

Getting Started with Ajax
By Dave Crane

CONTENTS INCLUDE:

n	 Getting to Know HTTP
n	 Tips for Using XHR
n	 Ajax and Architecture
n	 Ajax Toolkits
n	 Ajax User Interfaces
n	 Hot Tips and more...

n Authoritative content
n Designed for developers
n Written by top experts
n Latest tools & technologies
n Hot tips & examples
n Bonus content online
n New issue every 1-2 weeks

Subscribe Now for FREE!
Refcardz.com

Get More Refcardz
(They’re free!)

DZone, Inc. | www.dzone.com

gETTINg STarTED

The standard way to do Ajax is to use the XMLHttpRequest object,
known as XHR by its friends. Use XHR directly, or via one of the
helpful Ajax libraries such as Prototype or jQuery. How do we use
XHR “by hand”? To start with, we need to get a reference to it:

We can then open a connection to a URL:

Specify a callback function to receive the response:

and then send the request:

The server may be busy, or the network may be slow. We don’t want
to sit around doing nothing until the response arrives, and because
we’ve assigned the callback function, we don’t have to. That’s the
five-minute guide for the impatient. For those who like to know
the details, we’ve listed the fuller details of the XHR object below.

 if (window.XMLHttpRequest) {
 xhr = new XMLHttpRequest();
 } else if (window.ActiveXObject) {
 xhr = new ActiveXObject(“Microsoft.XMLHTTP”);
 }

 xhr.onreadystatechange = function(){
 processReqChange(req);
 }

 xhr.send(null);

 xhr.open(
 “GET”,
 “my-dynamic-content.jsp?id=”
 +encodeURI(myId),
 true
);

Method Name Parameters and Descriptions

open(method, url, async) open a connection to a URL
method = HTTP verb (GET, POST, etc.)
url = url to open, may include querystring
async = whether to make asynchronous request

onreadystatechange assign a function object as callback (similar to onclick,
onload, etc. in browser event model)

setRequestHeader
(namevalue)

add a header to the HTTP request

send(body) send the request
body = string to be used as request body

abort() stop the XHR from listening for the response

readyState stage in lifecycle of response (only populated after send()
is called)

httpStatus The HTTP return code (integer, only populated after
response reaches the loaded state)

responseText body of response as a JavaScript string (only set after
response reaches the interactive readyState)

responseXML body of the response as a XML document object (only
set after response reaches the interactive readyState)

getResponseHeader
(name)

read a response header by name

getAllResponseHeaders() Get an array of all response header names

G
e

tt
in

g
 S

ta
rt

e
d

 w
it

h
 A

ja
x

w

w
w

.d
zo

n
e

.c
o

m

S

u
b

sc
ri

b
e

 N
o

w
 f

o
r

F
R

E
E

!
 r

ef
ca

rd
z.

co
m

To make use of the XHR to its fullest, we recommend you
become familiar with the workings of the HTTP protocol. Using
Ajax, you have much more control over HTTP than with classic
web app development.

HTTP is a stateless request-response protocol.

n Both request and response contain headers and an optional
 body, which is free text.

n Only a POST request contains a body.

n A request defines a verb or method.

n The Mime type of request and response can be set by the
 header Content-type

gETTINg TO KNOw HTTP

body

request

headers

browser

body

response

headers

server

Hot
Tip

Not all Microsoft browsers rely on ActiveX.

IE7 provides a native JavaScript XHR, so we
check for that first.

 tech facts at your fingertips

http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com

Getting Started with Ajax
2

DZone, Inc. | www.dzone.com

Common Mime Types
Setting the right mime type for your request and response is
good manners—it’s also vital to get the app to behave correctly!

Common HTTP Verbs
99% of the time, you’ll only need GET and POST. Many other
verbs are used by WebDAV, Subversion over HTTP, and other
niche applications, but not all web servers will understand them.

If you’re using the increasingly popular REST approach to web
services, the HTTP verb is used to indicate the type of operation
being performed. The most commonly used HTTP verbs in REST
map onto the CRUD (create, read, update, delete) approach:

Verb Notes

GET Strictly speaking, should be used only to fetch data, not to effect
changes on the server. GET requests contain no body. Parameters are
passed in the querystring of the URL.

POST Should be used to update data on the server. Parameters/data passed
in the body.

HEAD Will fetch the headers of the response only, not the body. Useful for
finding out how large a resource is (read the Content-length header)
or how old it is (read the Last-modified header), for example.

HTTP Verb CRUD
operation

Notes

PUT Create Add a new object instance to the domain model.

GET Read Get an existing domain object from the server.

POST Update Modify an existing domain object.

DELETE Delete Remove an existing object from the domain model.

Mime Type Meaning Usage

application/x-www-
form-urlencoded

Body is an encoded
querystring of
key-value pairs

Sending request from HTML
form or Ajax. Required in order
for server to decode parameters
into $_GET, servlet parameters, or
HttpRequest.Form.

text/xml,
application/xml

Body is an XML
document

Can be used anywhere – request
or response. Must set response to
one of these in order to use XHR.
responseXML property.

text/plain Body is plain
unformatted text

text/html, text/xhtml Body is (X)HTML
content

Standard web pages sent from
server, or content fragments sent to
Ajax apps.

text/javascript Body is a piece of
JavaScript code

Standard .js files, JavaScript
fragments sent to Ajax apps.

image/png, image/
jpeg, image/gif

Body is a binary
image

Images sent by server.

n Always set async to true when calling open(). Synchronous Ajax
 requests block the browser UI, giving the stop-start behaviour
 we were trying to get away from in the first place!
n XHR can be fussy about order of setting-up. Always set the
 callback handler before calling send()
n To send HTML-form like data
	 	 n Use encodeURI() to encode all data values
	 	 n Set the mime-type of the request to application/x-www-
 form-urlencoded
n Set the response mime type to application/xml or text/xml if
 you want to use the responseXML property

TIPS FOr USINg XHr

 xhr.onreadystatechange=function(){
 if (xhr.readyState==4){
 if (xhr.status==200){
 parseResponse(xhr);
 }else{
 //handle the HTTP error...
 }
 };
 };

Handling the Response
We’ve assigned a callback handler function to our XHR object.
This function will get called several times as the response comes
in. Typically, we only want to parse the response once it has fully
arrived, i.e. the readyState is complete.

Handling a HTML Response
The server can send pre-assembled HTML content, which we
just stitch into the web page.

Handling a JSON Response
JSON is a simple text-markup that’s extremely easy for JavaScript
to digest! It doesn’t come so naturally to server-side languages,
but there are JSON libraries for most servers these days—see
http://www.json.org. Most Ajax libraries now provide support
for JSON.

So, what might the parseResponse() method look like? We have
a lot of freedom in the types of response we send. Let’s look at
some of the common ones.

XHR ReadyState Values

State Value Comments

0 Uninitialized The request hasn’t yet been sent

1 Loading The response hasn’t yet arrived

2 Loaded Response headers can be read

3 Interactive Response body is incomplete, but can be read

4 Complete Response body is complete

<table class=’item selected’>
<tr>
<td rowspan=’3’ valign=’top’><div
class=’itemIcon’><img
src=’../images/kmoon.png’></div></td>
<td class=’itemTitle’>The Moon on a
Stick</td>
</tr>
<tr>
<td valign=’top’>What every project
manager wants - and they want it
yesterday!

<i>NB: Stick not
included.</i></td>
</tr>
<tr>
<td><div class=’price’>$365.00</div></td>
</tr>
</tr>
</table>

function parseResponse(xhr){
 var div=document
 .getElementById(“myDiv”);
 div.innerHTML=xhr.responseText;
}

{
 imgSrc: “kmoon.png”,
 title: “The Moon on a Stick”,
 description: “What every proj-
ect manager wants - and they want it
yesterday!

<i>NB: Stick not
included.</i>”,
 price: “365.00”
}

function parseResponse(xhr){
 var jsonObj=eval(
 “(“
 +xhr.responseText
 +”)”
);
 setImgSrc(jsonObj.imgSrc);
 setTitle(jsonObj.title);
}

→

 tech facts at your fingertips

http://www.dzone.com
http://www.json.org
http://www.refcardz.com

3

DZone, Inc. | www.dzone.com

TIPS FOr USINg XHr, continued

aJaX TOOLKITS continued on next page...

Handling an XML Response
XML is a more natural fit for most server technologies. XHR sup-
ports XML by giving us the responseXML property, but parsing
this using the DOM is hard work.

<item imgSrc=”kmoon.png”
price=”365.00”>
 <title>The Moon on a
Stick</title>
 <description><![CDATA[What
every project manager wants -
and they want it
yesterday!

<i>NB: Stick
not
included.</i>]]></description>
 </item>

function parseResponse(xhr){
 var xmlDoc=xhr.responseXML;
 var item=xmlDoc.getElementsByTagName
 (‘item’)[0];
 var imgSrc=item.getAttribute
 (‘imgSrc’);
 var title=item.getElementsByTagName
 (‘title’)[0]
 .firstChild.data;
 setImgSrc(imgSrc);
 setTitle(title);
}

Some browsers also support XPath as a more pleasant way to
parse XML. Sarissa and mozXPath.js both provide cross-browser
XPath support.

Handling a Javascript Response
Another approach to Ajax is to generate scripts on the server,
and send them to the client to be evaluated. Care should be
taken here to define a suitably high-level API on the client
against which the generated script is to run, otherwise tight
coupling between server and client code can result.

Handling Mixed Responses
Some Javascript libraries allow mixing of these dialects of
Ajax within a single response. The Prototype Ajax.Updater, for
example, can accept a response as HTML, into which <script>
tags are embedded. The script will be extracted and evalu-
ated, while the rest of the content is embedded into a target
DOM element.

setImgSrc(“kmoon.png”);
setTitle(
 “The Moon on a Stick”
);

function parseResponse(xhr){
 eval(xhr.responseText);
}

<item imgSrc=”kmoon.png”
price=”365.00”>
 <title>The Moon on a
Stick</title>
 <description><![CDATA[What
every project manager wants -
and they want it
yesterday!

<i>NB: Stick
not
included.</i>]]></description>
 </item>

function parseResponse(xhr){
 var xmlDoc=xhr.responseXML;
 var imgSrc=xmlDoc.selectSingleNode
 (‘/item/@imgSrc’).value;
 var title=xmlDoc.selectSingleNode
 (‘/item/title/text()’).value;
 setImgSrc(imgSrc);
 setTitle(title);
}

Getting Started with Ajax

Dumb client and thick client above are extremes. In between,
there is a thinner (but still intelligent) client, that will suffice in
many cases. No single model is right for all cases. Try out these
rules of thumb:

n To add small Ajax features to an existing app, stick with the thin
 client approach. Thick client is for complex, line-of-business
 app replacements.

n Your client-side code is visible, and runs on somebody else’s
 machine. Don’t expose details of your business tier. Keep it
 coarse-grained.

n Some functionality MUST be kept on the server, such as data
 validation. Simple, fast validation on the client is an addition,
 not a replacement!

n Treat your client-side code well. Use the patterns and practises
 that you would use on the server to keep your code clean and
 maintainable.

n Most projects have a legacy system behind them. How can you
 introduce Ajax with minimal disruption? Does it speak XML, or
 generate HTML from components? Can you re-use that?

Does Ajax only affect the client-side? Certainly not! Particularly
if your server is responding with data rather than HTML frag-
ments, you’ll want to refactor to some extent.

aJaX aND arCHITECTUrE

dumb client

browser

web server

database server

display

presentation

business objects

thin client

browser

web server

database server

display

presentation

presentation

business objects

persistencepersistence

thick client

browser

web server

database server

display

data transfer

presentation

business objects

business objects

persistence

data transfer

Toolkits and frameworks will make your life easier in
several ways:
	 n Providing tried-and-tested solutions to common
 problems
	 n Abstracting away cross-browser incompatibilities and
 annoyances
	 n Providing higher level abstractions such as ready-made
 UI widgets and networking stacks

However, it’s a jungle out there, with many different types of
toolkits on the market. Let’s divide them into broad families.

Client-side versus Server-side
Some toolkits are JavaScript-only, others include a back-end
system too. Client-side toolkits will give more flexibility, but may
require more work on the server-side too.

High-level versus Low-level
JavaScript is a flexible language, and some toolkits are geared
towards enhancing the language itself in a variety of ways. Oth-
ers are more concerned with higher-level issues such as simplify-
ing XHR, or providing drop-in widgets such as trees, tables and
drag-and-drop.

 tech facts at your fingertips

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

Name Client/
Server

High/
Low-level

Comments

Prototype
(http://prototypejs.org)

Client Low Remodels and extends
JavaScript following the Ruby
scripting language. Many
features for arrays, functions,
XHR, DOM and forms.

Scriptaculous
(http://script.aculo.us)

Client High Special effects, drag and
drop, and widgets built on
top of prototype.

dojo
(http://dojotoolkit.org)

Client Low-high Comprehensive set of
libraries covering everything
from packaging & language
features through Ajax to UI
widgets.

Yahoo User Interface (YUI)
(http://developer.yahoo.com/
yui/)

Client Low-high Another comprehensive set
of libraries covering many
aspects of Ajax development.

Ext
(http://extjs.com)

Client High Widget-based set of user
interface components with
Ajax support.

sarissa
(http://sarissa.sf.net)

Client Low Rich library for working
with XML, providing cross-
browser XPath and XSLT.

Mochikit
(http://mochikit.com)

Client Low-high General-purpose Ajax and
DHTML library, inspired by
Python.

jQuery
(http://jquery.com)

Client Low Small, concise Ajax and
DOM helper library.

MooTools
(http://mootools.net)

Client Low-high Modular library covering
everything from core
classes to special effects. A
promising newcomer.

Ruby on Rails
(http://www.rubyonrails.org)

Server Low-high Primarily a server-side toolkit,
but has first-rate support
for Ajax, using Prototype
and Scriptaculous. Allows
large parts of the client tier
to be written on the server,
in Ruby.

GWT
(http://code.google.com/
webtoolkit)

Client High Java framework that allows
Ajax client tier to be written
in Java.

JSF
(various vendors)

Server High Various JSF vendors have
Ajax-enabled some of their
components, again allowing
some Ajax functionality
without hand-writing
JavaScript.

Some popular Ajax Toolkits

Prototype jQuery

new Ajax.Request(
 “my-dynamic-content.jsp”,
 { method: “post”,
 params: { id: myId },
 onComplete: function(response){
 parseResponse(response);
 }
 }
);

$.post(
 “my-dynamic-content.jsp”,
 { id: myId },
 function(xhr){
 parseResponse(xhr);
 }
);

The Basics : Making an Ajax request

n		 No need to create your own XHR object
n		 Use high-level, meaningful callbacks rather than
 onreadystatechange
n		 Sensible defaults provided for all the options you don’t want
 to specify yourself

We haven’t time to show you how to make Ajax calls with all of
these toolkits, but let’s pick two of the most popular: Prototype
and jQuery.

Prototype jQuery

new Ajax.Updater(
 $(“myDomNode”),
 “my-dynamic-content.jsp”,
 { method: “post”,
 params: { id: myId }
 }
);

$(“#myDomNode”).load(
 “my-dynamic-content.jsp”,
 { id: myId }
);

Loading HTML Content into a DOM Node

n		 No need to provide a callback function at all

Working wth JSON Responses

Prototype jQuery

new Ajax.Request(
 “my-dynamic-content.jsp”,
 { method: “post”,
 params: { id: myId },
 onComplete:
function(response,json){
 alert(json.someProperty);
 }
 }
);

$.getJSON(
 “my-dynamic-content.jsp?id=”+myId,
 function(json){
 alert(json.someProperty);
 }
);

n		 JSON response returned to our callback already parsed

gENEraL JavaSCrIPT PrOgrammINg TIPS

JavaScript is a loosely-typed scripting language with support for
object-oriented and functional programming styles. Although it
looks like Java and C-family languages, it’s quite different under
the hood. Here are a few survival tips to get you through your first
serious encounter with this language:
n
	 Objects can be extended at runtime with new properties.

 Think of Javascript objects as associative arrays.
n
	 Functions are first-class objects, and can be passed as

 arguments into other functions (see the numerous callback
 functions earlier).
n
	 JavaScript functions support closures. That is, variables that

 are in scope when a function is defined can still be referenced
 inside the function, even if it is invoked later.

aJaX USEr INTErFaCES

Before Ajax, the UI was nearly always delivered as declarative
HTML, and the Document Object Model, or DOM, was only used
in moderation. With Ajax—especially single-page applications—
the DOM can play a much bigger role.

Working with the DOM is a two-stage process:
n	 Finding the elements we want to work with
n	 Modifying their contents or reorganizing them

Finding DOM Elements
The DOM standard itself gives us a few basic tools to work with.
Enterprising JavaScript library developers have built on top of
these to provide a much richer set of functionality.

Function arguments returns notes

document.
getElementById()

string DOM
Element

find single element on
page. Id attribute must be
unique in page

document.
getElementsByTagName()

element.
getElementsByTagName()

string collection
of DOM
elements

find all elements on page
of a particular HTML tag
type e.g. H1, IMG, LI. Use
as a method of element
to search a subtree of the
document

4
Getting Started with Ajax

 tech facts at your fingertips

http://www.dzone.com
http://prototypejs.org
http://script.aculo.us
http://script.aculo.us
http://dojotoolkit.org
http://dojotoolkit.org
http://developer.yahoo.com/yui/
http://developer.yahoo.com/yui/
http://developer.yahoo.com/yui/
http://extjs.com
http://extjs.com
http://sarissa.sf.net
http://sarissa.sf.net
http://mochikit.com
http://mochikit.com
http://jquery.com
http://jquery.com
http://mootools.net
http://mootools.net
http://www.rubyonrails.org
http://www.rubyonrails.org
http://code.google.com/webtoolkit
http://code.google.com/webtoolkit
http://code.google.com/webtoolkit
http://www.refcardz.com

5

DZone, Inc. | www.dzone.com

The id attribute is often too specific—adding one to each element we
may need to locate becomes tedious, and clutters the markup. Tag
names, on the other hand, are not specific enough to be useful in
many cases. The most common solution is to use CSS classes to lo-
cate elements. We can make these as specific or general as we need.

Finding DOM Elements, continued

Function arguments returns notes

element.childNodes none collection
of DOM
elements

find node’s immediate
children

element.parentNode none DOM
Element

find node’s immediate
parent

element.nextSibling

element.previousSibling

none DOM
Element

allow
traversal of sibling nodes

Finding DOM elements using Prototype

Examples
$(“myList”) selects the element with id=myList
 .select (“li.new”) selects all DOM elements of type
 with CSS class new within
 subtree beneath myList
$(“widget”) selects element with id=”widget”
 .down(“img div.handle”,2) internally returns list of all
 tags that are children of a DIV with
 CSS class handle, and returns the
 second one

Function arguments returns notes

$() string,
many
strings, or
elements

DOM
element,

or array of
elements

powerful and
concise superset of
getElementById()

document.
getElementsByClassName()

element.
getElementsByClassName()

string (a
CSS class)

array of
DOM
elements

version 1.5+
simple analogue to
getElementsByTagName()

$$() string
(selector
rule)

array of
DOM
elements

version 1.5+
accepts CSS selector
rules, and xpath queries

element.select() string
(selector
rule)

array of
DOM
elements

version 1.6
analogue to $$(),
syntactically neater

element.up()

element.down()

element.next()

element.previous()

selector
rules,
counts
(both
optional)

DOM
Element

powerful positional
navigation methods,
that can work with
selectors

Finding DOM elements using jQuery

Examples
$(“div”) select all nodes by tag type
$(“#myList”) select by unique id
$(“ul#myList li.new”) complex CSS selector

Function arguments returns notes

$() string
(selector
rule)

jQuery
object
wrapping
array of
elements

although only one method is listed here,
jQuery is exceptionally powerful in this
regard. The selector rules encompass CSS3,
xpath (optional) and a range of custom
selectors too!

Getting Started with Ajax

Modifying the DOM with Prototype
Prototype favors the use of innerHTML to modify the DOM. It
enhances this with the Insertion namespace, and, more recently,
an insert method on the DOM element class itself.

Prototype provides no support for building DOM elements
programmatically, but the Scriptaculous library adds a DOMBuilder
object to the mix.

Function arguments notes

Insertion.Top
Insertion.Bottom
Insertion.Before
Insertion.After

DOM element,
string (HTML content)

version 1.5: Object that inserts
HTML content into element
alongside existing content.

Element.update() string (HTML content) version 1.6: overwrites content in
element

Element.insert() HTML content or hash
of content

version 1.6: Can insert a single
piece of content, or multiple
pieces in one go

Element.remove() none all versions: removes the calling
element (and its children) from
the page

Modifying the DOM
Again, the DOM standard gives us a basic set of tools to work with,
and browser vendors have effectively standardized a few more.

Function arguments returns notes

document.
createElement()

string (tag
name)

DOM
Element

create new content slowly and
painfully!

document.
createTextNode()

string
(content of
node)

DOM text
node

element.
innerHTML

n/a n/a use the browser’s built-in HTML
parser to shortcut the creation
of new content

element.
appendChild()

DOM
element

null add a DOM node as child of
another node

element.
removeChild()

DOM
element

null remove a child DOM node from
the parent

element.
insertBefore()

DOM
element

null add a DOM node in relation to
other siblings, not just at the end

Modifying the DOM with jQuery
jQuery is based around selecting sets of DOM elements, and it
provides methods for manipulating sets of DOM elements in bulk.
(These can be used on sets of one element too!) The methods here
all operate on a set of DOM nodes returned from a selector.

Function arguments notes

$.html() string (HTML
content)

simple wrapper around innerHTML, will
duplicate content for each element in the set

$.append()
$.prepend()
$.before()
$.after()

string (HTML
content)

insert content into node(s) alongside existing
content

$.appendTo()
$.prependTo()
$.insertBefore()
$.insertAfter()

string
(selector rule)
or DOM
element

argument is the target element or elements,
to which the current node will be moved to. If
multiple targets are present, the nodes being
appended will be copied to each one

$.remove() none remove all elements in set from the page

$.empty() none empty all elements in the set of their content

$.wrap() string (HTML) or
DOM element

wrap each element in set individually with a
copy of the content provided in argument

$.wrapAll() string (HTML) or
DOM element

wrap all elements in the set as a single unit with
the content provided in argument

Hot
Tip

DOM elements can be assigned to multiple CSS classes.
When finding elements using a selector mechanism, you
may use the same CSS classes that determine the look of
your page, or you may assign separate marker classes,
i.e. CSS classes that have no visual effect on the page.

 tech facts at your fingertips

http://www.dzone.com
http://www.refcardz.com

Subscribe Now for FREE! refcardz.com

6

Spring
Configuration

Getting Started with Eclipse

Upcoming Refcardz:

n		Windows PowerShell
n		GWT Style, Configuration
 and JSNI Reference
n	 RSS and Atom
n	 Flexible Rails: Flex 3 on Rails 2
n		Dependency Injection in EJB3

n		 jQuery Selectors
n		Design Patterns
n		MS Silverlight 2.0
n		NetBeans IDE 6
 Java Editor
n		Groovy

FrEE

Both jQuery and Prototype (and its sister Scriptaculous) tend
towards a style of UI called Unobtrusive Javascript, in which the
content of the page is declared as HTML, and subsequently made
interactive. Selectors play an important role in this approach, in
locating the elements to which to add behavior. There is an alterna-
tive approach to developing Ajax UIs, much more akin to desktop
application development, in which the DOM elements are created
programmatically by javascript components, which the designer
then wires together using layouts and containers. Qooxdoo and
Ext2 are both examples of this style of UI development.

In an ideal world, choosing the right framework makes develop-
ment a breeze, but in practice, you’ll need to go under the hood
from time to time to figure out what’s going on. We recommend
the following tools to keep your Ajax development on track.

wIDgETS vS. BEHavIOrS

TOOLS OF THE TraDE

Getting Started with Ajax

FireBug FF www.getfirebug.com Swiss army knife for developers,
incorporating DOM & CSS
inspector, interactive debugger,
network monitor and profiler.

Web
Developers
Toolkit

IE searchmicrosoft.com Closest thing to Firebug for IE,
minus the debugger.

Script
Debugger

IE searchmicrosoft.com Free Javascript debugger for
IE, (also check out Visual Studio
express’ debugger).

Fiddler IE/any www.fiddlertool.com Powerful network monitor with
programmable interface for
modifying requests in many
ways. Tight integration with IE,
but can work with any browser.

LiveHTTP
Headers

FF livehttpheaders.mozdev.org Network monitor extension for
Firefox.

JSUnit any www.jsunit.net The original unit testing
framework for Javascript.

Selenium FF/any www.openqa.org Powerful unit testing tool for
Javascript, featuring interactive
test recorder IDE (Firefox only)
and browser automation tool
(most browsers).

YSlow FF developer.yahoo.com/yslow Comprehensive performance
analysis for web pages, runs as
a plugin to Firebug!

 tech facts at your fingertips

rECOmmENDED BOOK

BUY NOw
books.dzone.com/books/ajax-in-action

Ajax in Action explains how
to distribute the application
between the client and the
server (hint: use a “nested MVC”
design) while retaining the
integrity of the system. You will
learn how to ensure your app is
flexible and maintainable,

and how good, structured design can help avoid
problems like browser incompatibilities.

Dave Crane
Dave Crane has over ten years experience in the IT industry, working with J2EE,
PHP, Ajax, and a variety of scripting languages in industries including home
entertainment, banking, simulation modelling and global supply chains. He
currently works as Developer/Architect for Historic Futures Ltd., and runs Ajax
training courses in the UK and overseas with Skillsmatter Ltd. He is well-known
as the author of Manning’s Ajax in Action, Prototype & Scriptaculous in Action
and Ajax in Practice.

Publications
n	 Ajax in Action
n	 Prototype & Scriptaculous in Action
n	 Ajax in Practice

aBOUT THE aUTHOr

The DZone Network is a group of free online services that aim to

satisfy the information needs of software developers and architects.

From news, blogs, tutorials, source code and more, DZone offers

everything technology professionals need to succeed.

To quote PC magazine, “DZone is a developer’s dream.”

DZone, Inc.
1251 NW Maynard
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2008 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
mechanical, photocopying, or otherwise, without prior written permission of the publisher.

Version 1.0

$7
.9

5

ISBN-13: 978-1-934238-02-8
ISBN-10: 1-934238-02-3

9 781934 238028

5 0 7 9 5

http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.getfirebug.com
http://www.getfirebug.com
http://searchmicrosoft.com
http://searchmicrosoft.com
http://searchmicrosoft.com
http://searchmicrosoft.com
http://searchmicrosoft.com
http://searchmicrosoft.com
http://searchmicrosoft.com
http://www.fiddlertool.com
http://www.fiddlertool.com
http://www.livehttpheaders.mozdev.org
http://www.livehttpheaders.mozdev.org
http://www.livehttpheaders.mozdev.org
http://www.jsunit.net
http://www.jsunit.net
http://www.openqa.org
http://www.openqa.org
http://www.developer.yahoo.com/yslow
http://www.developer.yahoo.com/yslow
http://www.refcardz.com
http://books.dzone.com/books/ajax-in-action
http://books.dzone.com/books/ajax-in-action
http://books.dzone.com/books/ajax-in-action
http://www.manning.com/affiliate/idevaffiliate.php?id=224_28
http://www.dzone.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com

