

Spring Configuration
By Craig Walls

CONTENTS INCLUDE:
n	 About Spring Configuration
n	 The Beans Namespace
n	 The Context Namespace
n	 The AOP Namespace
n	 The JEE Namespace
n	 Spring Annotations
n	 Hot Tips and more...

DZone, Inc. | www.dzone.com

The Spring Framework has forever changed the face of enterprise
Java development, making it easier than ever to configure and
assemble application objects and services in a loosely-coupled
manner. As you develop your Spring-enabled applications,
you’ll find this reference card to be a handy resource for Spring
context configuration. It catalogs the XML elements available as
of Spring 2.5, highlighting the most commonly used elements.
In addition to Spring XML configuration, there’ll also be a guide
to Spring’s rich set of annotations, which are useful for minimizing
the amount of XML needed to configure Spring.

ABOUT SPRING CONFIGURATION

Sp
ri

ng
 C

on
fig

ur
at

io
n

 w

w
w

.d
zo

n
e.

co
m

 G
e

t
M

o
re

 R
e

fc
ar

d
z!

V

is
it

 r
ef

ca
rd

z.
co

m

As of Spring 2.0, you are encouraged to use Spring’s XML
Schema-based configuration, which is more flexible than the
legacy DTD-based XML. A typical Spring 2.5 configuration will
have, at minimum, the following structure:

CONFIGURING SPRING WITH XML

Although the Spring Framework does many things, dependency
injection is the foundational functionality provided by the
Spring container.

Any non-trivial application is composed of two or more objects
that collaborate to perform some business logic. Traditionally,
each of those objects is responsible for obtaining references
to those objects that it collaborates with (its dependencies).
This leads to tightly-coupled and hard-to-test code.

With dependency injection, however, objects are given their
dependencies by some external entity. In other words, depen-
dencies are injected into the objects that need them. In the case
of a Spring-enabled application, it is the Spring container that
injects objects into the objects that depend on them.

DEPENDENCY INJECTION IN A NUTSHELL

Within the <beans> element, you’ll place bean declarations
and other elements that configure your application’s context.
The “beans” namespace was the first and is still the primary
namespace in Spring’s XML configuration—but it isn’t alone.
Spring also comes with seven more namespaces that will be
described in this reference card. If you wish to use one of
the other namespaces, you’ll need to be sure to declare them.
For example, if you want to use the “context” namespace,
you should declare it in XML as follows:

<?xml version=”1.0” encoding=”UTF-8”?>
<beans xmlns=”http://www.springframework.org/schema/beans”
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xmlns:context=”http://www.springframework.org/schema/
context”
 xsi:schemaLocation=”http://www.springframework.org/
schema/beans
 http://www.springframework.org/schema/beans/spring-
beans-2.5.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/
spring-context-2.5.xsd”>

 <!-- place configuration details here -->

</beans>

<?xml version=”1.0” encoding=”UTF-8”?>
<beans xmlns=”http://www.springframework.org/schema/beans”
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xsi:schemaLocation=”http://www.springframework.org/
schema/beans
 http://www.springframework.org/schema/beans/spring-
beans-2.5.xsd”>

 <!-- place configuration details here -->

</beans>

n Authoritative content
n Designed for developers
n Written by top experts
n Latest tools & technologies
n Hot tips & examples
n Bonus content online
n New issue every 1-2 weeks

Subscribe Now for FREE!
Refcardz.com

Get More Refcardz
(They’re free!)

 tech facts at your fingertips

Method Name Parameters and Descriptions

open(method, url, async) open a connection to a URL

method = HTTP verb (GET, POST, etc.)

url = url to open, may include querystring

async = whether to make asynchronous request

onreadystatechange assign a function object as callback (similar to onclick,

onload, etc. in browser event model)

setRequestHeader

(namevalue)

add a header to the HTTP request

send(body) send the request

body = string to be used as request body

abort() stop the XHR from listening for the response

readyState stage in lifecycle of response (only populated after send()

is called)

httpStatus The HTTP return code (integer, only populated after

response reaches the loaded state)

responseText body of response as a JavaScript string (only set after

response reaches the interactive readyState)

responseXML body of the response as a XML document object (only

set after response reaches the interactive readyState)

getResponseHeader

(name)

read a response header by name

getAllResponseHeaders() Get an array of all response header names

Hot
Tip

 tech facts at your fingertips

Pirate

TreasureMap

injected into

I need a
treasure map

Spring

I’ll give you a
treasure map

#4

Spring Configuration
2

DZone, Inc. | www.dzone.com

Bean Namespace Example
The following Spring XML configures two beans, one injected
into the other:

The first bean is given “pirate” as its ID and is of type “Pirate.”
It is to be constructed through a constructor that takes a
String as an argument—in this case, it will be constructed with
“Long John Silver” as that value. In addition, its “map” property
is wired with a reference to the “treasureMap” bean, which is
defined as being an instance of TreasureMap.

<?xml version=”1.0” encoding=”UTF-8”?>
<beans xmlns=”http://www.springframework.org/schema/beans”
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xsi:schemaLocation=”http://www.springframework.org/
schema/beans
 http://www.springframework.org/schema/beans/spring-
beans-2.5.xsd”>

 <bean id=”pirate” class=”Pirate”>
 <constructor-arg value=”Long John Silver” />
 <property name=”map” ref=”treasureMap” />
 </bean>

 <bean id=”treasureMap” class=”TreasureMap” />
</beans>

Attribute Description

abstract If true, the bean is abstract and will not be instantiated by the
Spring container.

autowire Declares how and if a bean should be autowired. Valid values are
byType, byName, constructor, autodetect, or no for no autowiring.

autowire-
candidate

If false, the bean is not a candidate for autowiring into
another bean.

class The fully-qualified class name of the bean.

dependency-
check

Determines how Spring should enforce property setting on the bean.
simple indicates that all primitive type properties should be set;
objects indicates that all complex type properties should be set.
Other value values are default, none, or all.

depends-on Identifies a bean that should be instantiated by the container
before this bean is instantiated.

destroy-
method

Specifies a method that should be invoked when a bean is
unloaded from the container.

factory-bean Used with factory-method, specifies a bean that provides a
factory method to create this bean.

factory-
method

The name of a method that will be used instead of the constructor
to instantiate this bean.

id The identity of this bean in the Spring container.

init-method The name of a method that should be invoked once the bean
has been instantiated and injected.

lazy-init If true the bean will be lazily instantiated. If false, the bean will
be eagerly instantiated.

name The name of the bean. This is a weaker alternative to id.

parent Specifies a bean from whom this bean will inherit its configuration.

scope Sets the scope of the bean. By default, all beans are singleton-
scoped. Other scopes include prototype, request, and session.

 tech facts at your fingertips

Hot
Tip

Don’t put all your beans in one XML file. Once
your application gets beyond the trivial stage,
you’ll likely have an impressive amount of XML
in your Spring configuration. There’s no reason

to put all of that configuration in a single XML file. Keep your
Spring configuration more manageable by splitting it across

several XML files. Then assemble them all together when creat-
ing the application context or by using the <import> element:

	 <import	resource=”service-layer-config.xml”	/>

	 <import	resource=”data-layer-config.xml”	/>

	 <import	resource=”transaction-config.xml”	/>

Bean Namespace Elements

Element Description

<alias> Creates an alias for a bean definition.

<bean> Defines a bean in the Spring container.

<constructor-arg> Injects a value or a bean reference into an argument of
the bean’s constructor. Commonly known as constructor
injection.

<description> Used to describe a Spring context or an individual bean.
Although ignored by the container, <description> can be
used by tools that document Spring contexts.

<import> Imports another Spring context definition.

<lookup-method> Enables getter-injection by way of method replacement.
Specifies a method that will be overridden to return a
specific bean. Commonly known as getter-injection.

<meta> Allows for meta-configuration of the bean. Only useful
when there are beans configured that interprets and acts
on the meta information.

<property> Injects a value or a bean reference into a specific property
of the bean. Commonly known as setter-injection.

<replaced-method> Replaces a method of the bean with a new implementation.

Schema URI
www.springframework.org/schema/beans

Schema XSD
www.springframework.org/schema/beans/spring-beans-2.5.xsd

The beans namespace is the core Spring namespace and
the one you’ll use most when configuring Spring. The root
element is the <beans> element. It typically contains one or
more <bean> elements, but it may include elements from other
namespaces and may not even include a <bean> element at all.

Spring XML Diagram Key
The Spring XML diagrams use the following notations to
indicate required elements, cardinality, and containment:

	 n		Required XML element ? n		Zero or one
* n		Zero or more " Containment

THE BEANS NAMESPACE

Bean Namespace Diagram

lookup-method

replaced-method

meta

property

description

constructor-arg

import

alias

bean

description
beans

The <bean> Element Distilled
Even though there are several XML elements that can be used
to configure a Spring context, the one you’ll probably use the
most often is the <bean> element. Therefore, it only seems
right that you get to know the attributes of <bean> in detail.

3

DZone, Inc. | www.dzone.com

Spring Configuration
 tech facts at your fingertips

AOP Namespace Elements

Element Description

<aop:advisor> Declares a Spring AOP advisor.

<aop:after> Declares after advice (e.g., a method to be invoked
after a pointcut).

<aop:after-returning> Declares after-returning advice (e.g., a method to
be invoked after a pointcut successfully returns).

<aop:after-throwing> Declares after-throwing advice (e.g., a method to be
invoked after an exception is thrown from a pointcut).

<aop:around> Declares around advice (e.g., a method whose
functionality wraps a pointcut).

<aop:aspect> Defines an aspect, including one or more pointcuts
and one or more advices.

<aop:aspectj-autoproxy> Enables declaration of aspects using @AspectJ
annotations.

<aop:before> Declares before advice (e.g., a method to be
invoked before a pointcut executes).

<aop:config> The parent element for most elements in the AOP
namespace.

Schema URI
www.springframework.org/schema/aop

Schema XSD
www.springframework.org/schema/aop/spring-aop-2.5.xsd

The aop namespace makes it possible to declare aspects,
pointcuts, and advice in a Spring context. It also provides support
for annotation-based aspects using @AspectJ annotations.
Using aspects, you can define functionality that is applied
(or “woven”) across many points of your application.

THE AOP NAMESPACE

AOP Namespace Diagram

<aop:around>

<aop:pointcut>

<aop:before>

<aop:declare-parents>

<aop:after-throwing>

<aop:after-returning>

<aop:after>

<aop:scoped-proxy>

<aop:aspectj-autoproxy>

<aop:config>
<aop:aspect>

<aop:include>

<aop:advisor><beans>

<bean>

Hot
Tip

Externalize configuration for end users

Not all configuration has to be done in Spring.
You wouldn’t expect the administrators or
end users of your application to dig around in

Spring XML to tweak database or other deployment-specific
details, would you? Instead, externalize configuration using
<context:property-placeholder>:

<context:property-placeholder	
location=”file:////etc/pirate.properties”

The name-value pairs from /etc/pirate.properties can then be
used to fill in placeholder values in the Spring context.
For example:

<bean	id=”pirate”	class=”Pirate”>
		<constructor-arg	value=”${pirate.name}”	/>
</bean>

Schema URI
www.springframework.org/schema/context

Schema XSD
www.springframework.org/schema/context/spring-context-2.5.xsd

The context namespace was added in Spring 2.5 to provide several
application context-specific configurations. It includes support for
annotation-based configuration, JMX, and domain object injection.

THE CONTEXT NAMESPACE

Context Namespace Diagram

<context:mbean-export>

<context:spring-configured>

<context:mbean-server>

<context:property-placeholder>

<context:load-time-weaver>

<context:component-scan>

<context:annotation-config>

<context:include-filter>

<context:exclude-filter>

<beans>

Context Namespace Elements

Element Description

<context:annotation-config> Enables annotation-based configuration in
Spring beans. This element is not needed if the
<context:component-scan> element is in use.

<context:component-scan> Scans packages for beans to automatically register in
the Spring container. Use of this element implies the
same functionality as <context:annotation-config>.

<context:exclude-filter> Used to exclude certain classes from being
automatically registered by component-scan.

<context:include-filter> Used to specify which classes to include when
component-scan automatically registers beans.

<context:load-time-weaver> Registers an AspectJ load-time weaver.

<context:mbean-export> Exports beans as JMX MBeans.

<context:mbean-server> Starts an MBean server with the Spring context.

<context:property-
placeholder>

Enables external configuration via a
properties file.

<context:spring-configured> Enables injection into objects that are not
instantiated by Spring.

Context Namespace Example
The following Spring configuration uses <context:component-
scan> to automatically register certain beans from the
“com.springinaction.service” namespace:

<?xml version=”1.0” encoding=”UTF-8”?>
<beans xmlns=”http://www.springframework.org/schema/
beans”
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xmlns:context=”http://www.springframework.org/schema/
context”
 xsi:schemaLocation=”http://www.springframework.org/
schema/beans
 http://www.springframework.org/schema/beans/
spring-beans-2.5.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/
spring-context-2.5.xsd”>

 <context:component-scan	base-package=”com.springinac-
tion.service”	/>

</beans>

As configured above, <context:component-scan> will scan the
“com.springinaction.service” package and will automatically
register as beans all of the classes it finds that are annotated with
@Component, @Controller, @Repository, @Service, or @Aspect.

4

DZone, Inc. | www.dzone.com

Spring Configuration
 tech facts at your fingertips

Schema URI
www.springframework.org/schema/jee

Schema XSD
www.springframework.org/schema/jee/spring-jee-2.5.xsd

The JEE namespace provides configuration elements for
looking up objects from JNDI as well as wiring references to
EJBs into a Spring context.

JEE Namespace Diagram

THE JEE NAMESPACE

JEE Namespace Elements

Element Description

<jee:jndi-environment> Defines environment settings for JNDI lookups.

<jee:jndi-lookup> Declares a reference to an object to be retrieved
from JNDI.

<jee:local-slsb> Declares a reference to a local stateless session EJB.

<jee:remote-slsb> Declares a reference to a remote stateless session EJB.

<jee:environment>

<jee:remote-slsb>

<jee:jndi-lookup>

<jee:local-slsb><beans>

JEE Namespace Example
The following Spring configuration uses a few of the jee
namespace’s elements to retrieve objects from outside of
Spring and configure them as Spring beans:

<?xml version=”1.0” encoding=”UTF-8”?>
<beans xmlns=”http://www.springframework.org/schema/beans”
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xmlns:jee=”http://www.springframework.org/schema/jee”
 xsi:schemaLocation=”http://www.springframework.org/
schema/beans
 http://www.springframework.org/schema/beans/spring-
beans-2.5.xsd
 http://www.springframework.org/schema/jee
 http://www.springframework.org/schema/jee/spring-
jee-2.5.xsd”>

 <jee:remote-slsb id=”hispaniola”
 jndi-name=”ejb/PirateShip”
 business-interface=”com.pirate.PirateShipEjb”
 resource-ref=”true” />

 <jee:jndi-lookup id=”parrot”
 jndi-name=”pirate/Parrot “
 resource-ref=”false” />

</beans>

The first element, <jee:remote-slsb>, configures a bean named
“Hispaniola” which is actually a reference to an EJB 2 remote
stateless session bean. The EJB’s home interface is found in
JNDI under the name “java:comp/env/ejb/PirateShip”. The
resource-ref attribute indicates that the value in jndi-name
should be prefixed by “java:comp/env/”. The EJB implements
methods defined in the PirateShipEjb business interface.

The other element, <jee:jndi-lookup>, retrieves a reference to
an object from JNDI (it could be an EJB 3 session bean or just a
plain Java object). The object is found in JNDI under the name
“pirate/Parrot”. Because resource-ref is “false”, the jndi-name
is not prefixed with “java:comp/env/”.

AOP Namespace Example
The following Spring configuration creates an aspect using
elements from the aop namespace:

<?xml version=”1.0” encoding=”UTF-8”?>
<beans xmlns=”http://www.springframework.org/schema/beans”
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xmlns:aop=”http://www.springframework.org/schema/aop”
 xsi:schemaLocation=”http://www.springframework.org/
schema/beans
 http://www.springframework.org/schema/beans/spring-
beans-2.5.xsd
 http://www.springframework.org/schema/aop
 http://www.springframework.org/schema/aop/spring-
aop-2.5.xsd”>

 <bean id=”pirateTalker” class=”PirateTalker” />

 <aop:config>
 <aop:pointcut id=”plunderPointcut”
 expression=”execution(* *.plunder(..))” />

 <aop:aspect ref=”pirateTalker”>
 <aop:before pointcut-ref=”plunderPointcut”
 method=”sayAvastMeHearties” />

 <aop:after-returning pointcut-ref=”plunderPointcut”
 method=”sayYarr” />
 </aop:aspect>
 </aop:config>
</beans>

The aspect is made up of one pointcut and two advice defini-
tions. The pointcut is defined as the execution of the plunder()
method on any object. The <aop:before> advice is configured
to call the sayAvastMeHearties() method on the “pirateTalker”
bean when the plunder() method is executed. Likewise, the
sayYarr() method will be invoked upon execution of the plunder()
method on any object.

AOP Namespace Elements, continued

Element Description

<aop:declare-parents> Defines an AOP introduction (effectively a mixin).

<aop:include> Optionally used with aspectj-autoproxy to
specify which @AspectJ-annotated beans to
create proxies for.

<aop:pointcut> Declares a pointcut (e.g., an opportunity for
advice to be applied).

<aop:scoped-proxy> Specifies a proxy for beans declared with
complex scoping such as “request” and “session”.

Hot
Tip

Reduce AOP-related XML by using @AspectJ
annotations

The elements in the “aop” namespace make it
rather easy to turn plain old Java objects into
aspects. But the <aop:aspectj-autoproxy>
element can single-handedly eliminate the
need for almost all other “aop” namespace
XML. By placing <aop:aspectj-autoproxy> in
your Spring configuration, you can move your
pointcut and advice declaration into your Java
code using @AspectJ annotations such as @
Aspect, @Pointcut, @Before, and @After. Refer
to Chapter 4, section 4.3.2 of Spring in Action,
Second Edition for more details.

5

DZone, Inc. | www.dzone.com

Spring Configuration
 tech facts at your fingertips

Schema URI
www.springframework.org/schema/jms

Schema XSD
www.springframework.org/schema/jms/spring-jms-2.5.xsd

The JMS namespace provides elements for configuring
message-driven POJOs, beans that respond to messages that
arrive on a JMS destination (either a topic or a queue).

JMS Namespace Diagram

THE JMS NAMESPACE

JMS Namespace Elements

Element Description

<jms:jca-listener-container> Configures a container for JCA-based JMS
destination listeners.

<jms:listener-container> Configures a container for standard JMS
destination listeners.

<jms:listener> Declares a listener to a JMS destination.
Used to create message-driven POJOs.

<jee:environment>

<jms:jca-listener-container>

<jms:listener-container>

<beans>

JMS Namespace Example
The following Spring configuration sets up a message-driven
POJO that responds to messages that arrive on a queue.
<?xml version=”1.0” encoding=”UTF-8”?>
<beans xmlns=”http://www.springframework.org/schema/beans”
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xmlns:jms=”http://www.springframework.org/schema/jms”
 xsi:schemaLocation=”http://www.springframework.org/schema/
beans
 http://www.springframework.org/schema/beans/spring-
beans-2.5.xsd
 http://www.springframework.org/schema/jms
 http://www.springframework.org/schema/jms/spring-jms-
2.5.xsd”>
…
 <bean id=”connectionFactory”
 class=”org.apache.activemq.ActiveMQConnectionFactory”>
 <property name=”brokerURL” value=”tcp://localhost:61616”
/>
 </bean>

 <bean id=”messageHandlerService” class=”com.pirate.Message-
HandlerImpl” />

 <jms:listener-container connection-
factory=”connectionFactory”>
 <jms:listener
 destination=”queue.bottle”
 ref=”messageHandlerService”
 method=”readMessageFromBottle” />
 </jms:listener-container>
</beans>

The <jms:listener-container> configures a container for han-
dling messages arriving on topics or queues coming in on the
JMS connection factory. Within this element you may declare
one or more <jms:listener> elements to respond to specific
topics. In this case, the single <jms:listener> reacts to messages
arriving in the “queue.bottle” topic, invoking the readMessage-
FromBottle() method of the “messageHandlerService” bean
when they arrive.

Schema URI
www.springframework.org/schema/lang

Schema XSD
www.springframework.org/schema/lang/spring-lang-2.5.xsd

The “lang” namespace enables you to wire scripted objects
into Spring. These objects can be written in either Groovy,
JRuby, or BeanShell.

Lang Namespace Diagram

THE LANG NAMESPACE

Lang Namespace Elements

Element Description

<lang:bsh> Configures a BeanShell-defined bean.

<lang:defaults> Configures defaults to be applied to all scripted beans.

<lang:groovy> Declares a bean implemented as a Groovy script.

<lang:inline-script> Embeds a scripted bean’s code directly in Spring XML.

<lang:jruby> Declares a bean implemented as a JRuby script.

<lang:property> Used to inject values or references into scripted beans.

<lang:inline-script>

<lang:property>
<lang:groovy>

<lang:jruby>

<lang:defaults>

<lang:bsh>
<beans>

Lang Namespace Example
In this Spring context, a Pirate bean is injected with scripted
beans defined with <lang:groovy> and <lang:jruby>:
<?xml version=”1.0” encoding=”UTF-8”?>
<beans xmlns=”http://www.springframework.org/schema/beans”
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xmlns:lang=”http://www.springframework.org/schema/lang”
 xsi:schemaLocation=”http://www.springframework.org/
schema/beans
 http://www.springframework.org/schema/beans/spring-
beans-2.5.xsd
 http://www.springframework.org/schema/lang
 http://www.springframework.org/schema/lang/spring-
lang-2.5.xsd”>

 <bean id=”jackSparrow” class=”Pirate”>
 <constructor-arg value=”Jack Sparrow” />
 <property name=”compass” ref=”compass” />
 <property name=”hat” ref=”hat” />
 </bean>

 <lang:groovy id=”compass”
 script-source=”classpath:Compass.groovy”
 refresh-check-delay=”10000” />

 <lang:jruby id=”hat”
 script-source=”classpath:PirateHat.rb”
 script-interface=”PirateHat”
 refresh-check-delay=”60000” />
</beans>

The <lang:groovy> element creates a bean that is implemented
as a Groovy script called Compass.groovy and found in the root
of the classpath. The refresh-check-delay attribute indicates that
the script should be checked every 10 seconds for updates and
reloaded if the script changes.

The <lang:jruby> element creates a bean that is implemented
as a Ruby (JRuby, specifically) script called PirateHat.rb.
It implements a PirateHat interface and is checked for updates
once per minute.

6

DZone, Inc. | www.dzone.com

Spring Configuration
 tech facts at your fingertips

Schema URI
www.springframework.org/schema/tx

Schema XSD
www.springframework.org/schema/tx/spring-tx-2.5.xsd

The “tx” namespace provides support for declarative transac-
tions across beans declared in Spring.

TX Namespace Diagram

THE TX NAMESPACE

TX Namespace Elements

<tx:attributes> <tx:method>

<tx:annotation-driven>

<beans>

<tx:advice>

Element Description

<tx:advice> Declares transactional advice.

<tx:annotation-driven> Configures Spring to use the @Transactional annotation for
transactional rules.

<tx:attributes> Declares transactional rules for one or more methods.

<tx:jta-transaction-
manager>

Configures a JTA transaction manager, automatically
detecting WebLogic, WebSphere, or OC4J.

<tx:method> Describes transactional rules for a given method signature.

TX Namespace Example
The following Spring configuration uses elements in the tx
namespace to configure transactional rules and boundaries:
<?xml version=”1.0” encoding=”UTF-8”?>
<beans xmlns=”http://www.springframework.org/schema/beans”
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xmlns:tx=”http://www.springframework.org/schema/tx”
 xmlns:aop=”http://www.springframework.org/schema/aop”
 xsi:schemaLocation=”http://www.springframework.org/
schema/beans
 http://www.springframework.org/schema/beans/spring-
beans-2.5.xsd
 http://www.springframework.org/schema/aop
 http://www.springframework.org/schema/aop/spring-
aop-2.5.xsd
 http://www.springframework.org/schema/tx
 http://www.springframework.org/schema/tx/spring-tx-
2.5.xsd”>

 <tx:jta-transaction-manager />

 <tx:advice id=”txAdvice”>
 <tx:attributes>
 <tx:method name=”plunder*” propagation=”REQUIRED” />
 <tx:method name=”*” propagation=”SUPPORTS” />
 </tx:attributes>
 </tx:advice>

 <aop:config>
 <aop:advisor
 pointcut=”execution(* ..Pirate.*(..))”
 advice-ref=”txAdvice” />
 </aop:config>
</beans>

The <tx:jta-transaction-manager> was added in Spring 2.5 to
automatically detect the JTA transaction manager provided by
either WebLogic, WebSphere, or OC4J. It exposes the transac-
tion manager as a bean in the Spring context with the name
“transactionManager”.

Next, the <tx:advice> sets up AOP advice that declares the
transactional rules. In this case, any methods with names that
start with “plunder” require transactions. All other methods
support transactions, but do not require them. Finally, this
example borrows from the aop namespace to configure an AOP
advisor that uses the transactional advice. The pointcut here is
for all methods in the Pirate class.

Hot
Tip

Configure transactional rules in Java

If you’re looking for ways to cut back on the
amount of XML in a Spring configuration, consider
using the <tx:annotation-driven> element. Once
this element is in place, you can start annotating
your beans and their methods with @Transac-
tional to define transactional boundaries and
rules. Have a look at chapter 6, section 6.4.4 of
Spring in Action, Second Edition to learn more.

Schema URI
www.springframework.org/schema/util

Schema XSD
www.springframework.org/schema/util/spring-util-2.5.xsd

The utility namespace provides elements that make it possible
to wire collections and other non-bean objects in Spring as if
they were any other bean.

Util Namespace Diagram

Util Namespace Elements

Element Description

<util:constant> References a static field on a type and exposes its value as a bean.

<util:list> Declares a list of values or references as a bean.

<util:map> Declares a map as a bean.

<util:properties> Loads a java.util.Properties from a properties file and
exposes it as a bean.

<util:set> Declares a set as a bean.

<util:property-
path>

References a bean property (or a nested property) and exposes
that property as a bean itself.

<util:map>

<util:properties>

<util:set>

<util:property-path>

<util:constant>

<util:list>

<beans>

THE UTIL NAMESPACE

Util Namespace Example
The following Spring configuration uses several elements from
the “util” namespace:

<?xml version=”1.0” encoding=”UTF-8”?>
<beans xmlns=”http://www.springframework.org/schema/beans”
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xmlns:util=”http://www.springframework.org/schema/util”
 xsi:schemaLocation=”http://www.springframework.org/
schema/beans
 http://www.springframework.org/schema/beans/spring-
beans-2.5.xsd
 http://www.springframework.org/schema/util
 http://www.springframework.org/schema/util/spring-
util-2.5.xsd”>

7

DZone, Inc. | www.dzone.com

Spring Configuration
 tech facts at your fingertips

Context Configuration Annotations
These annotations are used by Spring to guide creation and
injection of beans.

Historically, Spring configuration has primarily involved XML.
But that is changing as Spring gradually embraces annotation-
driven configuration. As of Spring 2.5, there are 36 annotations
provided by Spring, not to mention annotations provided by
third party libraries and various Spring add-ons.

Annotation Use Description

@Autowired Constructor,
Field, Method

Declares a constructor, field, setter method,
or configuration method to be autowired by
type. Items annotated with @Autowired do
not have to be public.

@Configurable Type Used with <context:spring-configured> to
declare types whose properties should be
injected, even if they are not instantiated by
Spring. Typically used to inject the properties
of domain objects.

@Order Type, Method,
Field

Defines ordering, as an alternative to
implementing the org.springframework.core.
Ordered interface.

@Qualifier Field,
Parameter, Type,
Annotation Type

Guides autowiring to be performed by means
other than by type.

@Required Method (setters) Specifies that a particular property must be
injected or else the configuration will fail.

@Scope Type Specifies the scope of a bean, either
singleton, prototype, request, session, or
some custom scope.

SPRING ANNOTATIONS

Stereotyping Annotations
These annotations are used to stereotype classes with regard to
the application tier that they belong to. Classes that are annotated
with one of these annotations will automatically be registered in
the Spring application context if <context: component-scan> is
in the Spring XML configuration.

In addition, if a PersistenceExceptionTranslationPostProcessor
is configured in Spring, any bean annotated with @Repository will
have SQLExceptions thrown from its methods translated into
one of Spring’s unchecked DataAccessExceptions.

Annotation Use Description

@Component Type Generic stereotype annotation for any Spring-managed
component.

@Controller Type Stereotypes a component as a Spring MVC controller.

@Repository Type Stereotypes a component as a repository. Also
indicates that SQLExceptions thrown from the
component’s methods should be translated into
Spring DataAccessExceptions.

@Service Type Stereotypes a component as a service.

Spring MVC Annotations
These annotations were introduced in Spring 2.5 to make it
easier to create Spring MVC applications with minimal XML
configuration and without extending one of the many imple-
mentations of the Controller interface.

Annotation Use Description

@Controller Type Stereotypes a component as a Spring MVC
controller.

@InitBinder Method Annotates a method that customizes data
binding.

@ModelAttribute Parameter,
Method

When applied to a method, used to preload
the model with the value returned from
the method. When applied to a parameter,
binds a model attribute to the parameter.

@RequestMapping Method,
Type

Maps a URL pattern and/or HTTP method to
a method or controller type.

@RequestParam Parameter Binds a request parameter to a method
parameter.

@SessionAttributes Type Specifies that a model attribute should be
stored in the session.

Transaction Annotations
The @Transactional annotation is used along with the
<tx:annotation-driven> element to declare transactional
boundaries and rules as class and method metadata in Java.

Annotation Use Description

@Transactional Method,
Type

Declares transactional boundaries and rules
on a bean and/or its methods.

THE UTIL NAMESPACE, continued

Util Namespace Example, continued

 <util:list id=”piratePhrases”>
 <value>Yo ho ho</value>
 <value>Yarr</value>
 <value>Avast me hearties!</value>
 <value>Blow me down</value>
 </util:list>

 <util:constant id=”pirateCode”
 static-field=”Pirate.PIRATE_CODE” />

 <util:property-path id=”doubloonCount”
 path=”pirate.treasure.doubloonCount” />

</beans>

The <util:list> element is used here to create a list of Strings
containing various phrases uttered by pirates. The <util:constant>
element creates a reference to the constant (public static field)
named PIRATE_CODE of the Pirate class. Finally, the <util:property-
path> digs deep into the “pirate” bean, retrieving the value of
the doubloonCount property of the treasure property of the bean
named “pirate”. In all three cases, the resulting values are exposed
as beans in the Spring context, suitable for injection into other beans.

JMX Annotations
These annotations, used with the <context:mbean-export>
element, declare bean methods and properties as MBean
operations and attributes.

Annotation Use Description

@ManagedAttribute Method Used on a setter or getter method to
indicate that the bean’s property should be
exposed as an MBean attribute.

@ManagedNotification Type Indicates a JMX notification emitted by a bean.

@ManagedNotifications Type Indicates the JMX notifications emitted by
a bean.

@ManagedOperation Specifies that a method should be exposed
as an MBean operation.

@ManagedOperation
Parameter

Used to provide a description for an
operation parameter.

@ManagedOperation
Parameters

Provides descriptions for one or more
operation parameters.

@ManagedResource Type Specifies that all instances of a class should
be exposed as MBeans.

Craig Walls
Craig Walls is a Texas-based software developer with more than 13 years’ experi-
ence working in the telecommunication, financial, retail, educational, and software
industries. He’s a zealous promoter of the Spring Framework, speaking frequently at
local user groups and conferences and writing about Spring on his blog. When he’s
not slinging code, Craig spends as much time as he can with his wife, two daughters,
six birds, three dogs, and an ever-fluctuating number of tropical fish.

Publications
n	 Spring in Action, 2nd Edition, 2007
n	 XDoclet in Action, 2003

Blog
n	 http://www.springinaction.com

Projects
n	 Committer to XDoclet project;
 Originator of Portlet and Spring modules for XDoclet

ABOUT THE AUTHOR

8

RECOMMENDED BOOK

BUY NOW
books.dzone.com/books/spring-in-action

Spring Configuration

Spring in Action, 2nd Edition
is a practical and compre-
hensive guide to the Spring
Framework, the framework
that forever changed
enterprise Java development.
What’s more, it’s also the first
book to cover the new features
and capabilities in Spring 2.

 tech facts at your fingertips

DZone, Inc.
1251 NW Maynard
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome

refcardz@dzone.com

Sponsorship Opportunities

sales@dzone.com

Copyright © 2008 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
mechanical, photocopying, or otherwise, without prior written permission of the publisher.

Version 1.0

$7
.9

5

ISBN-13: 978-1-934238-05-9
ISBN-10: 1-934238-05-8

9 781934 238059

5 0 7 9 5

SPRING ANNOTATIONS, continued

Testing Annotations
These annotations are useful for creating unit tests in the JUnit 4 style
that depend on Spring beans and/or require a transactional context.

Annotation Use Description

@AfterTransaction Method Used to identify a method to be invoked
after a transaction has completed.

@BeforeTransaction Method Used to identify a method to be invoked
before a transaction starts.

@ContextConfiguration Type Configures a Spring application context
for a test.

@DirtiesContext Method Indicates that a method dirties the Spring
container and thus it must be rebuilt after the
test completes.

@ExpectedException Method Indicates that the test method is expected to
throw a specific exception. The test will fail if
the exception is not thrown.

Annotation Use Description

@IfProfileValue Type,
Method

Indicates that the test class or method is
enabled for a specific profile configuration.

@NotTransactional Method Indicates that a test method must not execute
in a transactional context.

@ProfileValueSource
Configuration

Type Identifies an implementation of a profile value
source. The absence of this annotation will cause
profile values to be loaded from system properties.

@Repeat Method Indicates that the test method must be
repeated a specific number of times.

@Rollback Method Specifies whether or not the transaction for the
annotated method should be rolled back or not.

@TestExecution
Listeners

Type Identifies zero or more test execution listeners
for a test class.

@Timed Method Specifies a time limit for the test method. If the
test does not complete before the time has
expired, the test will fail.

@Transaction
Configuration

Type Configures test classes for transactions, specifying
the transaction manager and/or the default
rollback rule for all test methods in a test class.

Get More FREE Refcardz. Visit refcardz.com now!
Upcoming Refcardz:

Core Seam

Core CSS: Part III

Hibernate Search

Equinox

EMF

XML

JSP Expression Language

ALM Best Practices

HTML and XHTML

Available:
Essential Ruby
Essential MySQL
JUnit and EasyMock
Getting Started with MyEclipse

Spring Annotations

Core Java

Core CSS: Part II

PHP

Getting Started with JPA

JavaServer Faces

Core CSS: Part I

Struts2

Core .NET

Very First Steps in Flex

C#

Groovy

NetBeans IDE 6.1 Java Editor

RSS and Atom

GlassFish Application Server
Silverlight 2

Visit refcardz.com for a complete listing of available Refcardz.
Design Patterns

Published June 2008

FREE

DZone communities deliver over 4 million pages each month to

more than 1.7 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheatsheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

