

DZone, Inc. | www.dzone.com

By Mike Keith

G
e

tt
in

g
 S

ta
rt

e
d

 w
it

h
 J

PA
 2

.0

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#127

CONTENTS INCLUDE:
n	 Whats New in JPA 2.0
n	 JDBC Properties
n	 Access Mode
n	 Mappings
n	 Shared Cache
n	 Additional API and more...

Getting Started with
 JPA 2.0

http://www.refcardz.com
http://www.dzone.com
http://www.refcardz.com
http://answerhub.com/

DZone, Inc. | www.dzone.com

G
et

 M
o

re
 R

ef
ca

rd
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#164
S

ca
la

 O
ve

rv
ie

w

By Jesper de Jong

WHAT IS SCALA?

Scala is a general-purpose programming language that has both object
oriented and functional programming language features. It is statically
typed, with an advanced type system that is more powerful than that
of other languages such as Java and C#. The name Scala comes from
scalable language: scalable in the sense that the core language constructs
of Scala are so modular that new features can merely be added by
libraries instead of adjusting the language. Scala is suitable for building
large modular systems as well as for writing very small programs (using
it as a scripting language). The functional features make it easy to write
concurrent programs that make use of multiple cores or processors. Scala
compiles to Java bytecode that runs on the Java virtual machine. It has
very good interoperability with Java; Java libraries can be used seamlessly
from Scala. Support for compiling Scala to .NET bytecode that runs on the
CLR is work in progress.

DOWNLOADING AND INSTALLING SCALA

You can download Scala at www.scala-lang.org. To use Scala, you will
need to have a Java 5 or newer runtime environment installed. It works
on Windows, Linux, Mac OS X and other operating systems for which a
suitable Java runtime environment is available. Follow the installation
instructions for your operating system. If you install Scala from one of the
available archive packages (a .zip or .tar.gz file), the only thing you need
to do after unpacking the archive is add the bin directory of your Scala
installation to the PATH environment variable.

USING THE REPL

Scala comes with an interactive interpreter, the REPL (for Read, Evaluate,
Print Loop). After installing Scala, you can start the REPL by entering the
command scala in a command prompt or shell window. It will look like this:

$ scala
Welcome to Scala version 2.9.1.final (Java HotSpot(TM) 64-Bit Server VM,
Java 1.7.0_02).

You can type statements and expressions at the prompt, and the REPL
will evaluate these and print the results. The REPL is a useful tool for
experimenting with Scala language features. The REPL understands a
number of special commands that start with a colon. Type the command
:help to see an overview. Type :quit to exit the REPL.

SCALA AS A SCRIPTING LANGUAGE

To use Scala as a scripting language, simply write Scala statements and
expressions into a text file. Save the file and run it by passing the name of
the file to the scala command.

// HelloScript.sh
// Run this with: scala HelloScript.sh
val name = readLine(“What is your name? “)
println(“Hello “ + name + “, welcome to Scala!”)

To run your script without writing the scala command in front of it,
add a few special lines at the start of your script (a “shebang” in Unix
terminology). Here is an example for Linux and Mac OS X:

#!/usr/bin/env scala
!#
val name = readLine(“What is your name? “)
println(“Hello “ + name + “, welcome to Scala!”)

Make the script executable by entering the command chmod u+x
HelloAgain.sh and then run it with: ./HelloAgain.sh
Here is an example for Windows:

::#!
@echo off
scala %0 %*
goto :eof
::!#
val name = readLine(“What is your name? “)
println(“Hello “ + name + “, welcome to Scala!”)

For Windows, the script must have the extension .cmd or .bat. Otherwise,
Windows will prompt you to open the file instead of running it as a script.
Run the script by entering the command HelloAgain.cmd in the command
prompt window.

The Scala interpreter will ignore anything between #! and !# (Linux and
Mac OS X) or ::#! and ::!# (Windows) at the start of the script.

USING THE SCALA COMPILER

Compile Scala source files using the Scala compiler, scalac. When you
use Scala as a compiled language your code must be organized a little
differently than when using it as a scripting language. You’ll need to create
a Scala object with a main method, as in the following example.

// HelloWorld.scala
object HelloWorld {
 def main(args: Array[String]) {
 println(“Hello World!”)
 }
}

Save this in a source file named HelloWorld.scala. Compile it with: scalac
HelloWorld.scala and run it with: scala HelloWorld. Note that in this last
command, you supply the name of the object (HelloWorld) rather than
the name of the source file (HelloWorld.scala) or the compiled class file
(HelloWorld.class).

Scala
 The Scalable JVM Language

CONTENTS INCLUDE:

❱ Downloading and Installing Scala

❱ Using the REPL

❱ Scala as a Scripting Language

❱ Using The Scala Compiler

❱ Language Features

❱ Collections...and More!

http://www.dzone.com
http://www.refcardz.com
http://answerhub.com/
http://www.refcardz.com

2

DZone, Inc. | www.dzone.com

Build tools
When you start creating projects with multiple source files, it quickly
becomes cumbersome to build them all by hand with the scalac command.
There are several build tools available to help you automate the build
process, including Apache Ant, Apache Maven, or sbt (simple build tool, see
www.scala-sbt.org).

IDE support
Several IDEs have support for Scala. There is an Eclipse-based Scala IDE
that you can find at www.scala-ide.org. There are also Scala plug-ins
available for JetBrains IntelliJ IDEA and NetBeans.

LANGUAGE FEATURES

Values and variables

val name: Type = expression
var name: Type = expression

With val, you define an immutable value (it cannot be reassigned after it is
initialized). With var, you define a mutable variable. Identifiers are not limited
to alphanumeric characters; many other characters can also be used,
including Unicode mathematical and other symbols. Types are specified by
a colon followed by the name of the type. The type can be omitted in most
cases; Scala automatically finds out what the type must be through type
inference.

val message = “Hello World”
val π: Double = 3.14159265358979
val result = 1 to 100 sum

You can also use pattern matching when defining values and variables.

// Defines x: Int and xs: List[Int], x is assigned the head
// and xs the tail of the list
val x :: xs = List(1, 2, 3, 4)

// A tuple with two Ints
val tup = (3, 5)

// Defines two Ints a and b and assigns them 3 and 5,
// the values extracted from the tuple
val (a, b) = tup

Types
The following table shows an overview of Scala’s standard types.

Type Description
scala.Any The root of all Scala classes.

scala.AnyVal The root of the value type classes (which map to JVM primitive
types).

scala.AnyRef The root of all reference type classes (analogous to java.lang.
Object).

scala.ScalaObject A trait inherited by all Scala classes and objects, but not by non-
Scala classes (for example Java classes).

scala.Null The type of the value null.

scala.Nothing The type at the bottom of the class hierarchy.

The type Nothing is a special type that is at the bottom of the class
hierarchy. This means that Nothing is a subtype of all other types. No
instances of Nothing exist.

Similarly, the type Null is a subtype of all reference types (all types that
inherit from AnyRef) except Nothing. In other words, Null is a subtype of
everything that can have the value null.

The following table shows an overview of the subclasses of type
scala.AnyVal. These map to Java primitive types on the JVM.

Type Java Description
scala.Byte byte 8-bit signed integer.

scala.Short short 16-bit signed integer.

scala.Int int 32-bit signed integer.

scala.Long long 64-bit signed integer.

scala.Char char 16-bit unsigned integer used for Unicode
characters.

scala.Float float Single-precision floating point number.

scala.Double double Double-precision floating point number.

scala.Boolean boolean Boolean value (true or false).

scala.Unit void Single value type.

The type Unit is similar to void in Java and other programming languages.
There is a single instance of the type Unit which is written as ().

Tuples
Tuples are type-safe containers for multiple values. They are for example
useful if you want to return more than one value from a method. They are
different from collections; each element in a tuple has its own type, whereas in
collections all elements in the collection usually have the same type.

// Defines a tuple with a String and an Int
val tup = (“Hello”, 123)

// The elements of a tuple are named _1, _2 etc.
println(tup._1)
println(tup._2)

// Method that returns a Tuple with two Ints
def div(a: Int, b: Int): (Int, Int) = (a / b, a % b)

// Call the method, use pattern matching to extract the values from the
// result, throw away the second value
val (x, _) = div(20, 7)

Scala’s standard library has types Tuple2, Tuple3, up to Tuple22 to
represent tuple types with up to 22 values.

Function types
Since Scala is a strongly typed functional programming language, functions
are treated as values and functions also have a type. The type of a function
that takes parameters of type T1, T2, ..., Tn and returns a value of type R is
described with the following syntax:

(T1, T2, ..., Tn) => R

Here are some examples.

// A function that takes two Ints and returns an Int
val add: (Int, Int) => Int = { (a: Int, b: Int) => a + b }

// A function that takes an Int and returns a function
// that takes an Int and that returns Int
val times: Int => Int => Int = { (a: Int) => (b: Int) => a * b }

// Create a function to multiply numbers by 2
val timesTwo = times(2)

val n = timesTwo(21)

Scala’s standard library has traits Function0, Function1, up to Function22 to
represent the types of functions that take from 0 up to 22 parameters.

Option, Some and None
In Scala, you normally do not use null to indicate that a value is empty;
instead, you use Option, Some and None. An Option is a container that may
contain a value or be empty.

Some is a subclass of class Option that is used if the option contains a
value.

None is an object that extends class Option that is used if the option is
empty.

Option has a number of useful methods. Notably, it can be treated as a
collection so that collection methods such as map, flatMap, filter, and
foreach can be called on it. The most useful methods of class Option are
listed below.

Scala

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com

3

DZone, Inc. | www.dzone.com

Method Result if not empty Result if empty
get The option's value. Throws a

NoSuchElementException.

getOrElse The option's value. The specified default value.

isDefined true. false.

isEmpty false. true.

orElse This Option. The specified alternative Option.

exists The result of applying the specified
predicate on the option's value.

false.

filter This Option if the result of applying
the specified predicate on the option's
value is true; None otherwise.

None.

filterNot This Option if the result of applying
the specified predicate on the option's
value is false; None otherwise.

None.

foreach Applies the specified procedure on the
option's value; returns Unit.

Does nothing; returns Unit.

map A Some containing the result of
applying the specified function on the
option's value.

None.

flatMap The result of applying the specified
function on the option's value. The
function must return an Option.

None.

toList A List containing one element, the
option's value.

The empty list.

Expressions
Almost anything that would be considered a statement in other
programming languages is an expression in Scala. The difference between
an expression and a statement is that an expression results in a value that
can be assigned to a variable or returned from a method and a statement
does not result in a value. For example, if, for, and try are all expressions in
Scala.

// The result of an if expression can be assigned to a val
val result = if (n % 2 == 0) n else 2 * n

For comprehensions
There is a flexible and powerful syntax for for loops. Between the braces
that can be round or curly braces after the keyword for, you can include one
or more generators, optionally with guards, that generate the values to loop
over.

A generator looks like pattern <- expr where pattern is the name of a
variable or a pattern matching expression. A guard after a generator is an
if expression that filters values generated by the generator; if the guard
expression for a generated value evaluates to false, then that value is
skipped. A generator can have multiple guards. When you have multiple
generators, it is the same as having nested for loops.

Between the braces of a for, you can also define values by specifying
pattern = expr where pattern is a variable name or other pattern matching
expression.

If the yield keyword is used after the braces that surround the generators,
the for loop will return a collection containing the result of applying the
body of the loop to the values that the loop iterates over.

// Returns a collection containing 0, 2, 4, ..., 18
val even = for (i <- 0 until 10) yield i * 2

// Loop with a value definition
val even = for (i <- 0 until 10; k = i * 2) yield k

// Generator with a guard
val even = for (i <- 0 until 20 if i % 2 == 0) yield i

// Loop with two generators and a value definition
for (x <- 1 to 10; y <- 1 to 10; p = x * y)
 printf(“%d x %d = %d%n”, x, y, p)

Methods

def name[TypeParams](ParamList1)(ParamList2)(...): ReturnType = {
 // Statements and expressions
}

With def inside a class, object, or trait, you define a method. Methods
can optionally have type parameters and zero or more parameter lists.
The return type can be omitted in most cases; Scala automatically
finds out what the return type should be through type inference. If you
omit the return type and the = between the method declaration and the
method body, then the method returns Unit (like void in Java and other
programming languages).

Hot
Tip

Make sure that you don’t forget the = before the method
body. If you do, the value that you intend to return from
the method is lost.

The curly braces around the method body can be omitted if the body
consists of a single expression. The return value of the method is the
value of the last expression in the method body. Scala does have a return
keyword, but you don’t need it for most methods.

// A method with two parameter lists
def calc(a: Int, b: Int)(c: Int) = a * b + c

// A method that takes a 2-tuple with elements of type T
// and a function that takes a T and returns Unit
def forBoth[T](tup: (T, T), p: T => Unit) { p(tup._1); p(tup._2) }

val m = (“Hello”, “World”)
forBoth(m, println)

Default parameters
Parameters may have a default value that is used if a value is not supplied
when calling the method.

def greet(name: String = “there”) {
 println(“Hello “ + name)
}

Call-by-name parameters
If the type of a parameter is specified as => T (where T is the name of a
type), then the parameter is a call-by-name parameter. Instead of being
evaluated once before the method is called, the parameter will be evaluated
every time it is used inside the method.

def time[T](block: => T): T = {
 val t0 = System.nanoTime()
 val result = block // block will be evaluated here
 val t1 = System.nanoTime()
 println(“Elapsed time: “ + (t1 - t0) + “ ns”)
 result
}

val result = time { 1 to 1000 sum }

Repeated parameters
If the type of a parameter is followed by *, then the parameter is a repeated
parameter. Only the last parameter in a parameter list can be a repeated
parameter. Inside the method, the parameter will look like a scala.Seq.

def prettyConcat(names: String*) = {
 names.length match {
 case 0 => “”
 case 1 => names.head
 case _ => names.init.mkString(“, “) + “ and “ + names.last
 }
}

When you want to pass the content of a Seq to a method with repeated
parameters, append : _* after the parameter.

val names = List(“Tom”, “Susan”, “Steve”)
val s = prettyConcat(names: _*)

Calling methods and functions
There are two syntaxes for calling methods and functions: The regular
syntax where the name of a value or variable is followed by a dot, the name
of the method or function and the parameters between round braces, or
operator-style syntax. Any method or operator can be called with either of
these two syntaxes.

Scala

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com

4

DZone, Inc. | www.dzone.com

Operators
Operators are defined just like regular methods. Method names are not
limited to alphanumeric characters, so you can use characters that would
normally be used for operators as method names. A limited number of
operators can be used as prefix operators in expressions that have the
form op expr. The operators can be used as prefix operators
are +, -, !, and ~.A prefix operator expression op expr is equivalent to a
regular method call expr.unary_op. This means that you can define your
own prefix operator by defining a method named unary_op.

case class Example(n: Int) {
 def unary_- = new Example(-n)
}

scala> val a = new Example(57)
a: Example = Example(57)

scala> val b = -a
b: Example = Example(-57)

All methods that take no parameters can be used as postfix operators in
expressions that have the form expr op. Such an expression is equivalent
to expr.op.

For infix operators where the expression has the form expr1 op expr2,
there are rules to determine the operator precedence and associativity. The
precedence is determined by the first character of the name of the operator.
The following table gives an overview in order of decreasing precedence.

Operator precedence by first
character of the operator name

(all other special characters)

* / %

+ -

:

= !

< >

&

^

|

(all letters)

There is one exception: the assignment operator = has lowest precedence.

The associativity of an operator is determined by the last character of the
name of the operator. If this is a :, then the operator is right-associative;
otherwise it is left-associative. In other words, if the operator name does
not end with :, then the expression expr1 op expr2 is equivalent to
expr1.op(expr2); otherwise it is equivalent to expr2.op(expr1) (or, more
formally, {val tmp = expr1; expr2.op(tmp)} because the first expression is
evaluated first).

Partial function application
Functions can be partially applied, which means that you fill in some but
not all of the parameters for the function. This results in another function
with fewer parameters.

val times: (Int, Int) => Int = { (a: Int, b: Int) => a * b }

// Use an underscore to indicate that the parameter
// is not yet filled in; timesTwo will be a function
// of type Int => Int
val timesTwo = times(2, _: Int)

scala> timesTwo(3)
res0: Int = 6

Functions
The difference between a function and a method is that a function is
a value (an object) while a method is not. A function is an instance of
one of the traits Function0, Function1 etc., depending on the number of
parameters that the function takes. Calling a function is equivalent to
calling the apply method on the function object.

// succ is an instance of Function1
val succ: Int => Int = { _ + 1 }

// Calling a function is equivalent to calling its apply method
succ(3)
succ.apply(3)

You can convert a method to a function by assigning it to a val or var.
However, to avoid ambiguity, you have to either explicitly specify the type of
the val or var, or put an underscore after the method name to indicate that
you want to treat it as a function.
// A method
def succ1(x: Int) = x + 1

// Explicitly specify the type of succ2
val succ2: Int => Int = succ1

// Or put an underscore after the method name
val succ2 = succ1 _

Classes

class Name[TypeParams] AccessModifier (ParamList1)(ParamList2)(...)
 extends ClassOrTrait with Trait1 with Trait2 with ... {
 // Constructor statements and class members
 }

Classes can optionally have type parameters. AccessModifier is an optional
access modifier (private or protected, optionally with a qualifier) that
determines the accessibility of the primary constructor of the class. The
primary constructor can have zero or more parameter lists. Parameters
can be prefixed with val or var, in which case the parameters become class
members.

A class can extend one other class and multiple traits. If the extends clause
is omitted, the class automatically extends scala.AnyRef.

The body of the class can also be omitted; this is equivalent to including an
empty body {}.

Constructors
The parameters for the primary constructor are specified in the header of
the class definition before the class body. Any statements inside the class
body are executed when a new instance of the class is initialized as part of
the primary constructor.

class Greeter(name: String) {
 // Statement executed as part of the primary constructor
 println(“New Greeter: “ + name)

 def greet() {
 println(“Hello, “ + name)
 }
}

You can specify additional constructors with def this. The first statement
inside an additional constructor must be a call of the form this(...) to a
previously defined additional constructor or to the primary constructor.
This means that when a new instance is initialized, ultimately the primary
constructor will always be called.

class Greeter(name: String) {
 // Statement executed as part of the primary constructor
 println(“New Greeter: “ + name)

 // Additional constructor
 def this(name1: String, name2: String) {
 // Call to primary constructor
 this(name1 + “ and “ + name2)
 }

 // Additional constructor
 def this(names: String*) {
 // Call to previously defined additional constructor
 this(names.init.mkString(“, “), names.last)
 }

 def greet() {
 println(“Hello, “ + name)
 }
}

Case classes
A case class is similar to a regular class but has a number of special rules.
The parameters of the first constructor parameter list automatically get a

Scala

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com

5

DZone, Inc. | www.dzone.com

val prefix (unless you explicitly added a var prefix). In other words, a getter
is automatically added to the class.

A copy method is automatically added to the class.

The equals, hashCode, and toString methods are automatically overridden
with appropriate implementations.

An apply and an unapply method for pattern matching are automatically
added to the companion object of the class. (When the class is abstract,
the apply method is omitted).

If the first constructor parameter list ends with a repeated parameter,
an unapplySeq method instead of an unapply method is added to the
companion object.

Case classes are mainly intended for pattern matching, but they are also
often used for convenience to avoid having to implement methods such as
equals, hashCode and toString manually.

scala> case class Person(name: String, age: Int)
defined class Person

scala> val p = Person(“Sarah”, 50)
p: Person = Person(Sarah,50)

Objects
Scala has no static keyword. Instead, you create singleton objects with the
object keyword.

object Name extends ClassOrTrait with Trait1 with Trait2 with ... {
 // Statements and object members
}

Any statements inside the object’s body are executed when the object is
first used (as if they are in a static initializer in Java).

An object can extend one class and multiple traits. If the extends clause is
omitted, the object automatically extends scala.AnyRef.

Companion classes and objects
If you define a class and an object with the same name in the same scope
and source file, then the object is the companion object of the class, and
the class is the companion class of the object. Companion classes and
objects can access each other’s private members.

Traits

trait Name[TypeParams] extends ClassOrTrait with Trait1 with Trait2
with ... {
 // Constructor statements and trait members
}

A trait can extend one class and multiple other traits. A trait can have
a constructor (you can put statements in the body of the trait that are
executed as part of its constructor), but it cannot have constructor
parameters.

Traits are like Java interfaces, except that a trait can be partially
implemented. Like a Java interface, a trait cannot be directly instantiated
even if it is fully implemented.

COLLECTIONS

Scala has a powerful and well-designed collections library. There are
mutable and immutable versions of most collections. The following image
shows an overview of the basic collection traits.

Collection Description
Traversable The top-level collections trait; declares the foreach method and

defines other methods that are available on all collections.

Iterable Declares the iterator method; all collections that extend Iterable
can provide an iterator.

Seq The base trait for sequences; a sequence has a defined order
of elements.

IndexedSeq The base trait for array-like sequences.

LinearSeq The base trait for linked list-like sequences.

Set The base trait for sets; a set contains no duplicate elements.

SortedSet The base trait for sets that have a defined order of elements.

Map The base trait for maps.

SortedMap The base trait for maps that have a defined order of keys.

For each of these traits there are one or more mutable and immutable
implementations available. The most important ones are listed below.

Collection Immutable implementations

IndexedSeq Vector NumericRange Range Array String

LinearSeq List Queue Stack Stream

Set HashSet ListSet BitSet

SortedSet TreeSet

Map HashMap ListMap

SortedMap TreeMap

Collection Mutable implementations
IndexedSeq ArraySeq ArrayBuffer StringBuilder

LinearSeq MutableList LinkedList DoubleLinkedList Queue

Set HashSet LinkedHashSet BitSet

Map HashMap LinkedHashMap ListMap

Instantiating collections
The collection traits and classes have companion objects with apply
methods, which allow you to create instances in a uniform way. For the
traits, an appropriate default implementation is returned.

Traversable(1, 2, 3) // returns a List[Int]
Seq(1, 2, 3) // returns a List[Int]
IndexedSeq(1, 2, 3) // returns a Vector[Int]

Collection operations
The following is a list of the most common operations that are defined in
the trait Traversable; they are available on all collections.

Operation Description

xs foreach f Evaluates the function f for every element of xs.

xs ++ ys Returns a collection that contains the elements of both xs and
ys.

xs map f Applies the function f to all elements and returns a collection
with the transformed elements.

xs flatMap f Applies the function f to all elements; f returns a collection,
flatMap concatenates all these collections and returns the
result.

xs collect f Applies the partial function f to all elements where f is defined
and returns a collection with the transformed elements. This
is a filter and map operation in one; equivalent to xs filter
f.isDefined map f.

xs.isEmpty Returns true if the collection does not contain any elements,
false otherwise.

xs.nonEmpty Returns true if the collection contains at least one element, false
otherwise.

xs.size Returns the number of elements.

xs.hasDefiniteSize Returns true if the collection is known to have finite size. Some
collections, such as streams, do not always have a finite size.

xs.head Returns the first element of the collection; throws an exception
if the collection is empty.

Scala

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com

Browse our collection of over 150 Free Cheat Sheets
Upcoming Refcardz

Free PDF

6

Copyright © 2011 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise,
without prior written permission of the publisher.

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to
more than 3.3 million software developers, architects and decision
makers. DZone offers something for everyone, including news,
tutorials, cheat sheets, blogs, feature articles, source code and
more. “DZone is a developer’s dream,” says PC Magazine.

RECOMMENDED BOOK

xs.headOption Returns a Some with the first element of the collection or None
if the collection is empty.

xs.last Returns the last element of the collection; throws an exception
if the collection is empty.

xs.lastOption Returns a Some with the last element of the collection or None if
the collection is empty.

xs.tail Returns a collection with all but the first element of this
collection; throws an exception if the collection is empty.

xs.init Returns a collection with all but the last element of this
collection; throws an exception if the collection is empty.

xs take n Returns a collection with the first n elements of this collection.

xs drop n Returns a collection without the first n elements of this
collection.

xs takeWhile p Returns a collection with the longest prefix of this collection
with elements for which p returns true.

xs dropWhile p Returns a collection without the longest prefix of this collection
with elements for which p returns true.

xs find p Returns a Some with the first element for which p returns true or
None if there is no such element.

xs filter p Returns a collection with all elements for which p returns true.

xs filterNot p Returns a collection with all elements for which p returns false.

xs withFilter p Returns a non-strict filter on this collection that shows all
elements for which p returns true.

xs slice (from, to) Returns a subcollection of xs from index from up to and
excluding index to.

xs splitAt n Splits xs at index n, returning the pair of collections (xs take n,
xs drop n).

xs span p Splits xs using the predicate p, returning the pair of collections
(xs takeWhile p, xs dropWhile p).

xs partition p Splits xs using the predicate p, returning the pair of collections
(xs filter p, xs filterNot p).

xs groupBy f Returns a map of collections; f takes an element and returns the
key under which that element must be stored in the map.

xs forall p Returns true if p returns true for all elements; false otherwise.

xs exists p Returns true if p returns true for at least one element; false
otherwise.

xs count p Returns the number of elements for which p returns true.

xs.foldLeft(z)(op) Applies the operation op between successive elements, going
left to right and starting with the value z.

(z /: xs)(op) Alternative name for foldLeft.

xs.foldRight(z)(op) Applies the operation op between successive elements, going
right to left and starting with the value z.

(xs :\ z)(op) Alternative name for foldRight.

xs reduceLeft op The same as foldLeft but takes the first element of the
collection as the initial value. Throws an exception if the
collection is empty.

xs reduceRight op The same as foldRight but takes the last element of the
collection as the initial value. Throws an exception if the
collection is empty.

xs.sum The sum of the numeric elements in xs.

xs.product The product of the numeric elements in xs.

xs.min The minimum of the ordered elements in xs.

xs.max The maximum of the ordered elements in xs.

Jesper de Jong is an experienced self-employed
software engineer who has been working with Java
since 1998. He designs and implements scalable, highly
concurrent, mission-critical business systems for clients
in different market sectors. Scala has been one of his
interests since 2008 and he is active as a member of the

Dutch Scala Enthusiasts user group in the Netherlands. Jesper has a
blog about programming in Scala at www.scala-notes.org. He can be
reached at jesper@jdj-it.com.

Thanks to Urs Peter, Age Mooij, Cay Horstmann and the DZone
community for reviewing this refcard.

Written by the designer of the language, Martin
Odersky, Co-authored by Lex Spoon and Bill Venners.
This book takes a step-by-step tutorial approach to
teaching you Scala. Starting with the fundamental
elements of the language, Programming in Scala
introduces functional programming from the
practitioner’s perspective, and describes advanced
language features that can make you a better, more 	

	 productive developer.

Buy Here

ABOUT THE AUTHOR

MongoDB
PHP 5.4
Modularity Patterns
Deployment Automation Patterns

DZone, Inc.
150 Preston Executive Dr.
Suite 201
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome

refcardz@dzone.com

Sponsorship Opportunities

sales@dzone.com

Scala

http://www.refcardz.com
http://www.refcardz.com
http://www.scala-notes.org/
http://www.jdj-it.com/
http://www.amazon.com/Programming-Scala-Comprehensive-Step-Step/dp/0981531644
http://www.amazon.com/Programming-Scala-Comprehensive-Step-Step/dp/0981531644
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com

