
BUILDING THE MODERN
APPLICATION ARCHITECTURE

BUILDING THE MODERN APPLICATION ARCHITECTURE 2

Table of Contents

3	 Introduction

4	 HTTP: The Rise to Dominance

7	 Applications Move to the Web

8	 The Web Application Architecture

14	 Say Hello to NGINX Plus

15	 Learn More

BUILDING THE MODERN APPLICATION ARCHITECTURE 3

In fact, for as long as we’ve used computer
systems in the workplace, application
performance has always mattered to
businesses. From restaurants to banks,
manufacturers to hospitals, almost every
industry—indeed, almost every department
of every business in every industry—has
relied on a variety of applications to be
productive and competitive for decades. So
why is application performance such a big
deal now? And, more importantly, how can
we work to ensure that we achieve optimal
performance today?

In this eBook, we’ll look at why the way we
deliver applications has dramatically upped
the ante on our performance expectations
and demands. We’ll also explore how the
right infrastructure architecture can be a
definitive game-changer when it comes to
optimizing the performance of today’s most
business-critical applications.

Introduction

Application performance has become a hot topic in recent years—but our

need for it is, quite honestly, nothing new.

BUILDING THE MODERN APPLICATION ARCHITECTURE 4

HTTP: The Rise
to Dominance
A decade or so ago, we looked to the Internet primarily as a
way to disseminate information using HTML, while applications
were cumbersome, proprietary entities that lived offline. Today,
however, the Internet connects a number of systems together
on a backbone of web-based applications. And enterprises
are beginning to invest substantial time and effort in rewriting
proprietary software using more extensible, web-friendly
languages that take advantage of HTTP and Web APIs.

These are huge changes in the way we develop and deliver
applications. But in order to understand how and why they
occurred, we need to backtrack a bit.

Let’s start with how applications talk to each other. HTTP has
become a lingua franca of application communication—but it
wasn’t always that way. In the years before software developers
started to commonly use HTTP, practically every networking
application had its own way of speaking. Imagine, then, how
difficult it was when applications needed to share information,
and how urgently businesses wanted to address that difficulty,
especially as client/server applications began to dominate the
enterprise software landscape.

BUILDING THE MODERN APPLICATION ARCHITECTURE 5

Before long, we saw an explosion of middleware designed
to integrate legacy systems and newer applications—which,
in turn, created a number of smaller components that also
needed to communicate. Bottom line: Developers needed
a standardized way for all of these elements to exchange
information in order for applications to be both accessible
and useful.

Because it is based on the use of lowest common
denominators—syntax, semantics, and timing—HTTP
became seen as an effective solution. And, as it gathered
momentum, HTTP slowly but radically democratized
software development by giving programmers the common
communication protocol they needed to develop their
applications.

Through this steady migration over the past 10 years, HTTP
has proven to be simple and versatile enough to become
the common language of the Internet, while also becoming
capable of encapsulating legacy enterprise systems,
integrating newer developments with already existing
systems, and successfully uniting very different building
blocks of modern software applications.

But HTTP also afforded software developers something else.
This simple but powerful protocol provided applications with
an entirely new delivery paradigm—the Web.

“The modern Internet is made of compose-able and
interoperable components all speaking HTTP.”

6BUILDING THE MODERN APPLICATION ARCHITECTURE

HTTP as a Disrupting Force

What do companies like Netflix and Amazon have in common? They
developed software platforms powered by HTTP to disrupt their
respective industries. Where Netflix utilized HTTP to stream video
subscriptions at HD quality over best-effort delivery networks of the
Internet, Amazon revolutionized the retail environment with product
recommendations and searching. Both of these companies recognized
that software communication driven by HTTP could ultimately enable
them to integrate systems faster, simplify development (due to the
abundance of tools and libraries), experiment more flexibly, and
accelerate the rollout of production features into market.

7BUILDING THE MODERN APPLICATION ARCHITECTURE

Applications Move to the Web
While HTTP gave programmers a common communication
protocol by which to make their software extensible, it was the
Web that became the model for the modern application, thanks
to three trends:

•	 Agility. Part of software’s migration to the Web stemmed
from the ability of developers to easily separate the interface
layer from business logic layer. In this way, web applications
presented programmers with a powerful framework that
enabled them to code more efficiently and quickly.
Changes to functionality could be made without disrupting
the front-end.

•	 Mobility. More and more workers began using laptops and
tablets to perform their job functions. Traditional client/server
software just doesn’t accomplish business tasks well when
the workforce is moving outside of the corporate network.

•	 Functionality. Ultimately, the Web provided a means for users
to access software through an ordinary web browser—which
meant nothing for the user to install or for IT to maintain.

The transition of applications to the Web then was a convergence
of factors—developers discovering the power of HTTP, the
workforce becoming more mobile, and people using the Web
more for everyday needs. But with this transition came a growing

expectation for reliability and performance. The more we used
web-based applications, it seemed, the more we depended
on them. Users lost patience for long load times, which spelled
competitive trouble for businesses who couldn’t keep pace. In order
to accommodate the scale, flexibility, and performance required
of HTTP-based web applications (and demanded by users), a new
architecture was needed as well. And that meant getting rid of an
old paradigm: the vertical stack.

The Rise of the Digital Business

As programmers were discovering a new way to develop
enterprise level software, the enterprise itself was undergoing
a transformation thanks to HTTP: the rise of the digital business.
It didn’t take long for organizations to see the importance of
being online as companies like Amazon, eBay, Dropbox, and
Facebook demonstrated the pervasiveness of the digital world
and, more importantly, how well HTTP-based applications
could scale and function to deliver new services. Riding on the
wave of HTTP, these new businesses brought their products
and services to market far quicker than the incumbents.

8BUILDING THE MODERN APPLICATION ARCHITECTURE

The Web Application Architecture
The Old Way

In the early days of the transition to HTTP, architectures were mainly vertical—where operating systems and
development platforms (i.e., Sun Sparc, Solaris OS, iPlanet etc.) were tied to specific hardware. Combined with other
proprietary hardware/software combinations such as load balancers, application delivery controllers, proxies, and
caches, developers were essentially locked in to a specific framework, with little to no flexibility. If the framework
didn’t offer the functionality or performance a developer needed, they were out of luck. This environment, then,
was terribly ineffective at meeting the growing needs of organizations to be “digital.” Accommodating user demand
meant achieving scalability, which meant procuring and configuring new stacks of both hardware and software.

That was the last straw. Not only was this prospect a horrendous expense, it was also a configuration nightmare.
And so, as organizations began to realize the failure of their legacy vertical stacks in meeting the needs of the new
digital world, they finally zeroed in on the root of the problem: application performance.

The issue wasn’t so much that improving performance required more proprietary hardware/software solutions
in the vertical stack—it was that it exacerbated a bigger situation. The same developers that were responsible
for building, maintaining, and iterating the application weren’t in control of any of the pieces required to deliver
it. Other teams controlled the delivery. The time it took for requested performance changes to be implemented
(days, and sometimes even weeks) was often more than the end user was willing to wait. In fact, when application
performance suffered, these users simply turned elsewhere to meet their needs. It became clear that the most
cost-effective and efficient way to ensure high application performance was to allow developers themselves to
control the entire ecosystem from code to configuration.

And that required a new architecture.

9BUILDING THE MODERN APPLICATION ARCHITECTURE

The New Way

Fortunately, thanks to the growing variety of tools and changing
software development paradigms, web architects started to move
away from vertical stacks to distributed web architectures. New
languages and application frameworks appeared (i.e., PHP, Python,
and Ruby, Node.js and others) that were popularized quickly
because they enabled developers to code and deploy rapidly on
commodity hardware and software. These frameworks prompted
developers to adopt distributed, loosely-coupled application
architectures that provided a more flexible approach than their
predecessors allowed. This flexibility was the key to decreasing
time to market and rapid iteration.

Vertical was out. Horizontal was in. And with this new way to
architect for web applications, developers were freed from the
entanglements of proprietary hardware and software stacks. They
were firmly in charge.

A lot of popular services like Twitter, Dropbox, Instagram, and LinkedIn wouldn’t exist today
if a number of very important initiatives, like open source software, didn’t succeed 8-10 years ago.

10BUILDING THE MODERN APPLICATION ARCHITECTURE

Understanding the Roadblocks

We’ve come a long way—but there are lingering challenges.
Despite the flexibility and efficiency afforded by HTTP and horizontal
application architectures, developers and organizations still face
some fundamental issues:

•	 Scale. When HTTP-based applications like dynamic websites
are exposed to the public, there’s no telling exactly how much
traffic they can or will generate. Sudden bursts may require
unforeseen increases in hardware, for example—but if other
teams are in charge of those changes, developers can hardly
design apps for scalability.

•	 Time. Often, there’s just not enough time to focus on the
details of the infrastructure elements that are in-between “the
network” and “the application” once the application is exposed
online. Although many developers have started to understand
the importance of handling app performance end-to-end
themselves (including HTTP performance and scalability), they
can’t afford the time to spend tuning and optimizing the “in-
between” hardware—nor can they wait for network engineers.

•	 Complexity. Most application frameworks do not offer a way
to deal with the hidden complexities inherent in HTTP. For
example, a developer may quickly construct an app from
a number of building blocks provided by the programming
language, the framework, the libraries, and a bit of third-party
code found on GitHub. However, she might then discover that,
when combined, all those building blocks still don’t allow her
to handle HTTP concurrency, or security, caching frequent
content, or maybe just header manipulation.

•	 Focus. Just as the infrastructure required to deliver today’s
complex web applications has grown, so has the level of
disconnection. All of these individual pieces require more
specialized software to become connected into a single,
cohesive application stack—which creates an even greater
management nightmare. Not only does an organization need
people to handle the different aspects of the modern web
application (i.e., data specialists, systems and automation
specialists, web programmers, etc.) and the infrastructure
hardware, but they may also need people to cobble the
systems together—engineers whose sole purpose is to make
sure all the pieces talk to one another.

•	 Control. Rapid prototyping, agile development,
experimentation—all of these are the hallmarks of today’s
application developer. Yet despite the shift from vertical
to horizontal architectures, many developers still aren’t
fully in control of their application environments, with some
infrastructure parts still completely outside of their control. In
order to encourage and capitalize on these traits, organizations
must give control of the stack components—the “in-between”
elements—to the developers.

It can be almost painful to see the way an unprepared
application copes with real-world traffic.

11BUILDING THE MODERN APPLICATION ARCHITECTURE

Open Source Software: Overcoming the Roadblocks

Many of the innovations to web application architectures have come about as a result
of open-source initiatives such as Apache, HAProxy, Varnish, Squid, and NGINX. These
initiatives paved the way for developers to solve many of those challenges:

Scale. Because these solutions are based on open-source platforms, they
can be installed on commodity hardware that’s able to rapidly scale when an
application calls for it.

Time. Developers can deploy and control what was once network
functionality (i.e., an application delivery controller) easily through a software
package.

Focus. Many of the open-source building blocks of horizontal web
applications are built to facilitate the communication via HTTP, giving
developers the opportunity to make system-level changes using protocols
and languages with which they are familiar.

Control. Because they are now creating software solutions, developers are
in complete control, capable of making minor configurations to full-scale
rebuilds without the involvement of network engineers or other teams.

But despite the advancements afforded through these open-source software platforms,
they are still separate. Varnish doesn’t do what Apache does. Apache doesn’t do what
HAProxy does. Ultimately, even horizontal web architectures still require multiple
components that can impact the biggest challenge of all: speed.

12BUILDING THE MODERN APPLICATION ARCHITECTURE

NGINX: A Superior Web Server

As an open-source alternative to Apache and other web servers,
NGINX immediately became popular among web engineers and
architects for a number of reasons. First, it was designed with web
acceleration in mind. It’s not just a web server—it’s a “web server,
reinvented.” It was also meant to provide developers with a way to
fine-tune the performance of their applications without having to
use a separate piece of software or other hardware appliance. This,
in turn, makes it simple for developers to integrate NGINX into the
application architecture without having to ask network administrators
for assistance. Developers can set it up themselves and modify the
configuration to meet their needs for rapid application development.
And, lastly, NGINX is scalable, secure and resilient.

13BUILDING THE MODERN APPLICATION ARCHITECTURE

Speed: The Ultimate Challenge

End users want applications to operate quicker. Developers know
that their applications need to perform faster. Businesses know that
they need to get their applications into the market as quickly as
possible to be competitive. But the answer isn’t just to throw more
hardware and software at the problem. Really solving the speed
challenge requires a different approach:

•	 Consolidation. The more systems that are involved, the more
opportunity for latency, as HTTP requests must pass through
multiple systems en route to the application.

•	 Integration. Components in the web architecture must be
integrated. Being closer to the actual application increases the
opportunity to remove latency.

•	 Packaging. Elements within the web architecture must be
packaged together for rapid deployment. Latency isn’t just
about “chatty protocols.” It’s also about how fast developers
can scale the application when needed.

Recognizing the opportunity to consolidate typical web architecture
functionality like load balancing, media delivery, and caching into a
single software package, NGINX Plus was born.

BUILDING THE MODERN APPLICATION ARCHITECTURE 14

Say Hello to NGINX Plus
The only way to intertwine performance and scalability to solve all of the challenges
and complexities of HTTP applications is to have a very capable and versatile
software-only product, running on a generic server, on a generic Linux OS. This
delivers both infrastructure (performance, scalability, reliability, security at less
cost) and operational benefits—which is why we created NGINX Plus, an application
delivery platform like no other. Combining the power of a software load balancer,
proxy, media server, and web server, NGINX Plus solves the challenges facing
developers and organizations today in looking for a single, integrated solution to
deliver high-performance web applications.

There are sites running NGINX today that are consistently delivering
content to around a million concurrent users on a single server. That can’t

realistically be done with any other solution without hard-tuning.

Purpose-built from the start

NGINX originated from the world
of application software with a
very specific goal: to make web
infrastructure operate faster. It
has never been a networking tool,
or firmware ripped out of a box.
Over the past few years, NGINX
evolved to be just the right tool
for application developers and
application system engineers who
want a single, proven system for
web delivery and acceleration.

Learn More
Curious about your ability to develop and deliver high-performance

web applications? Want to take NGINX for a test drive?

Visit www.nginx.com/free-trial-nginx-plus/ for a free trial today.

