

DZone, Inc. | www.dzone.com

By Mike Keith

G
e

tt
in

g
 S

ta
rt

e
d

 w
it

h
 J

PA
 2

.0

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#127

CONTENTS INCLUDE:
n	 Whats New in JPA 2.0
n	 JDBC Properties
n	 Access Mode
n	 Mappings
n	 Shared Cache
n	 Additional API and more...

Getting Started with
 JPA 2.0

http://txt.couchware.com/medias/jump?hid=2529&cid=437&mid=753

DZone, Inc. | www.dzone.com

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#153
A

p
ac

h
e

 C
as

sa
n

d
ra

By Brian O’Neill

APACHE CASSANDRA

Apache Cassandra is a high-performance, extremely scalable, fault
tolerant (i.e., no single point of failure), distributed non-relational
database solution. Cassandra combines all the benefits of Google
Bigtable and Amazon Dynamo to handle the types of database
management needs that traditional RDBMS vendors cannot support.
DataStax is the leading worldwide commercial provider of Cassandra
products, services, support, and training.

Who is using Cassandra?
Cassandra is in use at Netflix, Twitter, Urban Airship, Constant Contact,
Reddit, Cisco, OpenX, Rackspace, Ooyala, and more companies that have
large active data sets. The largest known Cassandra cluster has over 300
TB of data in over 400 machines.

(From: http://cassandra.apache.org/)

Cassandra RDBMS

Atomicity Success or failure on a row-by-row
basis.

Enforced at every scope, at
the cost of performance and
scalability.

Sharding Native share-nothing architecture,
inherently partitioned by a
configurable strategy.

Often forced when scaling,
partitioned by key or function

Consistency No consistency in the ACID
sense. Can be tuned to provide
consistency in the CAP sense--data
is consistent across all the nodes
in a distributed database cluster
,guaranteeing read-after-write or
eventual readability.

Favors consistency over availabil-
ity tunable via isolation levels.

Durability Writes are durable to a replica
node, being recorded in memory
and the commit log before ac-
knowledged. In the event of a
crash, the commit log replays on
restart to recover any lost writes
before data is flushed to disk.

Typically, data is written to a
single master node, sometimes
configured with synchronous
replication at the cost of perfor-
mance and cumbersome data
restoration.

Multi-
Datacenter
Replication

Native capabilities for data replica-
tion over lower bandwidth, higher
latency, less reliable connections.

Typically only limited long-
distance replication to read-only
slaves receiving asynchronous
updates.

Security Coarse-grained and primitive. Fine-grained access control to
objects.

DATA MODEL OVERVIEW

Cassandra has a simple schema comprising keyspaces, column families,
rows, and columns.

Definition RDBMS Analogy Object Equivalent

Schema/
Keyspace

A collection of
column families.

Schema/Database Set<ColumnFamily>

Table/
Column
Family

A set of rows. Table Map<rowKey, Row>

Row An ordered set of
columns.

Row OrderedMap <columnKey,
Column>

Column A key/value pair
and timestamp.

Column (Name, Value) (key, value, timestamp)

Schema
Also known as a keyspace, the schema is akin to a database or schema in
RDBMS and contains a set of tables. A schema is also the unit for Cassandra’s
access control mechanism. When enabled, users must authenticate to access
and manipulate data in a schema or table.

Tables
A table, also known as a column family, is a map of rows. A table defines
the column names and data types. The client application provides rows
that conform to the schema. Each row has the same fixed set of columns.
As values for these properties, Cassandra provides the following CQL
data types for columns.

As Values for these properties, Cassandra provides the following CQL
data types for columns.

Type Purpose Storage

ascii Efficient storage for simple ASCII
strings.

Arbitrary number of ASCII bytes
(i.e., values are 0-127).

boolean True or False. Single byte.

blob Arbitrary byte content. Arbitrary number of byes.

Composite
Type

A single type comprising sub-
components each with their own
types.

An arbitrary number of bytes
comprising concatenated
values of the subtypes.

counter Used for counters, which are
cluster-wide incrementing values.

8 bytes.

timestamp Stores time in milliseconds. 8 bytes.

decimal Stores BigDecimals. 4 bytes to store the scale, plus
an arbitrary number of bytes to
store the value.

double Stores Doubles. 8 bytes.

float Stores Floats. 4 bytes.

int Stores 4-byte integer. 4 bytes.

CONTENTS INCLUDE:
n	 Apache Cassandra
n	 	Data Model Overview
n	 Cassandra Architecture
n	 Partitioning
n	 Replication
n	 And more...

Apache Cassandra
A Fault-Tolerant, Massively Scalable NoSQL Database

http://txt.couchware.com/medias/jump?hid=2529&cid=437&mid=753

2 APACHE CASSANDRA

DZone, Inc. | www.dzone.com

varint Stores variable precision integer. An arbitraty number of bytes
used to store the value.

bigint Stores Longs. 8 bytes.

text, varchar Stores text as UTF8. UTF8.

uuid Suitable for UUID storage. 16 bytes.

Rows
Cassandra 1.1 supports tables defined with composite primary keys.
The first column in a composite key definition is used as the partition
key. Remaining columns are automatically clustered. Rows that share a
partition key are sorted by the remaining components of the primary key.

Columns
A column is a triplet: key, value, and timestamp. The validation and
comparator on the column family define how Cassandra sorts and stores
the bytes in column keys.

The timestamp portion of the column is used to sequence mutations.
The timestamp is defined and specified by the client and can be anything
the client wishes to use. By convention, the timestamp is typically
microseconds since epoch. If time-based, clients must be careful to
synchronize clocks.

Columns may optionally have a time-to-live (TTL), after which Cassandra
asynchronously deletes them.

Hot
Tip

Originally SuperColumns were one of Cassandra’s data model
primitives. Although they are still supported in the API, we
recommend you use CompositeTypes instead.

CASSANDRA ARCHITECTURE

Cassandra uses a ring architecture. The ring represents a cyclic range of
token values (i.e., the token space). Each node is assigned a position on
the ring based on its token. A node is responsible for all tokens between
its initial token and the initial token of the closest previous node along the
ring.

PARTITIONING

Keys are mapped into the token space by a partitioner. The important
distinction between the partitioners is order preservation (OP). Users can
define their own partitioners by implementing IPartitioner, or they can use
one of the native partitioners:

Map Function Token Space OP

RandomPartitioner MD5 BigInteger No

BytesOrder
Partitioner

Identity Bytes Yes

The following examples illustrate this point.

Random Partitioner
Since the Random Partitioner uses an MD5 hash function to map keys into
tokens, on average those keys will evenly distribute across the cluster. For
this reason, RandomPartitioner is the default partitioner.

The row key determines the node placement:

Row Key

Lisa state: CA graduated: 2008 gender: F

Owen state: TX gender: M

Collin state: UT gender: M

This may result in following ring formation, where “collin”, “owen”, and
“lisa” are rowkeys.

	

md5(“owen”)	

md5(“lisa”)	

md5(“collin”)	

N1	
	

N2	 N3	

The MD5 hash operation results in a 128-bit number for keys, shown as
md5(“name”):

Row Key MD5 Hash Node

collin CC982736AD62AB 3

owen 9567238FF72635 2

lisa 001AB62DE123FF 1

Notice that the keys are not in order. With RandomPartitioner, the keys
are evenly distributed across the ring using hashes, but you sacrifice order,
which means any range query needs to query all nodes in the ring.

Order Preserving Partitioners (OPP)
The Order Preserving Partitioners preserve the order of the row keys as
they are mapped into the token space.

In our example, since:

 “collin” < “lisa” < “owen”
 then,
 token(“collin”) < token(“lisa”) < token(“owen”)

With OPP, range queries are simplified and a query may not need to
consult each node in the ring. This seems like an advantage, but it comes
at a price. Since the partitioner is preserving order, the ring may become
unbalance unless the rowkeys are naturally distributed across the token
space.

This is illustrated below.

	

utf8(“owen”)	

utf8(“lisa”)	

utf8(“collin”)	 N1	
	

N2	 N3	

To manually balance the cluster, you can set the initial token for each node
in the Cassandra configuration.

Hot
Tip

If possible, it is best to design your data model to use
RandomPartitioner to take advantage of the automatic load balancing
and decreased administrative overhead of manually managing token
assignment.

3 APACHE CASSANDRA

DZone, Inc. | www.dzone.com

REPLICATION

Cassandra provides high availability and fault tolerance through data
replication. The replication uses the ring to determine nodes used for
replication. Each keyspace has an independent replication factor, n. When
writing information, the data is written to the target node as determined
by the partitioner and n-1 subsequent nodes along the ring.

There are two replication strategies: SimpleStrategy and
NetworkTopologyStrategy.

SimpleStrategy
The SimpleStrategy is the default strategy and blindly writes the data
to subsequent nodes along the ring. In the previous example with a
replication factor of 2, this would result in the following storage allocation.

Row Key Replica 1
(as determined by partitioner)

Replica 2
(found by traversing the ring)

collin 3 1

owen 2 3

N3 1 2

NetworkTopologyStrategy
The NetworkTopologyStrategy is useful when deploying to multiple data
centers. It ensures data is replicated across data centers.

Effectively, the NetworkTopologyStrategy executes the SimpleStrategy
independently for each data center, spreading replicas across distant
racks. Cassandra writes a copy in each data center as determined by the
partitioner. Data is written simultaneously along the ring to subsequent
nodes within that data center with preference for nodes in different racks
to offer resilience to hardware failure. All nodes are peers and data files
can be loaded through any node in the cluster, eliminating the single point
of failure inherent in master-slave architecture and making Cassandra fully
fault-tolerant and highly available.

Given the following ring and deployment topology:

With blue nodes (N1-N3) deployed to one data center (DC1), red nodes
(N4-N6) deployed to another data center (DC2), and a replication factor of
4, Cassandra would write a row with key “lisa” as follows.

NOTE: Cassandra attempts to write data simultaneously to all target
nodes then waits for confirmation from the relevant number of nodes
needed to satisfy the specified consistency level.

Consistency Levels
One of the unique characteristics of Cassandra that sets it apart from
other databases is its approach to consistency. Clients can specify the
consistency level on both read and write operations trading off between
high availability, consistency, and performance.

Write
Level Expectation

ANY The write was logged, but the data may not be available for reads
immediately. This is useful where you need high availability for
writes but only eventual consistency on reads.

ONE Data is committed to at least one replica and is available for
reads.

TWO Data is committed to at least two replicas and is available for
reads.

THREE Data is committed to at least three replicas and is available for
reads.

QUORUM Data is committed to at least n/2+1 replicas and is available for
reads, where n is the replication factor.

LOCAL_QUORUM Data is committed to at least n/2+1 replicas within the local data
center.

EACH_QUORUM Data is committed to at least n/2+1 replicas within each data
center.

ALL Data is committed to and available from all n replicas. This is
useful when absolute read consistency and/or fault tolerance are
necessary (e.g., online disaster recovery).

Read
Level Expectation

ONE The client receives data from the first replica to respond.

TWO The client receives the most current data between two replicas
based on the timestamps.

THREE The client receives the most current data between three replicas
based on the timestamps.

QUORUM The client receives the most current data once n/2+1 replicas have
responded.

LOCAL_QUORUM The client receives the most current data once n/2+1 replicas have
responded within the local data center.

EACH_QUORUM The client receives the most current data once n/2+1 replicas have
responded within each data center.

ALL The client receives the most current data once all replicas have
responded.

NETWORK TOPOLOGY

As input into the replication strategy and to efficiently route
communication, Cassandra uses a snitch to determine the data center and
rack of the nodes in the cluster. A snitch is a component that detects and
informs Cassandra about the network topology of the deployment.

The snitch dictates what is used in the strategy options to identify
replication groups when configuring replication for a keyspace.

Nodes Rack DC Reason

N4 3 2 As determined by partitioner in DC1.

N2 1 1 As determined by partitioner in DC2.

N6 4 2 Preference shown for Rack 4 (over Rack 3).

N3 1 1 Written to same rack hosting N2 since no other
rack was available.

The following table shows the four snitches provided by Cassandra and
what you should use in your keyspace configuration for each snitch.

Snitch Specify

SimpleSnitch Specify only the replication factor in your strategy options.

PropertyFileSnitch Specify the data center names from your properties file in the
keyspace strategy options.

RackInferringSnitch Specify the second octet of the IPv4 address in your keyspace
strategy options.

EC2Snitch Specify the region name in the keyspace strategy options.

SimpleSnitch
The SimpleSnitch provides Cassandra no information regarding racks or
data centers. It is the default setting and is useful for simple deployments
where all servers are collocated.

4 APACHE CASSANDRA

DZone, Inc. | www.dzone.com

PropertyFileSnitch
The PropertyFileSnitch allows users to be explicit about their network
topology. The user specifies the topology in a properties file, cassandra-
topology.properties. The file specifies which nodes belong to which racks
and data centers. Below is an example property file for our sample cluster.

DC1
192.168.0.1=DC1:RAC1
192.168.0.2=DC1:RAC1
192.168.0.3=DC1:RAC2

DC2
192.168.1.4=DC2:RAC3
192.168.1.5=DC2:RAC3
192.168.1.6=DC2:RAC4

Default for nodes
default=DC3:RAC5

RackInferringSnitch
The RackInferringSnitch infers network topology by convention. From the
IPv4 address (e.g., 9.100.47.75), the snitch uses the following convention to
identify the data center and rack:

Octet Example Indicates

1 9 Nothing

2 100 Data Center

3 47 Rack

4 75 Node

EC2Snitch
The EC2Snitch is useful for deployments to Amazon’s EC2. It uses
Amazon’s API to examine the regions to which nodes are deployed. It
then treats each region as a separate data center.

EC2MultiRegionSnitch

Use this snitch for deployments on Amazon EC2 where the cluster spans
multiple regions. This snitch treats data centers and availability zones as
racks within a data center and uses public IPs as broadcast_address to
allow cross-region connectivity. Cassandra nodes in one EC2 region can
bind to nodes in another region, thus enabling multi-data center support.

QUERYING/INDEXING

Cassandra provides simple primitives. Its simplicity allows it to scale
linearly with high availability and very little performance degradation.
That simplicity allows for extremely fast read and write operations for
specific keys, but servicing more sophisticated queries that span keys
requires pre-planning.

Using the primitives that Cassandra provides, you can construct indexes
that support exactly the query patterns of your application. Note,
however, that queries may not perform well without properly designing
your schema.

Secondary Indexes
To satisfy simple query patterns, Cassandra provides a native indexing
capability called Secondary Indexes. A column family may have multiple
secondary indexes. A secondary index is hash-based and uses specific
columns to provide a reverse lookup mechanism from a specific column
value to the relevant row keys. Under the hood, Cassandra maintains
hidden column families that store the index. The strength of Secondary
Indexes is allowing queries by value. Secondary indexes are built in the
background automatically without blocking reads or writes. To create a
Secondary Index using CQL is straight-forward. For example, define a
table of data about movie fans, and then create a secondary index of
states where they live:

CREATE TABLE fans (watcherID uuid, favorite_actor text, address text, zip
int, state text PRIMARY KEY (watcherID));

CREATE INDEX watcher_state ON fans (state);

Range Queries
It is important to consider partitioning when designing your schema to
support range queries.

Range Queries with Order Preservation
Since order is preserved, order preserving partitioners better supports
range queries across a range of rows. Cassandra only needs to retrieve
data from the subset of nodes responsible for that range. For example,
if we are querying against a column family keyed by phone number and
we want to find all phone numbers between that begin with 215-555,
we could create a range query with start key 215-555-0000 and end key
215-555-9999.To service this request with OrderPreservingPartitioning,
it’s possible for Cassandra to compute the two relevant tokens:
token(215-555-0000) and token(215-555-9999).Then satisfying that
querying simply means consulting nodes responsible for that token range
and retrieving the rows/tokens in that range.

Range Queries with Random Partitioning
The RandomPartitioner provides no guarantees of any kind between keys
and tokens. In fact, ideally row keys are distributed around the token ring
evenly. Thus, the corresponding tokens for a start key and end key are not
useful when trying to retrieve the relevant rows from tokens in the ring with
the RandomPartitioner. Consequently, Cassandra must consult all nodes
to retrieve the result. Fortunately, there are well known design patterns to
accommodate range queries. These are described below.

Index Patterns
There are a few design patterns to implement indexes. Each services
different query patterns. The patterns leverage the fact that Cassandra
columns are always stored in sorted order and all columns for a single row
reside on a single host.

Inverted Indexes
First, let’s consider the inverted index pattern. In an inverted index,
columns in one row become row keys in another. Consider the following
data set, where users IDs are row keys.

Column Family: Users

RowKey Columns

BONE42 { name : “Brian”} { zip: 15283} {dob : 09/19/1982}

LKEL76 { name : “Lisa”} { zip: 98612} {dob : 07/23/1993}

COW89 { name : “Dennis”} { zip: 98612} {dob : 12/25/2004}

Without indexes, searching for users in a specific Zip Code would mean
scanning our Users column family row-by-row to find the users in the
relevant Zip Code. Obviously, this does not perform well.

To remedy the situation, we can create a column family that represents the
query we want to perform, inverting rows and columns. This would result
in the following column family.

Column Family: Users_by_ZipCode

RowKey Columns

98612 { user_id : LKEL76 } { user_id : COW89 }

15283 { user_id : BONE42 }

Since each row is stored on a single machine, Cassandra can quickly
return all user IDs within a single Zip Code by returning all columns
within a single row. Cassandra simply goes to a single host based on
token(zipcode) and returns the contents of that single row.

Wide-row Indexes
When working with time series data, consider storing the complete set of
data for each event in the timeline itself by serializing the entire event into
a single column value or by using composite column names of the form
<timestamp>:<event_field>. Unless the data for each event is very large,
this approach scales well with large data sets and provides efficient reads.
Fetch a time slice of events by reading a contiguous portion of a row on
one set of replicas. When you track the same event in multiple timelines,
denormalizing and storing all of the event data in each of the timelines
works well.

5 APACHE CASSANDRA

DZone, Inc. | www.dzone.com

Materialized View Table

lsmith: 1332960000 C4e1ee6f-e053-41f5-9890-
674636d51095:
{“user”: “lsmith”, “body”: “There
are . . . “}

39f71a85-7af0 . . .
{“user”: “lsmith”,
“body”: “Yes, . . .

cbrown:
1332960000

e572bad1-f98d-4346-80a0-
13e7d37d38d0:
{“user”:”cbrown”, “body”: “My dog
is . . .”}

aa33bgbfd-8f16 . . .
{“user”:”cbrown”,
“body”:”No, . . .

When you use composite keys in CQL, Cassandra supports wide
Cassandra rows using composite column names. In CQL 3, a primary key
can have any number (1 or more) of component columns, but there must
be at least one column in the column family that is not part of the primary
key. The new wide row technique consumes more storage because for
every piece of data stored, the column name is stored along with it.

CREATE TABLE History.events (
 event uuid PRIMARY KEY,
 author varchar,
 body varchar);

CREATE TABLE timeline (
 user varchar,
 event uuid,
 author varchar,
 body varchar,

Hot
Tip

Wide-Row indexes can cause hotspots in the cluster. Since the index
is a single row, it is stored on a single node (plus replicas). If that is a
heavily used index, those nodes may be overwhelmed.

Composite-Types in Indexes
Using composite keys in indexes, we can create queries along multiple
dimensions. If we combine the previous examples, we could create a
single wide-row capable of serving a compound query such as, “How
many users within the 18964 Zip Code are older than 21?”

Simply create a composite type containing the Zip Code and the date of
birth and use that as the column name in the index.

Denormalization
Finally, it is worth noting that each of the indexing strategies as presented
would require two steps to service a query if the request requires the
actual column data (e.g., user name). The first step would retrieve the keys
out of the index. The second step would fetch each relevant column by
row key.

We can skip the second step if we denormalize the data. In Cassandra,
denormalization is the norm. If we duplicate the data, the index becomes
a true materialized view that is custom tailored to the exact query we need
to support.

INSERTING/UPDATING/DELETING

Everything in Cassandra is a write, typically referred to as a mutation.
Since Cassandra is effectively a key-value store, operations are simply
mutations of a key/value pairs. The column is atomic, but the fundamental
unit is a row in the ACID sense. If you have multiple updates to the same
key, group the changes into a single update.

Hinted Handoff
Similar to ReadRepair, Hinted Handoff is a background process that
ensures data integrity and eventual consistency. If a replica is down in the
cluster and the client requests a consistency level of ANY, a write may still
succeed by writing a “hint” to a coordinator node, which will disseminate
that data to replicas when they become available.

OPERATIONS AND MAINTENANCE

Cassandra provides tools for operations and maintenance. Some of the
maintenance is mandatory because of Cassandra’s eventually consistent
architecture. Other facilities are useful to support alerting and statistics
gathering. Use nodetool to manage Cassandra. Datastax provides a
reference card on nodetool available here:http://www.datastax.com/wp-
content/uploads/2012/01/DS_nodetool_web.pdf

Nodetool Repair
Cassandra keeps record of deleted values for some time to support the
eventual consistency of distributed deletes. These values are called
tombstones. Tombstones are purged after some time (GCGraceSeconds,
which defaults to 10 days). Since tombstones prevent improper data
propagation in the cluster, you will want to ensure that you have
consistency before they get purged.

To ensure consistency, run:

>$CASSANDRA_HOME/bin/nodetool repair

The repair command replicates any updates missed due to downtime or
loss of connectivity. This command ensures consistency across the cluster
and obviates the tombstones. You will want to do this periodically on
each node in the cluster (within the window before tombstone purge).

Monitoring
Cassandra has support for monitoring via JMX, but the simplest way to
monitor the Cassandra node is by using OpsCenter, which is designed
to manage and monitor Cassandra database clusters. There is a free
community edition as well as an enterprise edition that provides
management of Apache SOLR and Hadoop.

Simply download mx4j and execute the following:

> cp $MX4J_HOME/lib/mx4j-tools.jar $CASSANDRA_HOME/lib

The following are key attributes to track per column family.

Attribute Provides

Read Count Frequency of reads against the column family.

Read Latency Latency of reads against the column family.

Write Count Frequency of writes against the column family.

Write Latency Latency of writes against the column family.

Pending Tasks Queue of pending tasks, informative to know if tasks are queu-
ing.

Backup
OpsCenter facilitates backing up data by providing snapshots of the data.
A snapshot creates a new hardlink to every live SSTable. Cassandra also
provides online backup facilities using nodetool. To take a snapshot of
the data on the cluster, invoke:

>$CASSANDRA_HOME/bin/nodetool snapshot

This will create a snapshot directory in each keyspace data directory.
Restoring the snapshot is then a matter of shutting down the node,
deleting the commitlogs and the data files in the keyspace, and copying
the snapshot files back into the keyspace directory.

CLIENT LIBRARIES

Cassandra has a very active community developing libraries in different
languages.

Java
Client Description

Astyanax Inspired by Hector, Astyanax is a client library developed by the
folks at Netflix. https://github.com/Netflix/astyanax

Hector Hector is one of the first APIs to wrap the underlying Thrift API.
Hector is one of the most commonly used client libraries.
https://github.com/rantav/hector

CQL
Client Description

CQL Cassandra provides an SQL-like query language called the Cassandra Query
Language (CQL). The CQL shell allows you to interact with Cassandra as if it
were a SQL database. Start the shell with:
>$CASSANDRA_HOME/bin/cqlsh
Datastax provides a reference card for CQL available here:
http://www.datastax.com/wp-content/uploads/2012/01/DS_CQL_web.pdf

6 APACHE CASSANDRA

DZone, Inc.
150 Preston Executive Dr.
Suite 200
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2011 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise,
without prior written permission of the publisher.

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to
more than 3.3 million software developers, architects and decision
makers. DZone offers something for everyone, including news,
tutorials, cheat sheets, blogs, feature articles, source code and more.
“DZone is a developer’s dream,” says PC Magazine.

RECOMMENDED BOOK

PHP CQL
Client Description

Cassandra-
PDO

A CQL (Cassandra Query Language) driver for PHP.
http://code.google.com/a/apache-extras.org/p/cassandra-pdo/

Python
Client Description

Pycassa Pycassa is the most well known Python library for Cassandra.
https://github.com/pycassa/pycassa

Ruby
Client Description

Ruby Gem Ruby has support for Cassandra via a gem.
http://rubygems.org/gems/cassandra

REST
Client Description

Virgil Virgil is a java-based REST client for Cassandra.
https://github.com/hmsonline/virgil

.NET
Client Description

Cassandra-Sharp .NET client for Cassandra

Node.js
Client Description

Cassandra-Node Cassandra/ CQL driver for Node.js

There are also community supported client libraries for .NET
[http://code.google.com/p/cassandra-sharp/] and Node.js [https://github.
com/racker/node-cassandra-client]

Command Line Interface (CLI)
Cassandra also provides a Command Line Interface (CLI) through which
you can perform all schema related changes. It also allows you to
manipulate data. Datastax provides a reference card on the CLI available
here:

http://www.datastax.com/wp-content/uploads/2012/01/DS_CLI_web.pdf

Hadoop Support
DataStax Enterprise provides Cassandra with an enhanced Hadoop
distribution that is compatible with existing HDFS, Hadoop, and Hive tools
and utilities. Cassandra also provides out-of-the-box support for Hadoop.
To see the canonical word count example, take a look at:

https://github.com/apache/cassandra/tree/trunk/examples/hadoop_
word_count

DataStax Community Edition
DataStax Community Edition provides the latest release from the Apache
Cassandra community.

•	 Binary tarballs for Linux and Mac installation
•	 Packaged installations for Red Hat Enterprise Linux, CentOS,

Debian, and Ubuntu
•	 A GUI installer for Windows

RHEL and Debian packages are supported through yum and apt package
management tools. The DataStax Community Edition also includes the
DataStax OpsCenter.

By Paul M. Duvall

ABOUT CONTINUOUS INTEGRATION

 G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#84

Continuous Integration:

Patterns and Anti-Patterns

CONTENTS INCLUDE:

■ About Continuous Integration

■ Build Software at Every Change

■ Patterns and Anti-patterns

■ Version Control

■ Build Management

■ Build Practices and more...

Continuous Integration (CI) is the process of building software

with every change committed to a project’s version control

repository.

CI can be explained via patterns (i.e., a solution to a problem

in a particular context) and anti-patterns (i.e., ineffective

approaches sometimes used to “fi x” the particular problem)

associated with the process. Anti-patterns are solutions that

appear to be benefi cial, but, in the end, they tend to produce

adverse effects. They are not necessarily bad practices, but can

produce unintended results when compared to implementing

the pattern.

Continuous Integration

While the conventional use of the term Continuous Integration

efers to the “build and test” cycle, this Refcard

expands on the notion of CI to include concepts such as

Aldon®

Change. Collaborate. Comply.

Pattern

Description

Private Workspace
Develop software in a Private Workspace to isolate changes

Repository

Commit all fi les to a version-control repository

Mainline

Develop on a mainline to minimize merging and to manage

active code lines

Codeline Policy

Developing software within a system that utilizes multiple

codelines

Task-Level Commit
Organize source code changes by task-oriented units of work

and submit changes as a Task Level Commit

Label Build

Label the build with unique name

Automated Build

Automate all activities to build software from source without

manual confi guration

Minimal Dependencies
Reduce pre-installed tool dependencies to the bare minimum

Binary Integrity

For each tagged deployment, use the same deployment

package (e.g. WAR or EAR) in each target environment

Dependency Management Centralize all dependent libraries

Template Verifi er

Create a single template fi le that all target environment

properties are based on

Staged Builds

Run remote builds into different target environments

Private Build

Perform a Private Build before committing changes to the

Repository

Integration Build

Perform an Integration Build periodically, continually, etc.

Send automated feedback from CI server to development team

ors as soon as they occur

Generate developer documentation with builds based on

brought to you by...

By Andy Harris

HTML BASICS

e.
co

m

G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#64

Core HTMLHTML and XHTML are the foundation of all web development.

HTML is used as the graphical user interface in client-side

programs written in JavaScript. Server-side languages like PHP

and Java also receive data from web pages and use HTML

as the output mechanism. The emerging Ajax technologies

likewise use HTML and XHTML as their visual engine. HTML

was once a very loosely-defi ned language with very little

standardization, but as it has become more important, the

need for standards has become more apparent. Regardless of

whether you choose to write HTML or XHTML, understanding

the current standards will help you provide a solid foundation

that will simplify all your other web coding. Fortunately HTML

and XHTML are actually simpler than they used to be, because

much of the functionality has moved to CSS.

common elements
Every page (HTML or XHTML shares certain elements in

common.) All are essentially plain text

extension. HTML fi les should not be cr

processor

CONTENTS INCLUDE:
■ HTML Basics■ HTML vs XHTML

■ Validation■ Useful Open Source Tools

■ Page Structure Elements
■ Key Structural Elements and more...

The src attribute describes where the image fi le can be found,

and the alt attribute describes alternate text that is displayed if

the image is unavailable.Nested tagsTags can be (and frequently are) nested inside each other. Tags

cannot overlap, so <a> is not legal, but <a></

b> is fi ne.

HTML VS XHTMLHTML has been around for some time. While it has done its

job admirably, that job has expanded far more than anybody

expected. Early HTML had very limited layout support.

Browser manufacturers added many competing standar

web developers came up with clever workar

result is a lack of standar
The latest web standar

Browse our collection of over Free Cheat Sheets
Upcoming Refcardz

By Daniel Rubio

ABOUT CLOUD COMPUTING

 C
lo

u
d

 C
o

m
p

u
ti

n
g

w

w
w

.d
zo

n
e.

co
m

 G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#82

Getting Started with
Cloud Computing

CONTENTS INCLUDE:
■ About Cloud Computing
■ Usage Scenarios
■ Underlying Concepts
■ Cost
■ Data Tier Technologies
■ Platform Management and more...

Web applications have always been deployed on servers
connected to what is now deemed the ‘cloud’.

However, the demands and technology used on such servers
has changed substantially in recent years, especially with
the entrance of service providers like Amazon, Google and
Microsoft.

These companies have long deployed web applications
that adapt and scale to large user bases, making them
knowledgeable in many aspects related to cloud computing.

This Refcard will introduce to you to cloud computing, with an
emphasis on these providers, so you can better understand
what it is a cloud computing platform can offer your web
applications.

USAGE SCENARIOS

Pay only what you consume
Web application deployment until a few years ago was similar
to most phone services: plans with alloted resources, with an
incurred cost whether such resources were consumed or not.

Cloud computing as it’s known today has changed this.
The various resources consumed by web applications (e.g.
bandwidth, memory, CPU) are tallied on a per-unit basis
(starting from zero) by all major cloud computing platforms.

also minimizes the need to make design changes to support
one time events.

Automated growth & scalable technologies
Having the capability to support one time events, cloud
computing platforms also facilitate the gradual growth curves
faced by web applications.

Large scale growth scenarios involving specialized equipment
(e.g. load balancers and clusters) are all but abstracted away by
relying on a cloud computing platform’s technology.

In addition, several cloud computing platforms support data
tier technologies that exceed the precedent set by Relational
Database Systems (RDBMS): Map Reduce, web service APIs,
etc. Some platforms support large scale RDBMS deployments.

CLOUD COMPUTING PLATFORMS AND
UNDERLYING CONCEPTS

Amazon EC2: Industry standard software and virtualization
Amazon’s cloud computing platform is heavily based on
industry standard software and virtualization technology.

Virtualization allows a physical piece of hardware to be
utilized by multiple operating systems. This allows resources
(e.g. bandwidth, memory, CPU) to be allocated exclusively to
individual operating system instances.

As a user of Amazon’s EC2 cloud computing platform, you are
assigned an operating system in the same way as on all hosting

Brian O’Neill is Lead Architect at Health Market Science,
where he heads design and development of their Master Data
Management (MDM) solution and Big Data platform, which is
powered by Cassandra. Brian has experience as a technology
leader and architect in a wide variety of settings from early
startups to Fortune 500 companies. He has participated in a
number of Java Community Process expert groups and has

patents in artificial intelligence and dynamic application data routing. On github, Brian
leads the Virgil project, which is a services layer built on Cassandra that provides REST,
map/reduce, search and distributed processing capabilities. He also leads projects
delivering trigger functionality and server-side wide-row indexing.

Cassandra: High Performance Cookbook

This book provides detailed recipes that describe how to
use the features of Cassandra and improve its performance.
Recipes cover topics ranging from setting up Cassandra for
the first time to complex multiple data center installations.
The recipe format presents the information in a concise
actionable form

150

Scala Collections
JavaFX 2.0
Opa
Data Warehousing

ABOUT THE AUTHOR

