

GWT
Style, Configuration and JSNI Reference

By Robert Hanson

CONTENTS INCLUDE:

n	 About Google Web
	 Toolkit (GWT)
n	 Official GWT Web Sites
n	 Styling Widgets with CSS
n	 GWT Module Configuration
n	 JavaScript Native Interface
n	 Hot Tips and more...

DZone, Inc. | www.dzone.com

ABOUT GOOGLE WEB TOOLKIT (GWT) STYLING WIDGETS WITH CSS

The Google Web Toolkit is a set of tools for writing JavaScript
applications in Java. The cornerstone of the tool suite is a Java
to JavaScript compiler that can not only compile Java down to
JavaScript, but can also compress and optimize your code as
well. GWT was released to the public in June of 2006 and has
been an overwhelming success, boasting 1 million downloads
in its first year.

The benefit of using GWT over some of the other JavaScript
frameworks like JQuery or Ext-JS is the environment in which
you code. GWT allows a Java developer to use the same tools
they use today like Eclipse, Maven, and JUnit, making the
transition from Java server-side development to GWT client-
side development nearly seamless.

The GWT toolkit comes ready with its own widget library,
internationalization tools, image bundling tools, tools for
client-server communication, and many others. Since its launch
GWT has become an open-source project, and although led
by the GWT team at Google, many from the community have
contributed patches to the toolkit. GWT boasts a thriving
community, proving for a multitude of free widgets, integration
tools, and utilities.

This reference card is a guide to everything that your IDE
can’t already tell you. Specifically, IDEs like Eclipse provide
auto-completion capabilities for perusing a list of methods on
an object, and often they also provide support for viewing
javadocs in the IDE as well. This refcard is meant to supplement
that capability by providing details that are only available in
books and online documentation. Specifically this includes a
CSS style for the widgets that ship with GWT, a reference for
the JavaScript Native Interface, and a complete guide to the
GWT module configuration file.

OFFICIAL GWT WEB SITES

WebSite: http://code.google.com/webtoolkit/

Blog: http://googlewebtoolkit.blogspot.com/

Forum: http://groups.google.com/group/Google-Web-Toolkit

Issue Tracker: http://code.google.com/webtoolkit/issues/

Articles: http://code.google.com/webtoolkit/articles.html

Examples: http://code.google.com/webtoolkit/examples/

Dev Guide: http://code.google.com/webtoolkit/documentation/

Styling widgets is done using Cascading Style Sheets (CSS).
CSS can be applied to the widgets in the application three
different ways.

Adding a style element inside the <head> of the HTML page
that is hosting the application.

 	 <style type=”text/css”>
 		 /* CSS style rules*/
	 </style>

Adding a <link> element to the <head> of the HTML page,
referencing an external CSS stylesheet.

	 <link type=”text/css” rel=”stylesheet”
 		 href=”url-to-file.css” />

Adding a <stylesheet> element to the GWT project’s module
configuration, causing the stylesheet to be injected into the
host HTML page.

	 <stylesheet src=”url-to-file.css”/>

Most of the widgets that come with GWT have been pre-assigned
CSS class names. For example, the Button widget uses the
CSS class name gwt-Button. So you could set the width of all
Button widgets in your application by using the following CSS
rule. In order to reference a CSS class in a CSS rule you prefix
the class name with a period “.”.

 	 .gwt-Button {
 		 width: 100px;
	 }

 w

w
w

.d
zo

n
e.

co
m

G

e
t

M
o

re
 R

e
fc

ar
d

z!
 v

is
it

 r
ef

ca
rd

z.
co

m
G

W
T

S
ty

le
,

C
o

n
fi

g
u

ra
ti

o
n

an
d

 J
S

N
I

R
e

fe
re

n
ce

n 	Authoritative content
n 	Designed for developers
n 	Written by top experts
n 	Latest tools & technologies
n	 Hot tips & examples
n 	Bonus content online
n 	New issue every 1-2 weeks

Subscribe Now for FREE!
Refcardz.com

Get More Refcardz
(They’re free!)

 tech facts at your fingertips

 tech facts at your fingertips

Element Description

<description> Used to describe a Spring context or an individual bean.

<import> Imports another Spring context definition.

<description> Documents the bean. Although ignored by the container,

<description> can be used by tools that document Spring

contexts.

<lookup-method> Enables getter-injection by way of method replacement.

Specifies a method that will be overridden to return a

specific bean. Commonly known as getter-injection.

<meta> Allows for meta-configuration of the bean. Only useful

when there are beans configured that interprets and acts

on the meta information.

<property> Injects a value or a bean reference into a specific property

of the bean. Commonly known as setter-injection.

<replaced-method> Replaces a method of the bean with a new implementation.

Element Description

<alias> Creates an alias for a bean definition.

<bean> Defines a bean in the Spring container.

<constructor-arg> Injects a value or a bean reference into an argument of the

bean’s constructor. Commonly known as constructor injection.

Attribute Description

abstract If true, the bean is abstract and will not be instantiated by

the Spring container.

autowire Declares how and if a bean should be autowired. Valid

values are byType, byName, constructor, autodetect, or

no for no autowiring.

autowire-candidate If false, the bean is not a candidate for autowiring into

another bean.

class The fully-qualified class name of the bean.

dependency-check Determines how Spring should enforce property setting on the

bean. simple indicates that all primitive type properties should

be set; objects indicates that all complex type properties

should be set. Other value values are default, none, or all.

depends-on Identifies a bean that should be instantiated by the

container before this bean is instantiated.

#1

GWT Style, Configuration and JSNI Reference
2

DZone, Inc. | www.dzone.com

STYLING WIDGETS WITH CSS, continued

Altering Style Names
You can programmatically alter the CSS class name used on
a widget by calling any of these methods.

widget.setStylePrimaryName(“styleName”)

In HTML you may provide any number of CSS class names on
an element by separating them with spaces, like in the HTML
snippet below.

	 <div class=”style1 style2 style3”></div>

The primary style name in GWT is defined as the first style
name in the class attribute. In the example provided, this
would be the style “style1”. Calling setStylePrimaryName()
allows you to alter this first style.

widget.addStyleDependentName(“styleName”)

When you add a dependent style name, its name in the HTML
is the primary name plus the depende nt name, separated
with a dash (“-“).

Example:
Button button = new Button();
button.setStylePrimaryName(“foo”);
button.addStyleDependentName(“bar”);

Result:
	 <BUTTON class=”foo foo-bar”></BUTTON>

widget.setStyleName(“styleName”)

Using setStylename() will clear all current style names, including
the primary style name, and adds the one provided.

widget.addStyleName(“styleName”)

Adds an additional style name to any existing style names.

Example:
Button button = new Button();
button.setStyleName(“foo”);
button.addStyleName(“bar”);

Result:
	 <BUTTON class=”foo bar”></BUTTON>

widget.removeStyleName(“styleName”)

Allows you to remove an existing style name on a widget.

Default GWT Widget Style Names
Most of the widgets provided by the GWT library have
pre-defined primary style names. The following is a list of the
default names for each widget.

 tech facts at your fingertips

Widget Default Name

HorizontalSplitPanel .gwt-HorizontalSplitPanel { the panel }
.gwt-HorizontalSplitPanel hsplitter { splitter }

HTML .gwt-HTML { }

Hyperlink .gwt-Hyperlink { }

Image .gwt-Image { }

Note: Transformations between clipped and upclipped
will result in the loss of any CSS style names that were
set or added.

Label .gwt-Label { }

ListBox .gwt-ListBox { }

MenuBar .gwt-MenuBar { the menu bar itself }
.gwt-MenuBar .gwt-MenuItem { menu items }
.gwt-MenuBar .gwt-MenuItem-selected { selected
menu items }

PasswordTextBox .gwt-PasswordTextBox { primary style }
.gwt-PasswordTextBox-readonly { dependent style
set when the password text box is read-only }

PushButton .gwt-PushButton-up {}
.gwt-PushButton-down {}
.gwt-PushButton-up-hovering {}
.gwt-PushButton-down-hovering {}
.gwt-PushButton-up-disabled {}
.gwt-PushButton-down-disabled {}
<any of the above> .html-face {}

RadioButton .gwt-RadioButton { }

RichTextArea .gwt-RichTextArea { }

StackPanel .gwt-StackPanel { the panel itself }
.gwt-StackPanel .gwt-StackPanelItem
{ unselected items }
.gwt-StackPanel .gwt-StackPanelItem-selected
{ selected items }

SuggestBox .gwt-SuggestBox { the suggest box itself }
.gwt-SuggestBoxPopup { the suggestion popup }
.gwt-SuggestBoxPopup .item
{ an unselected suggestion }
.gwt-SuggestBoxPopup .item-selected
{ a selected suggestion }

TabBar .gwt-TabBar { the tab bar itself }
.gwt-TabBar .gwt-TabBarFirst { the left edge of the bar }
.gwt-TabBar .gwt-TabBarRest
{ the right edge of the bar }
.gwt-TabBar .gwt-TabBarItem { unselected tabs }
.gwt-TabBar .gwt-TabBarItem-selected
{ additional style for selected tabs }

TabPanel .gwt-TabPanel { the tab panel itself }
.gwt-TabPanelBottom { the bottom section of the
 tab panel (the deck containing the widget) }

TextArea .gwt-TextArea { primary style }
.gwt-TextArea-readonly
{ dependent style set when the text area is read-only }

TextBox .gwt-TextBox { primary style }
.gwt-TextBox-readonly
{ dependent style set when the text box is read-only }

ToggleButton .gwt- ToggleButton-up {}
.gwt- ToggleButton-down {}
.gwt- ToggleButton-up-hovering {}
.gwt- ToggleButton-down-hovering {}
.gwt- ToggleButton-up-disabled {}
.gwt- ToggleButton-down-disabled {}
<any of the above> .html-face {}

Tree .gwt-Tree { the tree itself }
.gwt-Tree .gwt-TreeItem { a tree item }
.gwt-Tree .gwt-TreeItem-selected { a selected tree
item }

VerticalSplitPanel .gwt-VerticalSplitPanel { the panel itself }
.gwt-VerticalSplitPanel vsplitter { the splitter }

Widget Default Name

Button .gwt-Button { }

Checkbox .gwt-CheckBox { }

DialogBox .gwt-DialogBox { the box container }
.gwt-DialogBox .Caption { the box caption }

DisclosurePanel .gwt-DisclosurePanel { primary style }
.gwt-DisclosurePanel-open { when open }
.gwt-DisclosurePanel-closed { when closed }
.header { the panel header area }
.content { the panel content area }

3

DZone, Inc. | www.dzone.com

Simple Module Configuration
A simple module configuration must inherit the User module
and specify a single entry point. The entry point is the class that
implements the EntryPoint interface and acts as the starting
point for the application.

 	 <module>

 		 <inherits name=’com.google.gwt.user.User’ />

 		 <entry-point

 		 class=’org.gwtsandbox.demo.client.Demo’ />

	 </module>

From the basic module configuration you can build on it by
adding additional elements to inherit additional modules,
change the default source path, add servlet mappings, and
add deferred binding rules.

Inheriting Modules
If your GWT project needs to reference external GWT modules
you must explicitly inherit them in your module configuration.
The core GWT libraries are split into several modules, each of
which is listed here. You will always need to include the User
module, and optionally one or more of the others.

 	 GWT widgets and core utilities

	 <inherits name=”com.google.gwt.user.User” />

	 RequestBuilder and associated classes

	 <inherits name=”com.google.gwt.http.HTTP” />

	 Internationalization tools and date/number formatting

	 <inherits name=”com.google.gwt.i18n.I18N” />

	 Tools for using RPC with JavaScript Object Notation

	 <inherits name=”com.google.gwt.json.JSON” />

	 XML parser and associated classes

	 <inherits name=”com.google.gwt.xml.XML” />

Source Path
The source path is a relative path name used to override the
default location of the client-side Java source destined to
be compiled into JavaScript. The source path you specify is
appended to the path where the module configuration file
resides, and you may specify multiple source paths.

	 <source path=”path”/>

By default the source path is “client”. So by way of example, if
your GWT module configuration file is located at com.example.
MyApp.gwt.xml, then the default path of “client” will dictate that
your client-side Java source will be located in the Java package
com.example.client.*, as well as all packages below this one.

All source code in the source path(s) must be able to be
compiled to JavaScript with the GWT compiler. This implies
that only classes from the JRE emulation library and GWT
user library be used. For example, you can not include Java
servlets or use the java.sql.* classes under this path.

Public Path
The public path is used to store non-Java files that need
to be included in the application. This includes HTML files,
JavaScript files, images, CSS, and anything else. By default
this will be the “public” directory below where the module
configuration is stored.

You can override the default by using the <public> tag in the
module configuration.

	 <public path=”path”/>

You may specify multiple public paths if required for your project.

Defining GWT-RPC Servlets
You can use the <servlet> tag in the module configuration to
define your GWT-RPC servlets.

 	 <servlet path=”/path”
 class=”org.gwtsandbox.demo.server.Demo” />

The path specified should be absolute.

Resource Injection
You can have external JavaScript and CSS files automatically
injected into the hosting web page. By injecting the resources
you avoid the need to have the hosting HTML page explicitly
include them with <link> and <script> tags. Resources loaded
in this way will be loaded prior to the executing of the GWT
application.

 	 <script src=”js-url”/>
	 <stylesheet src=”css-url”/>

To inject a resource you can either place the JavaScript or CSS
file into the public package of the GWT module (see above),
referencing it with a relative path, or reference an external CSS
file by using a full URL.

GWT Style, Configuration and JSNI Reference

Hot
Tip

These servlet mappings are for the benefit of
hosted-mode use only, and does not imply that
these mappings will be carried over to your
production environment. For that you would set
them up in the deployment descriptor, just as
you would with any other servlet.

A module in GWT is best described as a set of classes that are
bound by a single module configuration file. The module con-
figuration defines what classes are a part of the module, what
other modules that the module depends on, as well as rules for
deferred binding, resource injection, and everything else that
the GWT compiler and shell needs to know about your module.

A module configuration file is located in the GWT project, with
an extension of “.gwt.xml”. The location on the classpath and the
module configuration file name determine the full module name.

Module Name =
Java Package + Module File Name (-gwt.xml)

For example, if you have a module configuration file named
Demo.gwt.xml, in the java package com.gwtsandbox.demo, the
module name would be com.gwtsandbox.demo.Demo.

GWT MODULE CONFIGURATION

Hot
Tip

The module configuration is only used at design
and compile-time, it is not used at run-time. This

is a common mistake for new GWT developers.

 tech facts at your fingertips

4

DZone, Inc. | www.dzone.com

GWT Style, Configuration and JSNI Reference

GWT MODULE CONFIGURATION, continued

Deferred Binding
In some cases you need to write low-level functionality that
differs based on the client browser, or you need to trigger
a generator to generate code at compile time. For these
functions you use deferred binding. Deferred binding allows
you to write code to an interface and have the concrete class
determined at compile-time.

For example, you may be familiar with GWT’s RPC mechanism.
You use the GWT.create() method to return a concrete class
that can serialize and send your data to the server.

	 MyServiceAsync svc =
 		 (MyServiceAsync) GWT.create(MyService.class);

When this code is compiled the compiler examines the
argument passed to the create method, then attempts to
match the target class to a set of rules that reside in the
module configuration.

Using Generate-With to Trigger Generators
In this case the compiler rule is specified in the module com.
google.gwt.user.RemoteService, which is inherited from your
module when using GWT-RPC.

	 <generate-with
 		 class=”com.google.gwt.user.rebind.rpc.
	 ServiceInterfaceProxyGenerator”>
 		 <when-type-assignable
	 class=”com.google.gwt.user.client.rpc.RemoteSer-
vice”/>
	 </generate-with>

This rule states that when the target class of the GWT.create()
is assignable to RemoteService, that the generator
ServiceInterfaceProxyGenerator is executed. The generator
then creates the code and returns the name of the class that
should be returned by the create method.

Using Replace-With to Trigger Class Replacement
The other use of deferred binding is to specify a alternate class
to be returned by GWT.create() based on available properties.
The most common use of this is to use an alternate class
depending on the client browser. The property that can be
examined to determine this is “user.agent”.

For example, the DOM class in GWT is used to perform low-level
functions, where the browser implementations can differ. In order
to allow for different browsers the following rule can be found
in the com.google.gwt.user.DOM module.

 	 <replace-with
	 class=”com.google.gwt.user.client.impl.DOMImplIE6”>
	 <when-type-is
	 class=”com.google.gwt.user.client.impl.DOMImpl”/>
	 <when-property-is name=”user.agent” value=”ie6”/>
	 </replace-with>

In the DOM class the following code is used to “create” the
correct implementation of the DOM class.

	 DOMImpl impl = (DOMImpl) GWT.create(DOMImpl.class);

When the user.agent property is “ie6” the replace-with rule
specified above will return a DOM implementation that is
specifically designed for Internet Explorer.

Generate-With and Replace-With Expressions
The following expression tags can be used within generate-with
and replace-with tags. When any of the expression tags within
the rule returns a true value, the code generation or class
replacement is performed.

	 <when-property-is
 	 name=”prop-name” value=”matched-value” />

Returns true when the value of the property matches the
specified value. For details on setting properties, see the
Setting Properties section.

	 <when-type-assignable class=”assignable-type” />

The target class is tested to see if it can be assigned to the
specified assignable type.

	 <when-type-is class=”type” />

Similar to when-type-assignable, except that the class must be
an exact match.

	 <all>, <any>, <none>

Use these expression tags to group other expression tags.
The <all> tag implies that all of the tags contained within it
must be true. The <any> tag requires only one of the containing
expressions to be true. The <none> tag requires that all contained
expression tags return false.

Setting Properties
Property names and their possible values can be defined in
the module configuration.

	 <define-property name=”prop-name” values=”vals” />

Creates a new property and comma separated list of the
possible values. For example, you could use the following
to define a view property that could be used to define three
unique view types for the application.

	 <extend-property name=”prop-name” values=”vals” />

Extends the possible values for a property that has already
been defined.

	 <set-property name=”prop-name” value=”value” />

Sets the value of a defined property. The value must be one of the
possible values as defined by the <define-property> tag or one of
the extended values as defined by the <extended-property> tag.

	 <property-provider name=”prop-name”>

Property values can be set at run-time by supplying a property
provider. The contents of the <property-provider> tag is a block
of JavaScript that returns the property value. The JavaScript
code must be placed in a CDATA block to avoid parsing errors.

	 <property-provider name=”view”><![CDATA[

 		 var view = __gwt_getMetaProperty(“view”);

 	if (!__gwt_isKnownPropertyValue(“view”, view)) {

 		 view = ‘basic’;

 	}

 	return view;

]]></property-provider>

The JavaScript block can utilize the __gwt_getMetaProperty()
method to get the value of GWT property defined in a <meta>
tag in the HTML page, and can use __gwt_isKnownProperty-
Value() to test that it is an allowed value. Here’s an example of
using the HTML <meta> tag to set the view as “extended”.

 <meta name=”gwt:property” content=”view=extended” />

 tech facts at your fingertips

5

DZone, Inc. | www.dzone.com

GWT Style, Configuration and JSNI Reference
 tech facts at your fingertips

JSNI Variables
Due to the way GWT applications load, the “window” and
“document” JavaScript objects point to the wrong objects.
GWT provides these special variables for use in JSNI methods.

	 public native void doStuff () /*-{
 		 $wnd.alert(‘Hello World’);
	 }-*/;

Passing Values Between Java and JavaScript
You can pass both Java primitives and objects into a JSNI
method. The following rules define how Java values are
available in JSNI methods and visa versa.

Calling Java Methods from JavaScript, continued
The instance expression is the name of the variable passed
into the method, or “this” to refer to the class instance, or
blank for calling static methods.

The class name is the fully qualified name, followed by
double colons and the method name.

The parameter signature is a list of the parameter types in
the method that you are calling. This is needed in order to
distinguish between two Java methods that have the same
name but different sets or parameters. The following table
defines the codes used to specify the parameter type.

Types are listed one after the other without spaces. For example,
“ZLjava/lang/String;[F” defines the method signature (boolean,
String, float[]).

The argument list is exactly that, a list of the arguments being
passed to the method.

Below are examples of calling methods from JavaScript on well
known Java types.

Calling instance method with no arguments:

	 public native long extractTime (Date date) /*-{
 	 return date.@java.util.Date::getTime()();
	 }-*/;

Calling instance method with a single argument:

	 public native void appendText (StringBuffer sb, String txt)
	 /*-{
	 sb.@java.lang.StringBuffer::append(Ljava/lang/String;)
(txt);

	 }-*/;

Calling static method with multiple arguments:

	 public native int maxValue (int x, int y) /*-{
 	 return @java.lang.Math::max(II)(x, y);

	 }-*/;

Accessing Java properties from JavaScript
Accessing properties of a Java object from JavaScript is similar
to calling a Java method.

	 [instance-expr.]@class-name::field-name

The same value rules apply as calling methods (see Calling Java
Methods from JavaScript). The instance expression is the variable
name passed into the JSNI method, “this” for the instance of the
class, or left off to access a static property. The class name is the
fully qualified package and class, and is separated from the field
name with two colons. On the following page are some examples.

JSNI methods that have Java objects passed to them may use
a special syntax in order to call methods and access properties
of the object.

Calling Java Methods from JavaScript
The following syntax is used to call a Java method from a
JSNI method.

[instance-expr.]@class-name::method-name(param-signature)	
(arguments)

Variable Purpose

$wnd Alias for the JavaScript “window” object

$doc Alias for the JavaScript “document” object

Type Code Java Type

Z Boolean

B Byte

C Char

S Short

I Int

J Long

F Float

D Double

L fully-qualified-class ; Java objects. Uses “/” to delimit parts of the package
name, e.g. “Ljava/lang/String;”

[type Int

Java type Where created JavaScript type

numeric primitive (byte,
short, char, int, long, float,
double)

Both numeric value

boolean primitive Both boolean value

String Both string value

JavaScriptObject Must be created in
JSNI method

An object

Java array Must be created in Java Not directly usable,
can be passed back
into Java code

All other Java objects Must be created in Java Special, see below

The JSNI interface is used as a gateway between your Java
and JavaScript code. It allows you to create Java methods
that have JavaScript code in the body, and then to have the
JavaScript code call Java methods.

JSNI Methods
Methods containing JavaScript must use the native modifier
so that a Java compiler will not validate its contents. Methods
in Java marked as native may not have a method body.

	 public native void doStuff ();

GWT introduces a special comment syntax that follows the
Java native rule of having no method body, while allowing
you to provide JavaScript code that can be picked up by the
GWT compiler.

	 public native void doStuff () /*-{
 		 // JavaScript code goes here
	 }-*/;

JAVASCRIPT NATIVE INTERFACE

6
GWT Style, Configuration and JSNI Reference

ABOUT THE AUTHOR RECOMMENDED BOOK

BUY NOW
books.dzone.com/books/gwt-in-action

GWT in Action shows you
how to set up your develop-
ment environment, use and
create widgets, communicate
with the server, and much
more. Readers will follow an
example running throughout
the book and quickly master
the basics of GWT: widgets,

panels, and event handling.

Robert Hanson
Robert Hanson is an Applications Manager for Quality Technology Services, a company

providing hosting, managed services, and application development. He is passionate

about programming and architecture, and has developed opensource software

for both the Perl and Java communities. His latest venture is the GWT Widget Library,

a set of tools for use with the Google Web Toolkit, a toolkit allowing you to write

JavaScript applications in Java. In 2007 Robert co-authored the book GWT in Action with Adam Tacy,

providing instruction on using the Google toolkit. Robert provides tutorials and random thoughts about

the craft on his blog found at roberthanson.blogspot.com.

Publications
n	 GWT in Action with Adam Tacy

Blog
Roberthanson.blogspot.com

 tech facts at your fingertips

Accessing Java properties from JavaScript, continued

Reading and writing to field on “this”

	 // int currentIndex;

	 var cur = this.@org.example.Demo::currentIndex;

	 this.@org.example.Demo::currentIndex = 0;

Reading and writing to field on object

	 // String welcomeMessage;

	 var msg = obj.@org.example.Demo::welcomeMessage;

	 obj.@org.example.Demo::welcomeMessage = “Hello”;

Reading and writing to a static field

	 // boolean lastResult;

	 var last = @org.example.Demo::lastResult;

	 @org.example.Demo::lastResult = true;

JAVASCRIPT NATIVE INTERFACE, continued You can use JSNI to dynamically create JavaScript
methods that can be used by external JavaScript
code to make calls into your application. The
following code creates a JavaScript method

jsMethod(string) on startup in the browser that can be used
to call the javaMethod(String) in the GWT application.

public void onModuleLoad () {
 createJsMethod(this);
 }

 private native void createJsMethod (Main obj) /*-{
 $wnd.jsMethod = function (s) {
 return
obj.@com.getsandbox.demo.client.Main::javaMethod(Ljava/lang/
String;)(s);
 };
 }-*/;

 public String javaMethod (String in) {
 return “I got your message: “ + in;
 }

 <button onclick=”alert(jsMethod(‘Hello’))”>Say Hello</button>

Hot
Tip

DZone, Inc.
1251 NW Maynard
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2008 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
mechanical, photocopying, or otherwise, without prior written permission of the publisher.

Version 1.0

$7
.9

5

ISBN-13: 978-1-934238-07-3
ISBN-10: 1-934238-07-4

9 781934 238073

5 0 7 9 5

DZone communities deliver over 4 million pages each month to

more than 1.7 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheatsheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

Get More FREE Refcardz. Visit refcardz.com now!
Upcoming Refcardz:
Core Seam

Core CSS: Part III

Hibernate Search

Equinox

EMF

XML

JSP Expression Language

ALM Best Practices

Available:
Essential Ruby
Essential MySQL
JUnit and EasyMock
Getting Started with MyEclipse

Spring Annotations

Core Java

Core CSS: Part II

PHP

Getting Started with JPA

JavaServer Faces

Core CSS: Part I

Struts2

Core .NET

Very First Steps in Flex

C#

Groovy

NetBeans IDE 6.1 Java Editor

RSS and Atom

Visit refcardz.com for a complete listing of available Refcardz.
Design Patterns

Published June 2008

FREE

