
Scan this and find out
more about the JBoss Application Server project.
http://www.jboss.org/jbossas

JBoss Application Server Overview
Community Project

JBoss Application Server* is the world's lead-
ing Open Source Java EE application server for
developing and deploying enterprise applica-
tions. The latest in this line, JBoss AS 7 (Java EE
Web Profile certified), provides the same devel-
oper friendly environment as previous versions
while offering revolutionary new management
capabilities, and much more.

Blazing fast startup (~3seconds)
Services are started concurrently to eliminate unnecessary waits and leverage multi-core processors, while non-critical
services remain passivated until �rst use. JBoss AS 7 o�ers a 10-fold reduction in startup time over previous versions.

Lightweight
An aggressive approach to memory management and metadata indexing keeps the footprint exceptionally small,
enabling it to run with stock JVM settings and on small devices. Pro�les can be used to tune the capabilities of
the server.

Modular core
JBoss Modules o�ers true application isolation, hiding server implementation classes and only loads the classes your
application needs. Class loading is concurrent for extreme performance. OSGi support is available the moment you
install the application server.

Hot, incremental deployment
Quick turnaround during development as a result of fast, concurrent deployment and the ability to edit static resources
without redeployment in a �exible deployment structure.

Elegant administration
Consistent and powerful management is available, ranging from a polished, user-friendly web console to Java and
HTTP APIs to a command line tool to direct XML edits. Con�guration data is centralized and user-focused.

Domain (multi-server) management
One controller can rule them all or you can simply start a standalone server. Port o�sets can be changed with a single
switch. Rolling deployments are available

First class components
JBoss AS builds on many best of breed standalone OSS projects: Hibernate, JBoss Transactions, In�nispan, Iron
Jacamar, RESTEasy, Weld, HornetQ, JGroups, JBoss Logging, Mojarra, Apache CXF, and more.

Java EE 6 programming model
Java EE 6 o�ers a modern, loosely coupled programming model, founded on CDI, a speci�cation driven by JBoss.
With Java EE 6 you can focus on implementing your business logic, and allow the platform to take care of the rest.

Testable by design
Arquillian o�ers absolute �delity for testing: the ability to test your application inside the actual environment. Just like
CDI, Arquillian takes care of all the boilerplate in the background, removing clutter from your tests.

* JBoss Application Server is in the upstream for JBoss Enterprise Application Platform.

JBoss ApplicationServer7

DZone, Inc. | www.dzone.com

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#150
Ja

va
 E

n
te

rp
ri

se
 E

d
it

io
n

 6

By Andrew Lee Rubinger

Java Enterprise Edition 6
The Most Elegant Enterprise Java Yet

ABOUT THE PLATFORM

Enterprise software development is inherently complex, and multi-user
systems open the door to concerns such as transactional integrity, security,
persistence integration, and interaction between components. Very simply
put, the mission of the Java Enterprise Edition is to enable an out-of-the-box
set of configurable services that allows the programmer to write less and focus
on delivering clean business logic.

To this end, Java EE 6 is an aggregate of many interoperable technologies
designed to deliver a unified experience. Application Servers that are
certified to the standards defined by the Java Community Process are
intended to service applications written to the specifications within the
platform.

For the sake of brevity, this reference card will focus on the key APIs of Java EE
6 that are most relevant to modern development.

JAVA PLATFORM, ENTERPRISE EDITION 6 (JAVA EE 6)

JSR-316

This umbrella specification ties together the various subsystems that comprise
the platform and provides additional integration support.

Profiles

New to Java EE 6 is the notion of the “Web Profile”, a subset of the full
specification that is targeted to cater to more specialized and minimal web-
based application requirements. It is guaranteed to support the platform
common annotations for injection and lifecycle (JSR-250), JNDI Naming
standards, and the Java Transaction API. Additionally, the Web Profile
focuses on Servlet and closely related technologies such as persistence, view
presentation (JavaServer Faces and JavaServer Pages), and the business logic
elements of EJB Lite.

Code Example

The simple class below is all it takes in Java EE 6 to define a POJO-based
managed component capable of lifecycle callbacks, interceptors, and
resource injection.

/**
 * Interceptor logging that an invocation has been received
 */
public class LoggingInterceptor {

 @AroundInvoke
 public Object intercept(InvocationContext context) throws Exception {
 System.out.println(“Been intercepted: “ + context);
 return context.proceed();
 }
}

/**
 * Defines a simple managed bean able to receive an injection
 */
@ManagedBean
@Interceptors({LoggingInterceptor.class}) // Invocations will be
 // intercepted
public class ComponentResourceInjection {

 @Resource
 private UserTransaction userTransaction;

 // ... business methods will be intercepted
 // by LoggingInterceptor

Reference
The full JavaDoc for the Java EE 6 API is located at:
http://download.oracle.com/javaee/6/api/

COMMON ANNOTATIONS FOR THE JAVA PLATFORM

JSR-250

he common annotations for Java EE are a shared package used throughout
the platform specifications that generally focus on shared services like
lifecycle, injection, and security.

Class Name Description

Generated Marks generated code

ManagedBean Defines a class as a Java EE 6 Managed Bean

PostConstruct Lifecycle callback after an instance has been created but
before it is put into service

PreDestroy Lifecycle callback before an instance is to be removed from
service

Resource Defines an injection point, marks that this is to be provided by
the container

Resources Allows for injection of N resources

DeclareRoles Class-level target defining valid security roles

DenyAll Marks that no roles are allowed to access this method

PermitAll Marks that all roles are allowed to access this method (or all
methods if applied to a class)

RolesAllowed Specifies list of roles permitted to access this method (or all
methods if applied to a class)

brought to you by...

CONTENTS INCLUDE:
n	 About the Platform
n	 �Common Annotations For Java
n	 Java Platform, Enterprise Edition
n	 Java Servelet 3.0
n	 JavaServer Faces 2.0
n	 Enterprise JavaBeans 3.1

http://www.jboss.org/as7.html

2 Java Enterprise Edition 6

DZone, Inc. | www.dzone.com

RunAs Defines the identity context when run in the container

 JAVA SERVLET 3.0

JSR-315

Servlet technology models the request/response programming model and
is commonly used to extend HTTP servers to tie into server-side business
logic. In Servlet 3.0, the specification has been expanded to include
support for annotations, asynchronous processing, pluggability, and
general ease-of-configuration.

Code Example

Because Servlet 3.0 includes annotations to define servlets, the descriptor
web.xml is no longer required in most of the common cases; below is an
example of all that’s needed to create a simple servlet.

/**
 * Simple Servlet which welcomes the user by name specified
 * by the request parameter “name”.
 */
@WebServlet(urlPatterns =
{“/welcome”}) // Will service requests to the path “/welcome”
public class WelcomeServlet extends HttpServlet
{
 /**
 * Inject a reference to an EJB
 */
 @EJB
 private WelcomeBean bean;

 /**
 * Service HTTP GET Requests
 */
 @Override
 protected void doGet(final HttpServletRequest request, final HttpServletResponse
response) throws ServletException,
 IOException
 {
 // Get the name from the request
 final String name = request.getParameter(“name”);

 // Precondition checks
 if (name == null)
 {
 response.sendError(HttpServletResponse.SC_BAD_REQUEST, “Request
parameter \”name\” is required”);
 }

 // Set content type
 response.setContentType(“text/plain”);

 // Get the welcome message
 final String welcomeMessage = bean.welcome(name);

 // Write out
 response.getWriter().write(welcomeMessage);
 }

}

Public API from javax.servlet.annotation:

Class Name Description

HttpConstraint Defines security constraints for all HTTP-servicing meth-
ods in a secured servlet

HttpMethodCon-
straint

Defines security constraints for an HTTP-servicing
method in a servlet

MultipartConfig Indicates the servlet is to service requests for multipart/
form-data MIME type

ServletSecurity Secures a servlet class for HTTP-servicing methods

WebFilter Defines a class as a servlet filter

WebInitParam Specificies an initialization parameter on a servlet or filter

WebListener Defines a class as a web listener

WebServlet Defines a class as a servlet

PermitAll Marks that all roles are allowed to access this method (or all
method if applied to a class)

RolesAllowed Specifies list of roles permitted to access this method (or all
methods if applied to a class)

RunAs Defines the identity context when run in the container

 JAVA API FOR RESTFUL WEB SERVICES (JAX-RS)

JSR-311

New to Java EE, the JAX-RS specification allows for standard development
adhering to the Representational State Transfer (REST) paradigm. These
applications are packaged as a Servlet inside a web application archive.

/**
 * JAXB Model of a Name
 */
@XmlRootElement
public class Name {

 private String name;

 public Name(String name) {
 this.name = name;
 }
 public Name() {}

 public String getName() {return this.name;}

 public void setName(String name) {
 this.name = name;
 }
}

/**
 * Services requests for the path “/name”
 * returning the JAXB-formed Name XML
 */
@Path(“/name”)
@Produces({“application/xml”})
public class NamedResource extends javax.ws.rs.core.Application {
 @GET
 public Name get(@QueryParam(“name”) String name) {
 return new Name(name);
 }
}

...and HTTP GET requests to “{baseUrl}/myapp/name?name=andrew” will
return the XML form for the Name.

Public API Annotation Selection from javax.ws.rs:

Class Name Description

Consumes Defines the media types that may be accepted

CookieParam Injects the value of an HTTP cookie to a method param
or bean/class field

DefaultValue Defines default values for cookies and other parameters

DELETE Flags that a method is to service HTTP DELETE requests

Encoded Disables automatic decoding of parameter values

FormParam Injects the value of a form parameter to a resource method
parameter

GET Flags that a method is to service HTTP GET requests

HEAD Flags that a method is to service HTTP HEAD requests

HeaderParam Injects the value of a header parameter

HttpMethod Draws an association between an HTTP method with an an-
notation

MatrixParam Injects the value of a URI matrix parameter

Path Designates the URI path that a resource class or resource
method will serve

PathParam Injects the value of a URI path parameter

3 Java Enterprise Edition 6

DZone, Inc. | www.dzone.com

POST Flags that a method is to service HTTP POST requests

Produces Signals the media type(s) to be served by this resource

PUT Flags that a method is to service HTTP PUT requests

QueryParam Injects the value of a query parameter

 CONTEXTS AND DEPENDENCY INJECTION FOR JAVA

JSR-299

The Java Contexts and Dependency Injection (CDI) specification
introduces a standard set of application component management services
to the Java EE platform. CDI manages the lifecycle and interactions
of stateful components bound to well defined contexts. CDI provides
typesafe dependency injection between components. CDI also provides
interceptors and decorators to extend the behavior of components,
an event model for loosely coupled components and an SPI allowing
portable extensions to integrate cleanly with the Java EE environment.
Additionally, CDI provides for easy integration with view layers such as
JavaServer Faces 2.0 (JSR-314).

Code Example

Below is a simple example of a CDI Bean that is placed in scope alongside
the HTTP session, given a String-based name binding (such that it may be
used in JSF view components, for example) and injects the FacesContext
such that it may be used in business methods.

@SessionScoped // Bind to the web session
@Named // To be used in view components by name
public class GreeterBean implements Serializable {

 @Inject // Used to integrate w/ JSF
 private FacesContext context;

 public GreeterBean() {}

 // ... business methods

}

Class Name Description

javax.decorator.Decorator Declares the class as a Decorator

javax.decorator.Delegate Specifies the injection point of a
Decorator

javax.enterprise.context.ApplicationScoped Specifies the bean has applica-
tion scope

javax.enterprise.context.ConversationScoped Specifies the bean has conversation
scope

javax.enterprise.context.Dependent Specifies the bean belongs to
dependent pseudo-scope

javax.enterprise.context.NormalScope Specifies the bean is normally-
scoped

javax.enterprise.context.RequestScoped Specifies the bean is request-scoped

javax.enterprise.context.SessionScoped Specifies the bean is session-scoped

javax.enterprise.event.Observes Identifies an event parameter of an
observer method

javax.enterprise.inject.Alternative Specifies that the bean is an
Alternative

javax.enterprise.inject.Any Built-in qualifier type

javax.enterprise.inject.Default Default qualifier type

javax.enterprise.inject.Disposes Identifies the disposed parameter of
a disposer method

javax.enterprise.inject.Model Built-in stereotype for beans
defining the model layer of an MVC
webapp (ie. JSF)

javax.enterprise.inject.New Built-in qualifier type

javax.enterprise.inject.Produces Identifies a Producer method or field

javax.enterprise.inject.Specializes Indicates that a bean specializes
another bean

javax.enterprise.inject.Stereotype Specifies that an annotation is a
stereotype

javax.enterprise.inject.Typed Restricts the types of a bean

Relevent Public Annotation API from JSR-330,
Dependency Injection for Java in package javax.inject:

Class Name Description

Inject Identifies injectable constructors, methods, and fields

Named String-based qualifier

Qualifier Identifies qualifier annotations

Scope Identifies scope annotations

Singleton Identifies a type that the injector only instantiates once

For a deeper dive into CDI, check out DZone’s CDI Refcard: http://
refcardz.dzone.com/refcardz/contexts-and-depencency

 BEAN VALIDATION 1.0

JSR-303

New to Java EE 6, the Bean Validation Specification provides for unified
declaration of validation constraints upon bean data. It may be used to
maintain the integrity of an object at all levels of an application: from user
form input in the presentation tier all the way to the persistence layer.

Code Example

Here is an example of how to apply Bean Validation constraints in a
declarative fashion to ensure the integrity of a User object.

public class User {
 @NotNull
 @Size(min=1, max=15)
 private String firstname;

 @NotNull
 @Size(min=1, max=30)
 private String lastname;

 @Pattern(regexp=”\b[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}\b”)
 public String email;

}

Public Annotation API for javax.validation

Class Name Description

Constraint Link between a constraint annotation and its constraint
validation implementations

GroupSequence Defines a group sequence

OverridesAttribute Mark an attribute as overriding the attribute of a com-
posing constraint

OverridesAttribute.List Defines several @OverridesAttribute annotations on the same
element

ReportAsSingleViola-
tion

A constraint annotation hosting this annotation will return the
composed annotation error report if any of the composing
annotations fail.

Valid Mark an association as cascaded

4 Java Enterprise Edition 6

DZone, Inc. | www.dzone.com

 JAVASERVER FACES 2.0

JSR-314

JavaServer Faces is a user interface (UI) framework for the development
of Java web applications. Its primary function is to provide a component-
based toolset for easily displaying dynamic data to the user. It also
integrates a rich set of tools to help manage state and promote code
reuse.

Additionally, JSF is an extensible specification that encourages the
authoring of custom user views. It’s designed with tooling in mind such
that integrated development environments (IDEs) can intelligently assist
with design.

Code Example

Here we’ll show a simple example of a JSF managed bean whose state is
scope to the HTTP request, and is registered to a bean name that may be
accessed by the view layer.

/**
 * This class defines a bean to live bound to the HTTP
 * request scope, and may be accessed by the view layer
 * under the name “hitchhikersGuide”.
 */
import javax.annotation.PostConstruct;
import javax.enterprise.context.RequestScoped;
import javax.faces.application.ProjectStage;
import javax.faces.bean.ManagedBean;
import javax.faces.bean.ManagedProperty;

@RequestScoped
@ManagedBean(name = “hitchhikersGuide”)
public class HitchhikersGuide {
 private String ultimateAnswer;

 @ManagedProperty(value = “#{facesContext.application.projectStage}”)
 private ProjectStage journeyStage;

 public String getUltimateAnswer() {
 return ultimateAnswer;
 }

 public void setUltimateAnswer(String ultimateAnswer) {
 this.ultimateAnswer = ultimateAnswer;
 }

 public ProjectStage getJourneyStage() {
 return journeyStage;
 }

 public void setJourneyStage(ProjectStage journeyStage) {
 this.journeyStage = journeyStage;
 }

 @PostConstruct
 public void findUltimateAnswerToUltimateQuestion() {
 ultimateAnswer = “42”;
 }
}

index.xhtml View:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”
 xmlns:h=”http://java.sun.com/jsf/html”
 xmlns:f=”http://java.sun.com/jsf/core”>
 <head>
 <title>Sample JSF Page</title>
 </head>
 <body>
 <f:view>
 <h2><h:outputText value=”Test Managed Bean Annotations”/></h2>
 <p><h:outputText value=”hitchhikersGuide.ultimateAnswer =
#{hitchhikersGuide.ultimateAnswer}”/></p>
 <h2><h:outputText value=”Test Project Stage”/></h2>
 <p><h:outputText value=”project stage = #{hitchhikersGuide.
journeyStage}”/></p>
 </f:view>
 </body>
</html>

Public API from javax.faces.bean:

Class Name Description

ApplicationScoped Denotes a ManagedBean is to be in application
scope

CustomScoped Denotes a ManagedBean is to be in a custom-de-
fined scope of the specified value

ManagedBean Defines a class as a ManagedBean type

ManagedProperty Injection point for fields in ManagedBean classes

NoneScoped Denotes a ManagedBean is to be in the “none” scope

ReferencedBean Denotes the class as a referenced bean

RequestScoped Denotes a ManagedBean is to be in request scope

SessionScoped Denotes a ManagedBean is to be in session scope

ViewScoped Denotes a ManagedBean is to be in view scope

Public API from javax.faces.application:

Class Name Description

Application Singleton scoped per web application to provide
configuration for things like validators, components
and converters

ApplicationFactory Creates (if required) and returns Application instances

ApplicationWrapper Application type which may be used by developers to
add to an existing ResourceHandler

ConfigurableNavigation-
Handler

Extends NavidationHandler to provide runtime inspection
of the NavigationCase which defines the rule base for
navigation

FacesMessage A single validation message

NavigationCase A single navigation case in the navigation rule base

NavigationHandler Handles navigation from a given action and outcome

Resource Models a client resource request

ResourceHandler API by which UIComponent and Renderer instances can
reference Resource instances

ResourceWrapper Simple base implementation of Resource to be extended
by developers looking to add custom behaviors

StateManager Coordinates the process of saving and restoring the view
between client requests

StateManagerWrapper Base implementation of a StateManager which may be
subclasses by developers looking to add custom behaviors

ViewHandler Pluggable point for the render response and restore view
phases of the request lifecycle.

ViewHandlerWrapper Base implementation of a ViewHandler which may be sub-
classes by developers looking to add custom behaviors.

 ENTERPRISE JAVABEANS 3.1

JSR-318

Enterprise JavaBeans provide a component model to encapsulate
business logic. As such, they provide a few bean types:

•	 Session Beans

•	 Stateless

•	 No conversational state between requests

•	 Stateful

•	 Same bean instance used to service each client/session

•	 Singleton

•	 One shared bean instance for all users

•	 Message-Driven

•	 Event Listener

•	 JCA endpoint

•	 Asynchronous

•	 Entity

•	 Integration point w/ Java Persistence

5 Java Enterprise Edition 6

DZone, Inc. | www.dzone.com

Code Example

It’s simple to define an EJB capable of greeting a user.

/**
 * Stateless Session EJB
 */
@Stateless // Defines a Stateless Session Bean
@LocalBean // No-interface view
public class GreeterBean {
 @Override
 public String greet(String name) {
 return “Hi, “ + name + “!”;
 }
}

Other components, such as Servlets, may now inject a proxy to the above
EJB:

@EJB private GreeterBean greeterEjb;

Public API Annotation Selection from javax.ejb:

Class Name Description

AccessTimeout Designates the amount of time a concurrent method
should block before timing out

ActivationConfig-
Property

Used to configure Message-Driven Beans

AfterBegin Defines a Tx callback method for the “after begin”
event

AfterCompletion Defines a Tx callback method for the “after completion” event

ApplicationException Defines a user exception which should not be wrapped

Asynchronous Defines methods to be executed asynchronously.

BeforeCompletion Defines a Tx callback method for the “before completion”
event

ConcurrencyManage-
ment

Configures the concurrency management mode for a single-
ton session bean

DependsOn Designates initialization order for Singleton Session Beans

EJB Defines an injection point and dependency upon an EJB
component

EJBs Plural injection point and dependency for EJB components, to
be applied at the class-level

Local Defines a local business interface view

LocalBean Defines a no-interface view

Lock Defines a concurrency lock for Singleton Session Beans using
container-managed concurrency

MessageDriven Defines a Message-Driven Bean

PostActivate Defines an event callback after a Stateful Session Bean has
been activated

PrePassivate Defines an event callback before a Stateful Session Bean is to
be passivated

Remote Defines a remote business interface view

Remove Defines a business method that should trigger the removal of
a Stateful Session Bean instance (i.e., destroy the session)

Schedule Defines a new timer to be created with a specified schedule

Schedules Plural of Schedule

Singleton Defines a Singleton Session Bean

Startup Denotes that a Singleton Session Bean should eagerly load

Stateful Defines a Stateful Session Bean

StatefulTimeout Defines the amount of idle time before a Stateful Session is
eligible for removal

Stateless Defines a Stateless Session Bean

Timeout Defines a timer expiration method

TransactionAttribute Configures the transactional context under which business
methods should execute

TransactionManage-
ment

Configures transactional management for a Session or
Message-Driven Bean (container or bean provided)

JAVA PERSISTENCE 2.0

JSR-317

Most enterprise applications will need to deal with persistent data,
and interaction with relational databases can be a tedious and difficult
endeavor. The Java Persistence specification aims to provide an object
view of backend storage in a transactionally aware manner. By dealing
with POJOs, JPA enables developers to perform database operations
without the need for manually tuning SQL.

Code Example

A JPA entity is simply a POJO with some annotations to provide additional
mapping metadata. For instance:

@Entity
public class SimpleEmployee {
 @Id @Auto
 private Long id;
 private String name;

 public Long getId(){ return id; }
 public void setId(final Long id) { this.id = id; }
 public String getName() { return name; }
 public void setName(final String name) { this.name = name; }
}

Now a managed component such as an EJB or CDI bean can interact with
the database through our entity by associating it with an EntityManager.

@PersistenceContext
private EntityManager em;

public void createUser(){
 final SimpleEmployee andrew = new SimpleEmployee();
 andrew.setId(100L);
 andrew.setName(“Andrew Lee Rubinger”);
 em.persist(andrew); // Store in the DB
 // Now any state changes done to this managed object will be
 // reflected in the database when the Tx completes
}

Public API Annotation Selection from javax.persistence:

Class Name Description

Basic Describes mapping for a database column

Column Specifies column mapping for a persistent property

DiscriminatorCol-
umn

Notes the discriminator column used for SINGLE_TABLE
and JOINED inheritance strategies

DiscriminatorValue Specifies the value of the discriminator column for entities of this
type

ElementCollection Defines a collection of instances

Embeddable Defines a class whose instances are stored as part of the owning
entity

Embedded Specifies a persistent property whose value is an instance of an
embeddable class

EmbeddedId Denotes composite primary key of an embeddable class

Entity Defines a POJO as a persistent entity

EntityListeners Specifies callback listeners

Enumerated Specifies that a persistent property should be persisted as an
enumeration

6 Java Enterprise Edition 6

DZone, Inc.
140 Preston Executive Dr.
Suite 100
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2011 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise,
without prior written permission of the publisher.

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to
more than 3.3 million software developers, architects and decision
makers. DZone offers something for everyone, including news,
tutorials, cheat sheets, blogs, feature articles, source code and more.
“DZone is a developer’s dream,” says PC Magazine.

RECOMMENDED BOOK

GeneratedValue Specifies generation strategies for primary keys

Id Denotes a primary key field

IdClass Denotes a composite primary key class

Inheritance Denotes the inheritance strategy for this given entity

JoinColumn Specifies a column for joining an entity association or element
collection.

JoinColumns Plural of JoinColumn

JoinTable Maps associations

Lob Denotes a binary large object persistent property

ManyToMany Defines an N:N relationship

ManyToOne Defines an N:1 relationship

NamedQuery Defines a static query in JPAQL

OneToMany Defines a 1:N relationship

OneToOne Defines a 1:1 relationship

OrderBy Specifies ordering of elements when a Collection is retrieved

PersistenceContext Used for injecting EntityManager instances

PersistenceUnit Used for injecting EntityManagerFactory instances

PostLoad Define an event callback method

PostPersist Define an event callback method

PostRemove Define an event callback method

PostUpdate Define an event callback method

PrePersist Define an event callback method

PreRemove Define an event callback method

PreUpdate Define an event callback method

Table Specifies the primary table for this entity

Temporal Denotes persistence of Date and Calendar field types

Transient Denotes that a property is not persistent

Version Specifies the persistent property used as the optimistic lock

By Paul M. Duvall

ABOUT CONTINUOUS INTEGRATION

 G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#84

Continuous Integration:

Patterns and Anti-Patterns

CONTENTS INCLUDE:

■ About Continuous Integration

■ Build Software at Every Change

■ Patterns and Anti-patterns

■ Version Control

■ Build Management

■ Build Practices and more...

Continuous Integration (CI) is the process of building software

with every change committed to a project’s version control

repository.

CI can be explained via patterns (i.e., a solution to a problem

in a particular context) and anti-patterns (i.e., ineffective

approaches sometimes used to “fi x” the particular problem)

associated with the process. Anti-patterns are solutions that

appear to be benefi cial, but, in the end, they tend to produce

adverse effects. They are not necessarily bad practices, but can

produce unintended results when compared to implementing

the pattern.

Continuous Integration

While the conventional use of the term Continuous Integration

efers to the “build and test” cycle, this Refcard

expands on the notion of CI to include concepts such as

Aldon®

Change. Collaborate. Comply.

Pattern

Description

Private Workspace
Develop software in a Private Workspace to isolate changes

Repository

Commit all fi les to a version-control repository

Mainline

Develop on a mainline to minimize merging and to manage

active code lines

Codeline Policy

Developing software within a system that utilizes multiple

codelines

Task-Level Commit
Organize source code changes by task-oriented units of work

and submit changes as a Task Level Commit

Label Build

Label the build with unique name

Automated Build

Automate all activities to build software from source without

manual confi guration

Minimal Dependencies
Reduce pre-installed tool dependencies to the bare minimum

Binary Integrity

For each tagged deployment, use the same deployment

package (e.g. WAR or EAR) in each target environment

Dependency Management Centralize all dependent libraries

Template Verifi er

Create a single template fi le that all target environment

properties are based on

Staged Builds

Run remote builds into different target environments

Private Build

Perform a Private Build before committing changes to the

Repository

Integration Build

Perform an Integration Build periodically, continually, etc.

Send automated feedback from CI server to development team

ors as soon as they occur

Generate developer documentation with builds based on

brought to you by...

By Andy Harris

HTML BASICS

e.
co

m

G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#64

Core HTMLHTML and XHTML are the foundation of all web development.

HTML is used as the graphical user interface in client-side

programs written in JavaScript. Server-side languages like PHP

and Java also receive data from web pages and use HTML

as the output mechanism. The emerging Ajax technologies

likewise use HTML and XHTML as their visual engine. HTML

was once a very loosely-defi ned language with very little

standardization, but as it has become more important, the

need for standards has become more apparent. Regardless of

whether you choose to write HTML or XHTML, understanding

the current standards will help you provide a solid foundation

that will simplify all your other web coding. Fortunately HTML

and XHTML are actually simpler than they used to be, because

much of the functionality has moved to CSS.

common elements
Every page (HTML or XHTML shares certain elements in

common.) All are essentially plain text

extension. HTML fi les should not be cr

processor

CONTENTS INCLUDE:
■ HTML Basics■ HTML vs XHTML

■ Validation■ Useful Open Source Tools

■ Page Structure Elements
■ Key Structural Elements and more...

The src attribute describes where the image fi le can be found,

and the alt attribute describes alternate text that is displayed if

the image is unavailable.Nested tagsTags can be (and frequently are) nested inside each other. Tags

cannot overlap, so <a> is not legal, but <a></

b> is fi ne.

HTML VS XHTMLHTML has been around for some time. While it has done its

job admirably, that job has expanded far more than anybody

expected. Early HTML had very limited layout support.

Browser manufacturers added many competing standar

web developers came up with clever workar

result is a lack of standar
The latest web standar

Browse our collection of over 100 Free Cheat Sheets
Upcoming Refcardz
Java EE 6
MySQL 5.5
HTML 5 Canvas
Android

By Daniel Rubio

ABOUT CLOUD COMPUTING

 C
lo

u
d

 C
o

m
p

u
ti

n
g

w

w
w

.d
zo

n
e.

co
m

 G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#82

Getting Started with
Cloud Computing

CONTENTS INCLUDE:
■ About Cloud Computing
■ Usage Scenarios
■ Underlying Concepts
■ Cost
■ Data Tier Technologies
■ Platform Management and more...

Web applications have always been deployed on servers
connected to what is now deemed the ‘cloud’.

However, the demands and technology used on such servers
has changed substantially in recent years, especially with
the entrance of service providers like Amazon, Google and
Microsoft.

These companies have long deployed web applications
that adapt and scale to large user bases, making them
knowledgeable in many aspects related to cloud computing.

This Refcard will introduce to you to cloud computing, with an
emphasis on these providers, so you can better understand
what it is a cloud computing platform can offer your web
applications.

USAGE SCENARIOS

Pay only what you consume
Web application deployment until a few years ago was similar
to most phone services: plans with alloted resources, with an
incurred cost whether such resources were consumed or not.

Cloud computing as it’s known today has changed this.
The various resources consumed by web applications (e.g.
bandwidth, memory, CPU) are tallied on a per-unit basis
(starting from zero) by all major cloud computing platforms.

also minimizes the need to make design changes to support
one time events.

Automated growth & scalable technologies
Having the capability to support one time events, cloud
computing platforms also facilitate the gradual growth curves
faced by web applications.

Large scale growth scenarios involving specialized equipment
(e.g. load balancers and clusters) are all but abstracted away by
relying on a cloud computing platform’s technology.

In addition, several cloud computing platforms support data
tier technologies that exceed the precedent set by Relational
Database Systems (RDBMS): Map Reduce, web service APIs,
etc. Some platforms support large scale RDBMS deployments.

CLOUD COMPUTING PLATFORMS AND
UNDERLYING CONCEPTS

Amazon EC2: Industry standard software and virtualization
Amazon’s cloud computing platform is heavily based on
industry standard software and virtualization technology.

Virtualization allows a physical piece of hardware to be
utilized by multiple operating systems. This allows resources
(e.g. bandwidth, memory, CPU) to be allocated exclusively to
individual operating system instances.

As a user of Amazon’s EC2 cloud computing platform, you are
assigned an operating system in the same way as on all hosting

Andrew Lee Rubinger

Open Source Software Engineer and Author

Advocate for and speaker on testable enterprise Java
development, author of “Enterprise JavaBeans 3.1”
from O’Reilly Media. Member of the JBoss Application
Server development team and technical lead of the

ShrinkWrap project. Proudly employed by JBoss / Red Hat.

Learn how to code, package, deploy, and test
functional Enterprise JavaBeans with the latest
edition of bestselling guide. Written by the
developers of the JBoss EJB 3.1 implementation,
this book brings you up to speed on each of the
component types and container services in this
technology, while the workbook in the second
section provides several hands-on examples for
putting the concepts into practice. Enterprise
JavaBeans 3.1 is the most complete reference

you’ll find on this specification.

ABOUT THE AUTHOR

