe that minimizes the amount of time
during which the code is broken.

Most minimal, safe refactorings have the same basic outline:

1. Check that the refactoring is safe to perform, and that its pre-
conditions are met.

2. Introduce a new code element.
3. Locate all existing code elements that need to be migrated to use the

new element.

4. For each client to be migrated:
•	 Migrate	the	client	of	the	old	code	so	that	it	uses	the	new	code	

instead.
•	 Run	the	tests.

5. Optionally, save a checkpoint.
6. Delete the old code that is now unused.
7. Run the tests.
8. Save a checkpoint.

REFACTORING EXAMPLES

There are dozens of well-defined refactoring recipes for a huge range of
small, specific tasks. Several of the books in the Further Reading at the end
of this document contain catalogs of these refactorings, and in most cases
they give step-by-step mechanics for carrying out the refactoring. Here
we provide a taster by looking in detail at four specific and quite varied
refactorings.

Inline Temporary Variable
Replace all uses of a local variable by inserting copies of its assigned value.

We begin with a simple method:

public double applyDiscount() {
 double basePrice = _cart.totalPrice();
 return basePrice * discount();
}

Step 1: Safety Check.

First, we check that the refactoring's pre-conditions are met. We can do
that in this case by making the temporary variable final:

public double applyDiscount() {
 final double basePrice = _cart.totalPrice();
 return basePrice * discount();
}

Refactoring Patterns
CONTENTS INCLUDE:

❱	What is Refactoring?

❱	Refactoring Examples

❱	Commonly Used Refactorings

❱	Refactoring in Practice

❱ Hot Tips...and more!

http://www.refcardz.com
http://www.dzone.com
http://www.refcardz.com
http://answerhub.com/
mailto:info@cloudbees.com

2 Refactoring Patterns

DZone, Inc. | www.dzone.com

Compiling now will tell us whether the refactoring is safe to perform.
Leaning on the compiler like this is a trick that is useful in many
refactorings (although it only works in compiled languages).

We can also test at this point and even commit if we think we may be
distracted away from the task in the next few seconds. We are at a safe
“base” (and, arguably, we have already improved the code).

Step 2: Migrate each client.

Next, we identify all places in the code that need to change. In this case
there’s only one, in the return statement. We change it to use the value
that’s currently assigned to the temp:

public double applyDiscount() {
 final double basePrice = _cart.totalPrice();
 return _cart.totalPrice() * discount();
}

Compile and test (and commit if you’re nervous). It’s important to get into
the habit of running the tests frequently because it significantly enhances
one’s feeling of safety. Most programming errors are created under
conditions of stress, and simple practices such as this can save hours of
debugging later.

It is thus also important to have tests that run quickly. In cases such as
this, we would probably only run the tests for the current class, so at least
these must be fast.

(Note that the tests could fail here if _cart.totalPrice() has side effects,
because we are now calling it twice. If that happens, they have saved us
from making an unsafe refactoring, so we back out the change and walk
away.)

Step 3: Remove the old code.

Finally, we can remove the now-obsolete declaration:

public double applyDiscount() {
 return _cart.totalPrice() * discount();
}

Compile and test, and definitely commit this version to source control.

Most of the available refactoring tools provide an automated
implementation of this refactoring.

Extract method

Create a new method by extracting a code fragment from an existing
method.

As an example, consider this code:

public void report(Writer out, List<Machine> machines) throws IOException {
 for (Machine machine : machines) {
 out.write(“Machine “ + machine.name());
 if (machine.bin() != null)
 out.write(“ bin=” + machine.bin());
 out.write(“\n”);
 }
}

We want to extract the code that reports on each Machine.

Step 1: Create a new, empty method.

private void reportMachine() {
}

At this stage, we are designing a mini-API. It is important to choose a name
that reflects the new method’s purpose and not its implementation.
In case of any doubt, we can check that the new method signature is valid
by compiling and testing.

In case of any doubt, we can check that the new method signature is valid
by compiling and testing.

Step 2: Copy the code into the new method.

This is a simple copy-paste:
private void reportMachine() {
 out.write(“Machine “ + machine.name());
 if (machine.bin() != null)
 out.write(“ bin=” + machine.bin());
 out.write(“\n”);
}

In our example, this creates a reportMachine method that doesn’t compile,
due to the temporary variable machine and the out parameter.

Note that the original method remains unchanged at this point.

Step 3: Add parameters for temporary variables.

For each of the temporary variables used in the copied code we add a
parameter to the new method:

private void reportMachine(Writer out, Machine machine) {
 out.write(“Machine “ + machine.name());
 if (machine.bin() != null)
 out.write(“ bin=” + machine.bin());
 out.write(“\n”);
}

We also need to declare the checked exception thrown by the write
methods:

private void reportMachine(Writer out, Machine machine) throws IOException {
 out.write(“Machine “ + machine.name());
 if (machine.bin() != null)
 out.write(“ bin=” + machine.bin());
 out.write(“\n”);
}

At each stage, we can check our progress by compiling. We know we’re
done when the new method compiles cleanly. And since it still hasn’t called,
the entire application should pass its tests at this point.

Step 4: Call the new method.

Finally, we can replace the copied code in the original method by a call to
the new method:

public void report(Writer out, List<Machine> machines) throws IOException {
 for (Machine machine : machines) {
 reportMachine(out, machine);
 }
}

Compile, test, and we’re done.

The Extract Method refactoring can be a little more complex if the code we
want to extract modifies a temporary variable. For example, consider the
following modified version of the previous code:

public String report(List<Machine> machines) {
 String result = “”;
 for (Machine machine : machines) {
 result += “Machine “ + machine.name();
 if (machine.bin() != null)
 result += “ bin=” + machine.bin();
 result += “\n”;
 }
 return result;
}

Here, the code we want to extract modifies the result temporary variable. In
this case, during Step 3 we need to declare a new result in the new method
and return its value at the end of the computation:

private String reportMachine(Machine machine) {
 String result = “Machine “ + machine.name();
 if (machine.bin() != null)
 result += “ bin=” + machine.bin();
 result += “\n”;
 return result;
}

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com

3 Refactoring Patterns

DZone, Inc. | www.dzone.com

Now in Step 4 we need to use the returned machine report:

public String report(List<Machine> machines) {
 String result = “”;
 for (Machine machine : machines) {
 result += reportMachine(machine);
 }
 return result;
}

Most of the available refactoring tools provide an automated
implementation of this refactoring.

Introduce Parameter Object

A group of parameters is often seen together in method signatures. We
can remove some duplication and convert them into a single new domain
abstraction.

For this example, consider an application in which a robot moves along a
row of machines in a production plant. We may have an object such as this:

public class Report {
 public String report(List<Machine> machines, Robot robot) {
 String result = “FACTORY REPORT\n”;
 for (Machine machine : machines) {
 result += reportMachine(machine);
 }
 return result + “\n” + reportRobot(robot) + “========\n”;
 }
}

Together with client code such as this:

String report = Report.report(machines, robot);

If we notice that the list of Machines is often passed around with the Robot,
we may decide to parcel them up together as a Plant object.

Step 1: Create a new class for the clump of values.

First, we create a new Plant class:

public class Plant {
 public final List<Machine> machines;
 public final Robot robot;

 public Plant(List<Machine> machines, Robot robot) {
 this.machines = machines;
 this.robot = robot;
 }
}

This is a simple container for the two values, and we have made it
immutable to keep things clean.

Step 2: Add Plant as an additional method parameter.

We pick any one method that takes machines and robot as parameters, and
add an additional parameter for the plant:

public class Report {
 public String report(List<Machine> machines, Robot robot, Plant plant) {
 //...
 }
}

And change the caller to match:

String report = Report.report(machines, robot, new Plant(machines, robot));

Compile and test to verify that we have changed no behavior.

Step 3: Switch the method to use the new parameter.

Now we make the original parameters redundant, one at a time. First, we
alter the method to get the machines from the plant:

public class Report {
 public String report(List<Machine> machines, Robot robot, Plant plant) {
 String result = “FACTORY REPORT\n”;
 for (Machine machine : plant.machines) {
 result += reportMachine(machine);
 }
 return result + “\n” + reportRobot(robot) + “========\n”;
 }
}

This is another safe base; we have the option here to compile, test, and
commit if we wish.

Now that the machines’ parameter is unused within the method, we can
remove it from the signature:

public class Report {
 public String report(Robot robot, Plant plant) {
 //...
 }
}

And from every call site:

String report = Report.report(robot, new Plant(machines, robot));

This is another safe base, if we wish to take advantage of it.

Then we do the same with the robot parameter, and we’re done:

public class Report {
 public String report(Plant plant) {
 String result = “FACTORY REPORT\n”;
 for (Machine machine : plant.machines) {
 result += reportMachine(machine);
 }
 return result + “\n” + reportRobot(plant.robot) + “========\n”;
 }
}

And:

String report = Report.report(new Plant(machines, robot));

We can follow these same steps for every method that has the same two
parameters.

Separate Query from Modifier

Methods that have side effects are harder to test and less likely to be safely
reusable. Methods that have side effects and return a value also have
multiple responsibilities. So oftentimes it can benefit the code to split such
a method into separate query and command methods.

Imagine we have a Meeting class with a method that looks for a manager
in its configuration file and sends them an email:

class Meeting {
 public StaffMember inviteManager(String fileName) throws IOException {
 BufferedReader in = new BufferedReader(new FileReader(fileName));
 String line = “”;
 while ((line = in.readLine()) != null) {
 StaffMember person = new StaffMember(line);
 if (person.isManager()) {
 sendInvitation(this, person);
 return person;
 }
 }
 return null;
 }
}

This method performs as a query – looking up the manager in the file –
and as a command. The code will be somewhat more testable if we can
separate those two responsibilities.

Step 1: Create a copy with no side effects.

We create a new method by copying the original and deleting the side
effects:

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com

4 Refactoring Patterns

DZone, Inc. | www.dzone.com

class Meeting {
 public StaffMember findManager(String fileName) throws IOException {
 BufferedReader in = new BufferedReader(new FileReader(fileName));
 String line = “”;
 while ((line = in.readLine()) != null) {
 StaffMember person = new StaffMember(line);
 if (person.isManager()) {
 return person;
 }
 }
 return null;
 }
}

This is a pure query, and as it is never called, we can compile, test, and
commit if we wish.

Step 2: Call the new query.

Now that we have the new query method, we can use it in the original
method:

class Meeting {
 public StaffMember inviteManager(String fileName) throws IOException {
 BufferedReader in = new BufferedReader(new FileReader(fileName));
 String line = “”;
 while ((line = in.readLine()) != null) {
 StaffMember person = new StaffMember(line);
 if (person.isManager()) {
 sendInvitation(this, person);
 return findManager(fileName);
 }
 }
 return null;
 }

Compile and test.

Step 3: Alter the callers.

Imagine the original method is called here:

public void organiseMeeting() throws IOException {
 StaffMember manager = meeting.inviteManager(employeeData);
 notifyOtherAttendees(manager);
}

}

We alter this method to make separate explicit calls to the command and
the query:

public void organiseMeeting() throws IOException {
 meeting.inviteManager(employeeData);
 StaffMember manager = meeting.findManager(employeeData);
 notifyOtherAttendees(manager);
}

We do this for all callers of the original method, and as usual we can
compile, test, and commit at any stage because we are not altering the
application’s overall behavior.

Step 4: Void the command method.

When all the callers have been converted to use the command-query
separated methods, we can remove the return value from the original
method:

class Meeting {
 public void inviteManager(String fileName) throws IOException {
 BufferedReader in = new BufferedReader(new FileReader(fileName));
 String line = “”;
 while ((line = in.readLine()) != null) {
 StaffMember person = new StaffMember(line);
 if (person.isManager()) {
 sendInvitation(this, person);
 }
 }
 }
}

This method is now a pure command. As ever, the callers should still pass
their tests.

Step 5: Remove duplication.

Finally, in our example we can use the new query within the command
method to remove some duplication:

class Meeting {
 public void inviteManager(String fileName) throws IOException {
 StaffMember manager = findManager(fileName);
 if (manager != null)
 sendInvitation(this, manager);
 }
}

Replace Inheritance with Delegation

Sometimes you need to extract a class from an inheritance hierarchy.

Step 1: Create a new field in the subclass to hold an instance of the
superclass.
Initialise the field to this.

Step 2: Change all calls to superclass methods so that they refer to the new
field.

Instead of directly calling superclass methods from the subclass, call them
via the object referred to in your new field. Compile and test.

Step 3: Remove the inheritance and initialise the field with a new instance
of the superclass.

Compile and test. At this point, we may need to add new methods to
the subclass if its clients use methods it previously inherited. Add these
missing methods, compile, and test.

Remove Control Couple

Sometimes a method parameter is used inside the method solely to
determine which of two or more code paths should be followed. Thus the
method has at least two responsibilities, and the caller “knows” which
one to invoke by setting the parameter to an appropriate value. Boolean
parameters are often used in this way.

Step 1: Isolate the conditional
If necessary, use Extract Method to ensure that the conditional check and
its branches form the entirety of a method.

Step 2: Extract the branches
Use Extract Method on each branch of the conditional, so that each
consists solely of a single call to a new method.

Step 3: Remove the coupled method
Use Inline Method to replace all calls to the conditional method, and then
remove the method itself.

Replace Error Code with Exception

Sometimes the special values returned by methods to indicate an error can
be too cryptic, and it may be preferable to throw an exception.

Step 1: Decide whether the exception should be checked or unchecked.

Make it unchecked if the caller(s) should already have prevented this
condition from occurring.

Step 2: Copy the original method, and change the new copy to throw the
exception instead of returning the special code.

This new method is not called yet. Compile and test.

Step 3: Change the original method so that it calls the new one.

The original method will now catch the exception and return the error code
from its catch block. Compile and test.

Step 4: Use Inline Method to replace all calls to the original method by calls
to the new method.

Compile and test.

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com

5 Refactoring Patterns

DZone, Inc. | www.dzone.com

Hide Delegate

When one object reaches through another to get at a third, it may be time to
reduce coupling and improve encapsulation.

Step 1: For each method you reach through to call, create a delegating
method on the middle-man object.

Compile and test after creating each method.

Step 2: Adjust the client(s) to call the new delegating methods.

Compie and test at each change.

Step 3: If possible. remove the accessor from the middle-man.

If no-one now accesses the delegated object via the middle-man, remove
the accessor method so that no-one can in the future.

Preserve Whole Object

When several of a method's arguments could be obtained from a single
object, it may be beneficial to pass that object instead of the separate
values.

Step 1: Add a new parameter for the whole object

Pass in the object that contains the values you wish to replace. At this
stage, this extra parameter is not used, so compile and test.

Step 2: Pick one parameter and replace references to it within the method.

Replace uses of the parameter by references to the value obtained from the
whole object. Compile and test at each change.

Step 3: Remove the parameter that is now unused.

Don't forget to also delete any code in the callers that obtains the value for
that parameter. Compile and test.

Step 4: Repeat for every other value that can be obtained from the new
parameter.

Compile and test.

COMMONLY USED REFACTORINGS

A “refactoring” is any behavior-preserving transformation of a software
application. That is, a refactoring is any change to your code that doesn’t
change what it does.

Unfortunately, that definition is so vague as to be nearly useless in practice.
In order to become a practical tool, refactoring needs an objective and a set
of ready-made shrink-wrapped techniques.

This table shows a small selection of the most well-known refactorings:

Refactoring Purpose

Extract Method Turns a code fragment into a method whose
name describes its purpose. Helps improve
the callers' readability, and may help reduce
duplication.

Inline Method Replaces calls to a method by copies of its body.
Brings code into one place in preparation for other
refactorings.

Rename Method Can help client code become more readable.
Often used after other refactorings if the method's
responsibilities are now better understood.

Introduce Explaining
Variable

Save the result of (part of) a complicated
expression in a temporary variable. Helps to
improve an algorithm's readability.

Inline Temp Replace uses of a temporary variable by its value.
Often used to bring code together in preparation
for other refactorings such as Extract Method.

Refactoring Purpose

Add Parameter Passes extra information into a method. Often
used during larger code restructuring.

Remove Parameter Removes a parameter that is no longer used by
a method. Helps to keep the method's interface
clean and readable for client code.

Extract Class A class has too many responsibilities, so you split
out part of it. The new class's name contributes to
the code's domain language; testability and reuse
may also be improved.

Introduce Parameter
Object

When several methods take the same bunch of
parameters, creates a new object that represents
the bunch. This is another way of finding new
classes and thus new domain concepts.

Introduce Null Object Replaces null checks by introducing a new class
to represent that special case. Helps to remove
duplication and simplifies conditional logic.

Replace Magic
Number with Symbolic
Constant

Gives a name to a literal number. Improves
code readability, and can help to identify subtle
dependencies between algorithms.

Note that many of these are inverses of each other.

REFACTORING IN PRACTICE

Doing it safely

Refactoring involves making numerous changes to a body of code, and
thus it incurs the significant risk of breaking that code. Make sure your
code is working before you start. The best way to do that is to have an
automated test suite that you trust and gives you good coverage. Use a
version control tool and save a checkpoint before each refactoring. Not only
does this mean you can recover quickly from disasters, it also means you
can try out a refactoring and then back out if you don’t like where it took
your code. Finally, use a refactoring tool if there is one available for your
environment.

Refactoring tools

This is a brief survey of the many refactoring tools available. In most cases
they are built into, or are extensions of, IDEs.

Language Tools

C Lint
Visual Studio

C++ Lint
Visual Assist
Visual Studio

C# CodeRush
Resharper
Visual Studio

Java Eclipse
IntelliJ IDEA
Netbeans
Oracle JDeveloper

Ruby Aptana
Netbeans
Raffle

Smalltalk Smalltalk Refactoring Browser

CONCLUSION

Refactoring involves making numerous changes to a body of code, and
thus it incurs the significant risk of breaking that code.

Hot tips

1. Make sure your code is working before you start.
2. Ensure you have an automated test suite that you trust and gives you

good coverage. Run the tests frequently before, during, and after each
refactoring.

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com

Browse our collection of over 150 Free Cheat Sheets
Upcoming Refcardz

Free PDF

6 Refactoring Patterns

DZone, Inc.
150 Preston Executive Dr.
Suite 201
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome

refcardz@dzone.com

Sponsorship Opportunities

sales@dzone.com

Copyright © 2012 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior
written permission of the publisher.

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to
more than 3.3 million software developers, architects and decision
makers. DZone offers something for everyone, including news,
tutorials, cheat sheets, blogs, feature articles, source code and more.
“"DZone is a developer's dream",” says PC Magazine.

3. Use a version control tool and save a checkpoint before each
refactoring. Not only does this mean you can recover quickly from
disasters, it also means you can try out a refactoring and then back it
out if you don't like where it took your code.

4. Break each refactoring down into small, safe steps by following the
core process outlined above.

5. Finally, use a refactoring tool if there is one available for your
environment.

FURTHER READING

Fowler, M et al: Refactoring – Improving the design of existing code,
Addison-Wesley 1999.

This is the book that ushered refactoring onto the main stage. Contains
strong introductory material and an extensive catalogue of refactorings,
with an emphasis on safe, step-by-step recipes that can be followed
mechanically. [Code examples in Java.]

Wake, W: Refactoring workbook, Addison-Wesley 2003.
A tour of the major code smells, with hints on how to recognize them
and how to remove them, plus scores of exercises and challenges that
encourage the reader to practice refactoring on small and large practical
examples. [Code samples in Java.]

Kerievsky, J: Refactoring to patterns, Addison-Wesley 2004.
Recipes and worked examples showing how to tackle large, complex
refactorings in real-world programs. [Code examples in Java.]
Kernighan, B & Plauger, PJ: Elements of programming style, McGraw-Hill
1974.

Gentle, highly instructive, and of great historical significance, this book
pre-dates the notions of refactoring and code smells by several decades,
and yet the authors refactor the smells out of several published programs.
[Code examples in Fortran, PL/1.]

Fields, J et al: Refactoring, ruby edition, Addison-Wesley 2009.
A re-working of Fowler’s original for the Ruby language; includes additional
Ruby-specific code smells and refactorings. [Code examples in Ruby.]
Meszaros, G: xUnit test patterns: Refactoring test code, Addison-Wesley
2007.

In-depth coverage of an oft-neglected area of refactoring. Includes a
catalogue of test smells and sample refactorings. [Code examples in
multiple languages.]

Kevin Rutherford, PhD, is a UK-based extreme
programmer and agile/TDD coach. He is a Chartered
Engineer and has over 30 years’ industry experience
in software development, including spells in project
management and as the owner of a successful
startup. He is the author of ‘Refactoring in Ruby’
http://www.refactoringinruby.info and created the
Reek codesmell detector. In recent years he has
returned to focus on developing great code and
great software teams. He can be contacted via
http://kevinrutherford.co.uk.

The book shows you when and how to refactor
with both legacy code and during new test-driven
development, and walks you through real-world
refactoring in detail. The workbook concludes with
several applications designed to help practice
refactoring in realistic domains, plus a handy code
review checklist you’ll refer to again and again.
Along the way, you’ll learn powerful lessons about
designing higher quality Ruby software—lessons
that will enable you to experience the joy of writing
consistently great code.

A B O U T T H E A U T H O R S R E C O M M E N D E D B O O K

HTTP
Mongo DB
Apache HTTPD
Cypher

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.amazon.com/Refactoring-Ruby-William-C-Wake/dp/0321545044
http://kevinrutherford.co.uk
http://www.amazon.com/Refactoring-Ruby-William-C-Wake/dp/0321545044

