

DZone, Inc. | www.dzone.com

By Masoud Kalali

ABOUT GLASSFISH

G
la

ss
F

is
h

 A
p

p
lic

at
io

n
 S

e
rv

e
r

3
.0

 w
w

w
.d

zo
n

e.
co

m

G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

Getting Started with
GlassFish Application Server v3

GlassFish is a Java EE application server hosted at
http://glassfish.dev.java.net and is sponsored mainly by Sun
Microsystems. Based on the Java EE reference implementation,
GlassFish is the first application server to support new
specifications and standards. It is distributed under two open
source licenses - GPL v2 with the Classpath exception and
CDDL.

What Makes GlassFish Different
Several unique features differentiate GlassFish v3 from other
application servers: it’s the first to support Java EE 6 and
Web Profile; modularity based on OSGi; session retention
on application redeploy; support for the latest Web services
specification and proven interoperability with Microsoft WCF;
easy-to-use administration console and command line; low-
overhead, fine grained monitoring, in addition to already
available monitoring facilities in its administration channels;
and runs dynamic languages and frameworks like RoR using
native containers. For now, those requiring high availability
clustering and centralized administration with Java EE 5
applications should consider GlassFish v2. These features are
in the GlassFish v3 roadmap.

Support for GlassFish is available in a community driven mode
(free) and commercial support provided by Sun Microsystems.
It’s worth noting that to move from community driven support
to commercial support there is no need to re-install. Install
the Sun Branding and license from the Update Center, enter
a commercial relationship with Sun Microsystems, and have
best of the breed application server along with support from a
leading Java EE vendor.

GlassFish v3
GlassFish v3 is the first application server based on OSGi with
full support of Java EE 6 umbrella specification. OSGi and a
highly modular architecture turn GlassFish v3 into the most
flexible and extensible application server available on the
market. It offers many GlassFish v2 features, and many new
features and enhancements introduced in different layers -
from application server security and stability to developer
productivity improvements. Some additional new features
include:

 • Embeddable; dynamically extensible
 • IPS as main packaging, distribution and updating system
 • Uses OpenInstaller for installation; optional zip installer
 • RESTful monitoring interface

Web and Enterprise Profiles
GlassFish v3 fully supports Java EE 6 and also provides both
Web Profile and Java EE distributions. These distributions

CONTENTS INCLUDE:
n	 About GlassFish
n	 Downloading and Installing
n	 GlassFish Administration
n	 Daily Administration Tasks
n	 Security
n	 Monitoring and more...

are different in terms of provided services and footprint. The
beauty of modularity is the option to install the Java EE or
Web Profile distributions and simply use the update center
to download/install/uninstall the desired modules. The Web
Profile distribution does not provide enterprise integration
services such as JCA and JMS.

DOWNLOADING AND INSTALLING

To download GlassFish visit https://glassfish.dev.java.net/
public/downloadsindex.html and selecting the appropriate
operating system. JDK 6 (version 1.6.0_13) or a newer version
is required for installation. Supported operating systems on
different architectures
include: Solaris,
OpenSolaris, Linux,
AIX, and Windows.
Installing GlassFish is
as easy as following
the automatic
installer’s steps.
Alternatively, GlassFish
v3 can be installed
using a zip installer;
just download, unzip,
and go. For the
remainder of this
Refcard, assume
GlassFish is installed in
gf_home.

GlassFish Domains
GlassFish, like other application servers, uses the concept of
domains: entities which define the scope of administration.

Figure 1: GlassFish installation directory structure

#12 Brought to you by

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com
http://www.sun.com/software/products/glassfish_portfolio/resources.jsp?cid=928229
http://www.sun.com/software/products/glassfish_portfolio/resources.jsp?cid=928229
https://glassfish.dev.java.net/public/downloadsindex.html
https://glassfish.dev.java.net/public/downloadsindex.html

DZone, Inc. | www.dzone.com

2
Getting Started with GlassFish Application Server v3

All directories in Figure 1 are numbered to ease locating them
in the table and in Figure 2 (page3).

Table 1: Directory structure description

Dir Description

1 Contains links to asadmin and update center scripts. Directory no. 13 contains Java EE
related scripts in addition to what is available in this directory.

2 GlassFish configuration files.

3 This is where new OSGi modules are placed to allow the application server platform to
pick them up.

4 OSGi platform used by GlassFish.

5 OpenInstaller and un-installation related scripts.

6 The default directory which GlassFish domains are created in. Domain related CLI
commands look for target domain inside this directory

7 Domain start and stop scripts.

8 Default document root for serving http://IP:PORT/ Another set of files may be included
here if required.

9 This is where shared libraries such as JDBC drivers, Apache Commons, etc. are placed.

10 Stores all logs, including server logs, access logs, and transaction logs.

11 Includes domain related configuration files like domain.xml, default-web.xml, key
stores, etc.

12 Deployed applications, ready to be deployed applications and container generated
files for deployed applications are stored in these directories.

13 Update center scripts and PKG (5) image packaging system are located inside these
directories.

14 Open MQ which is the default MQ implementation of GlassFish is located here.

GLASSFISH ADMINISTRATION

GlassFish provides multiple administration channels for
administration flexibility.

Web Based Administration Console
To access the Web Console, point a browser to http://IP_
ADDRESS:PORT/. By default the port number is 4848 and the
listener listens on all available network interfaces of the server
machine. The default administration credentials are admin with
no password, although one can be provided during installation.
GlassFish uses a separate Virtual Server for Web Console for
independent configuration.

Command Line Administration Console
This is the preferred approach for experienced administrators
who choose to use CLI for administration purposes. Some tasks
like creating/removing/backing up and restoring a domain are
only possible using the CLI. The CLI also enables automation
of routine tasks through shell scripts, as well as integration with
provisioning tools. The administration CLI is accessible through
the asadmin utility located at gf_home/bin directory. It is
either a batch file named asadmin.bat for Windows or a shell
script named asadmin for Linux and UNIX.
The asadmin script has two modes. The first, invoking schema,
is more suitable for creating custom scripts or for executing
only one command:

./asadmin [program options] command_name *[[--param] values]

The asadmin options are shown in Table 2:

Table 2: The asadmin program options

--host The application server administration listener IP address or host name.

--port The administration listener port number.

--user A username in admin realm. admin by default.

--passwordfile The password file containing administrator’s password.

--terse Add new type of container to host; for example another dynamic
language applications.

--interactive If specified, CLI utility will ask for required parameter in an interactive way.

--secure If specified, CLI utility will use HTTPs to communicate with administration
application to prevent possible security breach.

Not all of these parameters are required for executing a
command and only important items are detailed in this
Refcard.

The second mode of using asadmin script is entering the shell
and running commands inside the shell. This is a bit faster than
the first method which needs to run the asadmin utility each
time a command is invoked.

To enter the shell and invoke commands, execute the asadmin
script without any trailing command or parameter. The
following example shows the asadmin shell and how to execute
a command inside it.

asadmin>help create-domain

The invoking schema is the same for both methods but
there are some usage differences. The CLI can execute most
commands against a remote server by providing the address
and port number of the administration listener. If not, it will
execute the command against the default local server which is
127.0.0.1:4848.

Hot
Tip

You can get a list of all commands along with a brief
explanation about them by invoking help command.
To save the output for later review use the following
command: ./asadmin help > path_to_file.txt

JMX/AMX Administration Channel
This channel is widely preferred by developers who need to
interact with GlassFish administration and management layer
using the Java language. Administration tasks can also be
executed by writing Java code using JMX. The GlassFish JMX
listener listens on port 8686 by default. The username and
password are the same as those for the CLI and Web Console.
Any JMX console can be used, like the JDK’s JConsole or
MC4J, to examine the GlassFish JMX MBeans and see what
functions are availble.

RESTful Administration Channel
This interface exposes complete GlassFish management
and monitoring functionalities through a RESTful interface,
where output can be formatted using HTML, JSON or XML.
The root URL for RESTful administration is http://ADMIN_
ADDRESS:ADMIN_PORT/management/domain/, which can
accept requests from a browser, tools like curl or wget, or even
Java applications using JAX-RS client libraries. Use the POST
method to update the configuration, and use the GET method
to view the configuration. For example to view the monitoring
levels, send the following GET request from any web browser:

http://localhost:4848/management/domain/configs/config/server-config/
monitoring-service/module-monitoring-levels

Each GlassFish v3 installation has its own domain, although
support for multiple domains – an existing GlassFish v2 feature
- is in the GlassFish v3 roadmap.

GlassFish Directory Structure
The directory structure of GlassFish v3 has changed to cope
with new architecture and features. Figure 1 (page1) shows
the new directory layout and Table 1 provides descriptions of
important directories.

http://www.dzone.com
http://www.refcardz.com
http://www.sun.com/software/products/glassfish_portfolio/resources.jsp?cid=928229

DZone, Inc. | www.dzone.com

3
Getting Started with GlassFish Application Server v3

DAILY ADMINISTRATION TASKS

Administration is performed on a day-to-day basis. Some tasks
may be easier using the CLI, others with the Web Console.

Common Administration Tasks in CLI
Table 3 shows the list of common CLI commands. Some are
exclusive to CLI, and others are easier to perform this way.
Local commands are marked using an asterisk *.

Table 3: Common CLI Commands

Command Description

list-commands List local and remote commands. Remote commands are listed if the
remote server is up and running.

create-domain* Create a new domain.

start-domain* Start the given domain.

stop-domain* Stop the given domain.

deploy Deploy an application.

undeploy Undeploy an application.

backup-domain* Create a backup of domain configurations. It does not include deployed
applications.

restore-domain* Restore the given backup.

list-domains* List all domains in the default or the given domains directory.

verify-domain-xml* Command to verify the the domain.xml file. Useful when edited manually.

More CLI commands are covered in the Security section
of this Refcard. There are tens of other commands for
administrating Java EE managed resources and application
server functionalities. The complete list of commands can be
viewed by invoking the help command. An example of how
to execute the create-domain command to create a domain
named domain2 is as follows:

create-domain --adminuser admin --adminport 4848 --instanceport 8080
--domainproperties domain.jmxPort=8686:http.ssl.port=8181 domain2

Administration Tasks in Web Console
The Web Console is suitable for tasks
where there are several parameters
and attributes involved, or where
the CLI is unavailable. It is very
easy to create JDBC connection
pools, JMS destinations, configure
listeners and thread pools, some
security related configuration,
containers configuration, cluster-wide
configuration and management, and
so on. The Web Console has a very
organized structure to make it easy
to find and locate tasks. Figure 2
shows a part of the tree based menu
structure of Web administration
console.

Administration Tasks and JMX Console
GlassFish v2 can be monitored and managed using JMX-

and AMX-enabled tools such
as jconsole, or by developing
simple custom applications
to take care of repetitive daily
tasks or automatic response to
some events. Figure 3 shows
the GlassFish v3 MBeans tree in
JConsole.

The AMX Beans form a dynamic
tree which represents the
entire application server and any
manageable object inside it. The
AMX is a dynamic proxy layer on top of JMX MBeans to ease
interaction with the GlassFish management core.

Figure 3: JMX console showing
GlassFish MBeans tree

Figure 2: Administration console
Configuration node.

To create a new HTTP listener we can POST the following
command to the server.

curl -X POST -d “web-container=ON” -H “Accept: application/json”
http://localhost:4848/management/domain/configs/config/server-config/
monitoring-service/module-monitoring-levels

SECURITY

It is wise to spend time securing the application server instead
of gazing at the disaster a security leak caused.

Passwords Security
The administration and master passwords should be changed
frequently. Change them using provided CLI commands.
Table 4 lists the required tasks for overall password security
along with a description and command used to complete that
security task.

Table 4: Security tasks and related commands

Task Description and Command

Change administrator
password

Change the administrator password from time to time using change-
admin-password command.

Change master
password which
protects the key
store files

Change the default master password from “changeit” to something
else using change-master-password command.

Alias of the passwords
used for connection
pools, JMS hosts and
so on

Passwords required for connection pools are stored in plain text; to
avoid this, use password aliasing. For example:
create-password-alias Alias_Name
and use the alias name in the following format instead of the
password:
${ALIAS=sample-alias}
A complete set of commands for creating, updating, listing and
deleting aliases is provided.

Do not enter
passwords

The CLI is typically used to administer multiple servers; to prevent
entering clear-text the passwords on the command line, use a
password file containing
AS_ADMIN_PASSWORD=${ALIAS=Alias_name}
AS_ADMIN_MASTERPASSWORD=${ALIAS=Al_name}
and pass it to commands invoked using --passwordfile parameter.
And yes, use password aliases here too.

Do not enter
passwords

The login command is helpful in interactive mode. After successfully
logging into a server, asadmin will store the password and re-use it
when a command is invoked on that server. The format is:
asadmin login --host HOST_ADDRESS --port ADMIN_PORT
The command will enter the interactive mode and ask for passwords.

Listeners Security (Network Security)
Listeners are the interaction channels of the application server
with the outside world. Both the administration listener and
the ORB listener should be protected from un-authorized
access. Sometimes securing listeners means binding them
to a specific network interface of the server machine, and
sometimes it means mutual authentication protection using
digital certificates. Table 5 lists the listeners, security measures
and how to access them through Web Console.

Table 5: Listeners and Listeners Security Measures

Listener How to access Security Measures

HTTP Listeners Tree>Configuration>Network
Config> Network Listeners

Listeners should listen on specific
interfaces, not on 0.0.0.0 (all
available interfaces).

http://www.dzone.com
http://www.refcardz.com
http://www.sun.com/software/products/glassfish_portfolio/resources.jsp?cid=928229

DZone, Inc. | www.dzone.com

4
Getting Started with GlassFish Application Server v3

Hot
Tip

New users with administration permission can be
added to admin-realm. To do this, navigate to Tree>
Configuration>Security>Realms>admin-realm and
then click on the Manage Users button. Add as many
users as needed.

Security Audition
Auditing is useful for checking logged events and conducting
analysis to locate potential problems. Security auditing makes
it possible to review events like failed logins. The default
auditing module provided with GlassFish logs all security
events in the server.log file. To enable auditing hit Tree>Con
figuration>Security>Audit Modules>default and then enable
the module by changing the auditOn property’s value to true.
Implementing new auditing modules is as simple as extending
the com.sun.appserv.security.AuditModule class, putting
the implementation in the domain classpath and adding it
as a new audit module in Tree>Configuration>Security>Au
dit Modules>. After adding the auditing module, it can be
enabled by changing the appropriate attribute defined, if any.

HTTP Access Log
Storing HTTP access logs can help with reviewing HTTP access
events. Access logs can be enabled in two ways: HTTP Service
enables it for all HTTP listeners (Tree>Configuration>HTTP
Service) and Virtual Server level enables HTTP Access Log for
a particular Virtual Server (Tree>Configuration>Virtual Server).
Access logs are stored in a directory named access inside the
logs directory of each domain.

Hot
Tip

A virtual server, sometimes called a virtual host,
is an object that allows the same physical server
to host multiple Internet domain names. Virtual
Servers can use dedicated HTTP listeners and
configurations for authentication realms and default
web applications. You can create Virtual Server by
navigating to Tree>Configuration>Virtual Server.

MONITORING

Monitoring is an essential part of enterprise applications,
either in application server services layers or in enterprise
applications themselves. GlassFish provides advanced and
extensible monitoring capabilities for both applications
deployed in GlassFish and for GlassFish services themselves.
The monitoring information is accessible though different
channels, including all three administration channels in
addition to the newly included RESTful interface.

Web Console and Monitoring
To monitor a GlassFish services like JDBC connection pools,
HTTP services and so on, enable monitoring for the services

HTTP Listeners Tree>Configuration>Network
Config> Protocols

Check off the Security check
box if HTTPS is required for this
listener.

ORB Listeners Tree>Configuration>ORB>IIOP
Listeners

Make sure to leave required
listeners active.
Be sure to change the network
address to the appropriate one.
Use secure listeners if possible.

JMX Listeners Tree>Configuration>Admin
service

Enable security (SSL) if
required. Use only required
network addresses. Change
authentication realm if required.

of interest. To enable monitoring for a service navigate to
Tree>Configuration>Monitoring and change the monitoring
level of the services and containers of interest. Three levels of
monitoring are available:

 1. OFF: No monitoring information is gathered.
 2. LOW: Cumulative statistics are gathered.
 3. HIGH: Detailed statistics are gathered.

When enabled, monitoring affects the overall performance of
the application server, specifically the observed services. It is
better not to use HIGH in a production environment.
After changing the monitoring level, GlassFish starts gathering
monitoring information which can be viewed in the Web
Console or other channels. To view the monitoring information,
navigate to Tree>Application Server and select the Monitor
tab. This page shows all gathered statistics for any service with
statistics collection enabled.

For example, the JDBC Connection Pools performance metrics,
with counts the maximum number of connections, maximum
available connections, and more, and various timing factors like
maximum wait time, and so on.

CLI and Monitoring
For CLI advocates, the CLI provides thorough monitoring
capabilities. The CLI offers fine-grained control on which
performance factors to monitor. Table 6 lists all CLI commands
related to monitoring.

Table 6: CLI monitoring commands

Command Description

get Getting the value for any configuration attribute in the system. View the
monitoring level of a service or multiple services using this command.

set Setting the value for any configuration attribute in the system. Set the
monitoring level of a service or multiple services using this command.

monitor Monitoring one or multiple attributes of GlassFish services like transaction,
JMS, JDBC connection pools and so on. The command is very flexible about
information representation.

Configuration attributes can be accessed using a concept
called Dotted Names. Dotted names, as the name may imply, is
a hierarchy of attributes representing all servers, services, and
managed objects of the GlassFish Application Server in a tree
which starts with father nodes and comes down to attribute
leafs. Each level is separated from the adjacent level by a dot.
The following dotted names can further clarify the concept.

resources.jdbc-connection-pool.DerbyPool.allow-non-component-callers
servers.server.server.resource-ref.jdbc/__TimerPool.enabled
configs.config.server-config.ejb-container.max-pool-size

Now, let’s use these three commands to do some monitoring.

asadmin get server.monitoring-service.module-monitoring-levels.*

Checks the monitoring levels of all services using the wild-card
character.

asadmin set server.monitoring-service.module-monitoring-levels.jdbc-
connection-pool=HIGH

This last command set the JDBC connection pools monitoring
level to HIGH.

asadmin monitor --type jdbcpool --filter sample-mysql-pool --filename
/opt/out2.csv --interval 5 server

This monitor command will gather sampling data each 5
seconds for a JDBC connection pool named sample-mysql-
pool which is managed by a server instance named server. The
command will store the sampling data to a CSV file located at
/opt/out2.csv.

http://www.dzone.com
http://www.refcardz.com
http://www.sun.com/software/products/glassfish_portfolio/resources.jsp?cid=928229

DZone, Inc. | www.dzone.com

5
Getting Started with GlassFish Application Server v3

JMX and Monitoring
JMX enables application server to be monitored directly
from Java source code, and can respond to sampling data
in an appropriate way. An example would be a swing-based
monitoring console or integration of GlassFish monitoring
into a bigger monitoring console to monitor the entire
infrastructure from a single console. Another common example
is monitoring and changing application server configuration in
a headless way.

RESTful Monitoring Interface
One of the unique features of GlassFish v3 is the RESTful
monitoring interface that allows virtually any programming
language to access GlassFish monitoring information using a
RESTful interface.

The RESTful interface represents a hierarchy of GlassFish
services, server environment, JVM, deployed applications and
managed resources like JDBC connection pools.

To access monitoring information using the RESTful interface,
send a GET request to http://ADMIN_ADDRESS:ADMIN_
PORT/monitoring/domain/ which will return a list of all child
objects for this node
(monitoring must be
enabled). Going down
the hierarchy to get
monitoring information
along with a list of
children for any node
in the hierarchy. For
example sending a
get request to http://
localhost:4848/
monitoring/domain/
server/jvm/memory
(with JVM monitoring
enabled) will result in
an output similar to Figure 4.

The RESTful interface can format the output to JSON or XML
when the appropriate trailing parameters are included. For
JSON format include application/json in the URL and for XML
include application/xml in the URL trail. For example:

curl http://localhost:4848/monitoring/domain/server/jvm/
memory -H “application/xml”

The RESTful monitoring interface enables developing
monitoring solutions using scripting languages like Perl,
Python and so on.

For GlassFish Enterprise Server v3 commercial customers, Sun
Microsystems provides a monitoring scripting client, which
enable ad-hoc querying using fine-grained probes, similar to
DTrace on Solaris.

PERFORMANCE TUNING

Enterprise application performance is a big concern, and
performance tuning is a hurdle which all enterprise application
developers are involved with. While Java EE performance
tuning is out of the scope of this refcard, some GlassFish
performance tuning information is provided. Additional tuning
information is a available through performance whitepapers
available through Sun (http://www.sun.com/software/products/

Figure 4: JVM memory monitoring information

glassfish_portfolio/resources.jsp). In addition, GlassFish
Enterprise Server subscriptions include Enterprise Manager,
which offers tools to “auto-tune” the configuration based on a
simple set of questions about the deployment environment.

Although the JVM uses sophisticated garbage collection
algorithms, performance and memory can be tuned by
changing memory management and garbage collection
parameters, depending on the deployment environment.

Tools like VisualVM give a good sense of what is going on the
application server. VisualVM is now included in JDK and is
accessible using the java_home/bin/visualvm. Installing visual
GC plug-in for Visual VM can help with memory tuning. More
information about Visual VM is available at
http://visualvm.dev.java.net or JDK documentation. To
change the application server’s JVM option navigate to Tree>
Configuration>JVM Settings and select the JVM Options tab.

Web Container Performance Tuning
Tuning the Web container will lead to the application server
processing Web requests in a more efficient way and will result
in higher throughput. Some determining factors for Web
container performance are:

 • HTTP listener thread pool attributes.
 • File cache support in HTTP Protocol of each HTTP listener.
 • Disabling the access log.
 • Disabling monitoring.

Thread pool attributes customization highly depends on the
deployed applications’ characteristics in relation to whether
they are memory consumers, process consumers, IO bound
and so on.

Tuning the Web container is easier by analyzing the
statistics driven from monitoring the Web container and
deployed applications. Web Container configuration is
available at Tree>Configuration>Web Container node.
Listener and protocols configuration are available at
Tree>Configuration>Network Config>Protocols.

EJB Container Performance Tuning
The EJB container can affect performance more than the
Web container if deployed applications use EJBs extensively
for business logic processing. Fine-tuning the EJB container
involves tuning the EJB container thread pool and its cache
size. Although the timer service effects are usually not
intensive, for applications with a large number of timers it is
recommended to reduce the timer service load by reducing the
service precision.

Fine-tuning Message Driven Beans pool affects the overall
performance of the system if it is highly dependent on JMS and
message processing.

Decreasing the pool size results in fewer MDBs processing the
JMS messages and less overhead on the system. However it
will also result in longer wait time for asynchronous tasks and
requests.

Monitoring the EJB container using GlassFish built-
in capabilities helps to tune the EJB container. Enable
monitoring, let the system work for some time, and then
decide on new values for container attributes. EJB container
configuration is accessible through Tree>Configuration>EJB
Container.

http://www.dzone.com
http://www.refcardz.com
http://www.sun.com/software/products/glassfish_portfolio/resources.jsp?cid=928229

DZone, Inc. | www.dzone.com

EMBEDDED GLASSFISH

Embedded GlassFish is available at https://embedded-
glassfish.dev.java.net/. The embedded distribution hosts
applications embedded into a larger, single JVM process.
For example, use embedded distribution for unit testing. The
following sample code shows how to create a server instance,
start it, and deploy a Web application into the embedded
instance.

Server server = new Server.Builder(“emServer”).build();
server.createPort(8080);
server.addContainer(new org.glassfish.web.embed.impl.
EmbeddedWebContainer());
server.start();
File sampleWar = new File(“sample.war”);
server.getDeployer().deploy(sampleWar);

// Insert customer logic here

server.stop();

Using the embedded mode is as simple as the few lines above.
The embedded mode is useful for unit testing and cases when
Web or enterprise applications run in-process instead of being
hosted in a stand-alone server.

6
Getting Started with GlassFish Application Server v3

GLASSFISH UPDATE TOOL

GlassFish v3 is a modular application server, and update
and distribution mechanisms can benefit from the modular
architecture. GlassFish v3 uses IPS/PKG(5) for distribution and
updating. The IPS/PKG(5) is an operating system-independent,
network-based distribution mechanism for applications, from
a simple phone book to systems as large as operating systems
like OpenSolaris.

Bootstrapping the Update Tool
During the installation process installer provides us with the

JDBC Connection Pool Performance Tuning
JDBC connection pools often cause bottlenecks in Web
applications which use JDBC to access a database. Monitoring
JDBC connection pools using GlassFish monitoring can
give a fair amount of information about whether application
performance is related to JDBC connection pool
configuration. Usually, maximum wait time, average wait time,
high watermark and minimum available free connections are
parameters that help us decide whether to further limit the
size of the connection pool, or expand it (to prevent requests
processing waits longer than necessary for a connection to
become free).

Detecting connection leaks is another very helpful feature of
GlassFish JDBC monitoring. Simply scan the monitoring results
to determine if there aree JDBC connection leaks.

JMS Server Interaction
GlassFish supports three different methods for integration
with a JMS broker. A local or embedded broker means
the JMS broker load is on the same machine running the
application server. If the JMS service integration type is set to
REMOTE, processing load is transferred from the application
server machine to another machine which only hosts the JMS
broker or set of brokers. However, this change only affects
JMS-bound applications that rely heavily on messaging. JMS
Service configuration is available at Tree>Configuration>Java
Message Service.

option of installing and configuring the Update Tool for us.
If we do select this option we can use the updatetool script
located in the gf_home/bin to bootstrap it at any time after
the installation. To start the bootstrapping we just need to run
./updatetool or updatetool.bat; it will automatically detect
whether the update center is installed or not and will continue
accordingly.

Using Update Tool
The PKG 5 IPS provides a command line script for using IPS
to install, update, upgrade and remove an application. The
script is named pkg and is located inside the gf_home/bin. In
addition to the CLI command, there is a very polished GUI
named Update Tool which we can run using the updatetool
script available in the same directory. Running the update
tool will open a GUI similar to Figure 5. This shows what new
updates are available for our installed modules, or what new
modules are available which we many need to install. We can
use the update tool and IPS to distribute our Web or Enterprise
application updates, to create our own update centers, to
distribute our GlassFish modules, and even to distribute our
custom applications using IPS.

Another good feature of the Update Tool is that it can manage
multiple installation images of different applications and
different versions. We just need to register new images using
File menu.

Like many other applications, the GlassFish Update Tool
will notify of available updates through a system tray icon.
To register its system try icon we need to open a command
window, navigate to gf_home/updatetool and then execute the
following command.

./updatetool --register

It will simply sit in the system tray and let us know when an
update for our installed modules is available. Imagine that we
can update the Hibernate or Spring or any other framework’s
libraries automatically and through a notification system.

 Figure 5: GlassFish Update Tool

GlassFish v3 benefits from a modular architecture based on
OSGi modularity system for platform and bundle management,
and HK2 for service layer modularity. The HK2, available at
http://hk2.dev.java.net, forms the GlassFish micro-kernel and is
roughly based on Java Platform Modularity specification.
The whole modularity in the service layer is based on the
concept of contracts and contracts providers which are simply
Java interfaces and interface implementations along with some
annotations.

ARCHITECTURE

http://www.dzone.com
http://www.refcardz.com
http://www.sun.com/software/products/glassfish_portfolio/resources.jsp?cid=928229

Design Patterns

By Jason McDonald

CONTENTS INCLUDE:

n	 Chain of Responsibility

n	 Command

n	 Interpreter

n	 Iterator

n	 Mediator

n	 Observer

n	 Template Method and more...

DZone, Inc. | w
ww.dzone.com

D
es

ig
n

Pa
tt

er
ns

 w

w
w

.d
zo

ne
.c

om

 G
et

 M
o

re
 R

ef
ca

rz
!

V
is

it
 r

ef
ca

rd
z.

co
m

#8

Brought to you by...

Inspired

by the

GoF

Bestseller

This Design Patterns refcard provides a quick reference to the

original 23 Gang of Four (GoF) design patterns, as listed in

the book Design Patterns: Elements of Reusable Object-

Oriented Software. Each pattern includes class diagrams,

explanation, usage information, and a real world example.

Chain of Responsibility
, continued

Object Scope: Deals with object relationships that can

be changed at runtime.

Class S
cope: Deals with class relationships that can be

changed at compile time.

C Abstract Factory

S Adapter

S Bridge

C Builder

B Chain of

Responsibility

B Command

S Composite

S Decorator

S Facade

C Factory Method

S Flyweight

B Interpreter

B Iterator

B Mediator

B Memento

C Prototype

S Proxy

B Observer

C Singleton

B State

B Strategy

B Template Method

B Visito
r

ABOUT DESIGN PATTERNS

Creational Patterns: U
sed to construct objects such

that they can be decoupled from their im
plementing

system.

Structural Patterns: U
sed to form large object

structures between many disparate objects.

Behavioral Patterns: U
sed to manage algorithms,

relationships, and responsibilitie
s between objects.

CHAIN OF RESPONSIBILITY

 O
bject Behavioral

COMMAND

 O

bject Behavioral

successor

Client

<<interface>>

Handler

+handlerequest()

ConcreteHandler 1

+handlerequest()

ConcreteHandler 2

+handlerequest()

Purpose
Gives more than one object an opportunity to handle a request by linking

receiving objects together.

Use

When

n
	Multiple objects may handle a request and the handler doesn’t have to

 be a specific object.

n
	A set of objects should be able to handle a request with the handler

 determined at runtime.

n
	A request not being handled is an acceptable potential outcome.

Example
Exception handling in some languages implements this pattern. When an

exception is thrown in a method the runtime checks to see if th
e method

has a mechanism to handle the exception or if it
 should be passed up the

call stack. When passed up the call stack the process repeats until code to

handle the exception is encountered or until th
ere are no more parent

objects to hand the request to.

Receiver

Invoker

Command

+execute()

Client
ConcreteCommand

+execute()

Purpose
Encapsulates a request allowing it to

 be treated as an object. This allows

the request to be handled in traditionally object based relationships such

as queuing and callbacks.

Use

When

n
	You need callback functionality.

n
	Requests need to be handled at variant tim

es or in variant orders.

n
	A history of requests is needed.

n
	The invoker should be decoupled from the object handling the invocation.

Example
Job queues are widely used to facilitate the asynchronous processing

of algorithms. By utilizing the command pattern the functionality to be

executed can be given to a job queue for processing without any need

for the queue to have knowledge of the actual implementation it is

invoking. The command object that is enqueued implements its particular

algorithm within the confines of the interface the queue is expecting.

Upcoming Titles
RichFaces
Agile Software Development
BIRT
JSF 2.0
Adobe AIR
BPM&BPMN
Flex 3 Components

Most Popular
Spring Configuration
jQuery Selectors
Windows Powershell
Dependency Injection with EJB 3
Netbeans IDE JavaEditor
Getting Started with Eclipse
Very First Steps in Flex

“Exactly what busy developers need:
simple, short, and to the point.”

James Ward, Adobe Systems

Download Now

Refcardz.com

Professional Cheat Sheets You Can Trust

DZone, Inc.
1251 NW Maynard
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2009 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher. Reference:

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to

more than 3.3 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheatsheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

7
Getting Started with GlassFish Application Server v3

RECOMMENDED BOOKABOUT THE AUTHOR

ISBN-13: 978-1-934238-62-2
ISBN-10: 1-934238-62-7

9 781934 238622

50795

Masoud Kalali holds a software engineering degree and has been
working on software development projects since 1998. He has
experience with a variety of technologies (.Net, J2EE, CORBA,
and COM+) on diverse platforms (Solaris, Linux, and Windows).
His experience is in software architecture, design and server side
development. Masoud has several articles in Java.net. He is one of
founder members of NetBeans Dream Team. Masoud’s main area of
research and interest includes Web Services and Service Oriented

Architecture along with large scale and high throughput systems’ development and
deployment.

Blog: http://weblogs.java.net/blog/kalali/
Contact: Kalali@gmail.com

The complete guide to in-
stalling and configuring the
GlassFish Application Server
and developing Java EE 5
applications to be deployed
to this server.

BUY NOW
books.dzone.com/books/glassfish

GlassFish can be extended by developing new providers for
contracts, and the good news is that a registry of extension
information is not required; instead, all of the extension
discovery and life cycle management is completely automatic.
Extensions are “installed” by simply placing them in the
modules directory.

Table 7: GlassFish extensibility points

Extension point Sample use case

CLI Extensibility Add new CLI command; for example a command to start or stop a new type
of container.

Web
Administration
Console
Extensibility

Add a whole new set of pages and nodes to administration console
to address new administration requirements like administrating a new
container.

Monitoring
Extensibility

Export monitoring information to a specific format or from a specific
container.

Container
Extensibility

Add new type of container to host; for example applications developed by
another dynamic language.

Figure 6: GlassFish architecture from Mars

http://refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.refcardz.com
books.dzone.com/books/glassfish
books.dzone.com/books/glassfish
http://www.sun.com/software/products/glassfish_portfolio/resources.jsp?cid=928229

