

RSS and Atom
By Dave Johnson

You can find the specifications for all of these formats
online at the following locations:

RSS 0.90
http://www.purplepages.ie/RSS/netscape/rss0.90.html

RSS 0.91 (Netscape)
http://www.rssboard.org/rss-0-9-1-netscape

RSS 0.91 (UserLand)
http://backend.userland.com/rss091

RSS 0.92
http://backend.userland.com/rss092

RSS 0.93
http://backend.userland.com/rss093

RSS 0.94
No longer available online

RSS 1.0
http://web.resource.org/rss/1.0/spec

RSS 2.0
No longer available online

RSS 2.0.1
http://blogs.law.harvard.edu/tech/rss

Atom 1.0
http://www.atomenabled.org/developers/syndication/atom-format-spec.php

CONTENTS INCLUDE:
n	 Evolution of RSS Standards
n	 RSS 2.0 Feed Elements
n	 Atom 1.0 Feed Elements
n	 The Metaweblog API
n	 The Blogger API
n	 The Atom Protocol
n	 Hot Tips and more...

NETSCAPE

1999 2000 2001 2002 2005

THE SIMPLE FORK
Dave Winer

THE RDF FORK
RSS-DEV Group

INTERNET ENGINERING
Task Force (IETF)

RSS
0.9

RSS
0.91

RSS
0.92

RSS
0.93

RSS
0.94

RSS
2.0

RSS
1.0

ATOM

The explosive growth of RSS and Atom feeds on the internet
make it easier than ever before for your software to publish,
edit, monitor and extract data from the web. That’s why feeds
are the core of a host of new RESTful web services from simple
blog publishing protocols to Google’s expansive GData and
OpenSocial APIs. You’ll find this reference card useful whether
you are creating and serving, or subscribing to and parsing
feeds. It lists the XML elements in the most widely used feed
formats and it illustrates the relationship between multiple
variants of RSS and Atom. We list and explain the methods
in the XML-RPC based Blogger and MetaWeblog API. And,
we provide a guide to the new RESTbased Atom web pub-
lishing protocol.

RSS and Atom make it easy to read and write the web.
Applications can use the Atom Publishing Protocol (RFC-5023)
and the MetaWeblog API to publish any type of content to
blog, wiki and CMS servers. And servers can make any type
of content available to media players, feed reader and other
applications via RSS and Atom formats.

EVOLUTION OF RSS STANDARDS

Depending on whom you ask, RSS stands for RDF Site Sum-
mary, Rich Site Summary, Really Simple Syndication or just RSS.
The diagram below shows the evolution of RSS and Atom feed
formats. There are two variants of RSS: Dave Winer’s simple fork
and the RSS-DEV group’s RDF fork. Atom (RFC-4287) is the new
standard feed format.

OTHER
WEBSITES

YOUR
APPS

MEDIA
PLAYER

FEED
READER

WORD
PROCESSORS

YOUR
APPS

CAMERA
PHONES

BLOG
CLIENTS

BLOG,
WIKI, OR
OTHER

CMS

PUBLISH AND EDIT BROWSE AND SUBSCRIBE

Publish via MetaWeblog
API, Atom Protocol

Browse and Subscribe to
feeds, XML over HTTP

PUBLISH AND SUBSCRIBE WITH
RSS AND ATOM

DZone, Inc. | www.dzone.com

R
S

S
 a

n
d

 A
to

m

 w
w

w
.d

zo
n

e.
co

m

 D

o
w

n
lo

ad
 N

o
w

!
Su

b
sc

ri
b

e
at

 r
ef

ca
rd

z.
co

m

 tech facts at your fingertips

n Authoritative content
n Designed for developers
n Written by top experts
n Latest tools & technologies
n Hot tips & examples
n Bonus content online
n New issue every 1-2 weeks

Subscribe Now for FREE!
Refcardz.com

Get More Refcardz
(They’re free!)

http://www.purplepages.ie/RSS/netscape/rss0.90.html
http://www.rssboard.org/rss-0-9-1-netscape
http://backend.userland.com/rss091
http://backend.userland.com/rss092
http://backend.userland.com/rss093
http://backend.userland.com/rss093
http://blogs.law.harvard.edu/tech/rss
http://www.atomenabled.org/developers/syndication/atom-format-spec.php
http://www.dzone.com
http://www.dzone.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com

The root element is <rss>, it contains one <channel>
element, which in turn contains <item> elements. Dates are
represented in RFC-822 format. The RSS 2.0 diagram below is
broken into two parts; first we show the feed level metadata
under – item element children are omitted.

Feed Diagram Key
The feed diagrams use the following notations to indicate re-
quired elements, cardinality, containment and XML attributes.

 Required XML element

 ? 	 Zero or one

 * 	 Zero or more

 "		Containment

 @ XML element attribute

Feed Diagram

Feed Diagram
The second part of the RSS 2.0 diagram shows the item element
and its children. Item content is carried in the <description>

element and is represented as escaped HTML.

RSS 2.0 FEED ELEMENTS

You can extend RSS by adding your own extension elements,
i.e. new XML elements, as long as they are placed in their own
XML namespace.

managingEditor

WebMaster

category@domain

generator

docs

cloud

ttl

image

rating

textinput

skipHours

skipDays

extension elements

item

lastBuildDate

language

copyright

title

description

link

See RSS 2.0
Item Diagram

*

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

*

link

url

title

description

height

width

description

link

name

title

channelrss

enclosure @length
 @type
 @url

source@url

comments

extension elements

link

pubDate

author

category@domain

title

description@type

guid@isPermalink

*

?

?

?

?

?

?

?

item

RSS 2.0 Feed Examples
Example of an RSS 2.0 feed with one item and a podcast.

<?xml version="1.0" encoding="iso-8859-1"?>
<rss version="2.0">
<channel>
<title>Example Blog</title>
<link>http://example.com/blog</link>
<item>
 <title>Here is an item with a podcast</title>
 <description>
	 	 My	first	podcast.
 </description>
 <pubDate>Wed, 20 Apr 2005 13:30:45 EDT</pubDate>
 <link>http://example.com/blog/20050420?id=132</
link>
	 <enclosure	url="http://example.com/casts/file1.mpg"
type="audio/mpeg3" length="13456170"/>
</item>
</channel>
</rss>

<?xml version="1.0" encoding="iso-8859-1"?>
<rss version="2.0"
 xmlns:dc="http://purl.org/dc/elements/1.1/">
<channel>
<title>Example Blog</title>
<link>http://example.com/blog</link>
<item>
 <title>Here is an item that uses Dublin Core</title>
	 <description>Just	another	blog	entry.
 </description>
 <link>http://example.com/blog/20050420?id=133</link>
 <dc:date>2005-04-20T17:41:04+5:00</dc:date>
 <dc:creator>Dave Johnson</dc:creator>
 </item>
</rss>

RSS 2.0 feeds in the wild often use extension elements instead
of the standard elements of RSS. For example, this feed uses the
Dublin Core <dc:date> and <dc:creator> instead of the
standard <pubDate> and <author> elements.

RSS and Atom
2

Hot
Tip

Use Feed Autodiscovery to Advertise Your Feeds If your web application or site provides feeds, advertise those feeds by
listing each with an HTML <link> element in the HTML <head> of your web page. For each feed, you can specify a content-type,
title and an href—as shown here: <link rel="alternate"
 type="application/rss+xml" title="My RSS feed"
 href="http://localhost/feed.rss" />

DZone, Inc. | www.dzone.com

 tech facts at your fingertips

http://www.dzone.com
http://www.refcardz.com

The root element of an Atom feed is the <feed> element,
which contains metadata and a collection of <entry>
elements.

n	 ID must be a valid URN

n		 There must be a self-link containing the URI location of
 the feed

n		 Dates in Atom are represented in W3C DateTime format

n		 Text constructs (indicated with <<text>> in the
 diagram) may contain a type attribute with a value of
 text for plain text, html for escaped HTML, or xhtml for
 XHTML. If not present, content is assumed to be text.

n		 An author must be specified at the <feed> level or in
 each <entry>

Feed Diagram Key
The feed diagrams use the following notations to indicate
required elements, cardinality, containment and XML
attributes.

 Required XML element

 ? 	 Zero or one

 * 	 Zero or more

 "		Containment

 @ XML element attribute

Feed Diagram

Here are the elements at the Atom <entry> level. Note that
the <content> element has a type attribute like that in text
construct , but it can also be set to any MIME content-type, thus
allowing an Atom entry to carry any type of data.

ATOM 1.0 FEED ELEMENTS

Atom 1.0 Example
Example Atom 1.0 feed with XHTML content.

<?xml version='1.0' encoding='UTF-8'?>
<feed xmlns='http://purl.org/atom/ns#' xml:lang='en-us'>
 <title>Oh no, Mr. Bill</title>
 <link href='http://nbc.com/sluggo/' />
 <link rel='self' href='http://nbc.com/sluggo/index.atom' />
 <updated>2005-04-06T20:25:05-08:00</updated>
 <author><name>Mr. Bill</name></author>
 <entry>
 <title>A post about stuff</title>
 <link href='http://nbc.com/sluggo/20050420?id=321' />
 <id>http://nbc.com/sluggo/20050420?id=321</id>
 <updated>2005-04-06T20:25:05-08:00</updated>
 <content type='xhtml'>
 <div xmlns='http://www.w3.org/1999/xhtml'>
 <!-- xhtml content -->
 </div>
 </content>
 </entry>
</feed>

 link @href
 @rel
 @type
 @hreflang
 @title
 @length

subtitle

icon

logo

rights

extension elements

entry

author

contributor

id

title

updated

See
Atom 1.0
Entry
Diagram

*

*

*

*

?

*

?

?

?

*

 feed
@version
@xml:lang

<<text>>

<<date>>

<<person>>

<<person>>

 category @term
 @scheme
 @label

? generator@url
 @version

content@type
 @src

rights

source

extension elements

published

author

summary@type

id

title

updated

?

*

?

?

?

?

*

item

<<text>>

<<date>>

<<date>>

contributor
*

<<person>>

<<person>>

 link @href
 @rel
 @type
 @hreflang
 @title
 @length

*

<<text>>

category @term
 @scheme
 @label

*

Hot
Tip

Validate your Feeds with feedvalidator.org

If your web application or site provides feeds,
validate those feeds by using the free feed valida-
tion service at feedvalidator.org. If you’re serving
private or behind-the-firewall feeds, then you can
download the (Python) source code for the Feed
Validator and run it on your own machine.

RSS and Atom
3

DZone, Inc. | www.dzone.com

 tech facts at your fingertips

http://feedvalidator.org
http://feedvalidator.org
http://www.dzone.com
http://www.refcardz.com

THE BLOGGER API

Method Name Parameters and Descriptions

blogger.newPost string appkey, string blogid, string username, string
password, string content, boolean publish

Create a new blog post in the blog specified by blogid
and content specified by content. Some servers
interpret publish=true to mean publish publicly and
publish=false to mean save as a private draft. Others
interpret it to mean simply publish immediately.
Returns a string, which is the postid of the new post.

blogger.editPost string appkey, string postid, string username, string
password, string content, boolean publish

Update the blog post specified by postid.with new content.

blogger.deletePost string appkey, string postid, string username, string
password, boolean publish

Delete the blog post specified by blogid and optionally
republish the blog.

blogger.
getRecentPosts

string appkey, string blogid, string username, string
password, int numPosts

Get the most recent blog posts as an array of structures,
each having members dateCreated, userid, postid, and
content. Maximum number of posts to return is numPosts.

blogger.getUsersBlogs string appkey, string username, string password

Get the specified user’s blogs as an array of structures,
each having members url, blogid, and blogName.

blogger.getUserInfo string appkey, string username, string password

Get the specified user’s information as a structure with
members nickname, userid, url, email, lastname, firstname.

blogger.getTemplate string appkey, string blogid, string username, string
password, string type

Get blog’s template of the specified type.

blogger.setTemplate string appkey, string blogid, string username, string
password, string template, string type

Change the blog’s template of the specified type.
The format of blog templates varies depending on the
blog server.

The Blogger API was created in 2001 for Blogger.com and it’s
being replaced by the Atom protocol, but it is still an important API
because it is the foundation of the widely used MetaWeblog API.

List of Methods

SyndFeedInput	input	=	new	SyndFeedInput();
SyndFeed feed = input.build(
	 new	InputStreamReader(inputStream));

Iterator entries =
	 feed.getEntries().iterator();
while (entries.hasNext()) {
	 SyndEntryventry.next();
	 System.out.println("Title:	"	+	entry.getTitle());
	 System.out.println("Link:	"	+	entry.getLink());
	 System.out.println("Date:	"	+	entry.getPublishedDate());
	 System.out.println("Desc:	"	+	entry.getDescription());
	 System.out.println("\n");
}

Parsing Feeds with Java and Rome
Here’s a simple example that shows how to parse and print a
feed using Java and the ROME feed parser library. The example
uses the SyndFeeedInput class, which parses any format of RSS
(0.9X, 1.0, 2.0) or Atom (0.3 or 1.0) to a SyndFeed object con-
taining a collection of SyndEntry objects.

ROME is covered in detail in RSS and Atom in Action, Chapter 7.
For more information on ROME, visit the project’s web site at
http://rome.dev.java.net.

Parsing Feeds with C# & Windows RSS
Here’s an example that shows how to parse and print a feed us-
ing C# and the Windows RSS Platform’s Feeds API.

IFeedsManager	fm	=	new	FeedsManagerClass();
IFeed	feed	=	null;
if (!fm.IsSubscribed(url)) {
 IFeedFolder rootFolder =
	 	 (IfeedFolder)fm.RootFolder;
	 feed	=	(IFeed)rootFolder.CreateFeed(url,	url);
} else {
	 feed	=	(IFeed)fm.GetFeedByUrl(url);
}
feed.Download();

foreach (IFeedItem item in (IFeedsEnum)feed.Items) {
	 Console.Out.WriteLine("item.Title:	"	+	item.Title);
	 Console.Out.WriteLine("item.pubDate:"	+	item.PubDate);
	 Console.Out.WriteLine("item.Desc:	"	+	item.Description);
}

THE METAWEBLOG API

Method Name Parameters and Descriptions

metaWeblog.
newPost

string blogid, string username, string password,
struct post, boolean publish

Creates a new post in the blog specified by blogid using the
data from the post structure. The names in the post structure
correspond to the names of the XML elements in an RSS
<item>. Returns the string ID of the newly created post.

metaWeblog.
editPost

string postid, string username, string password,
struct post, boolean publish

Updates the post specified by postid using data from
the post structure.

Method Name Parameters and Descriptions

metaWeblog.
getPost

string postid, string username, string password

Returns the post specified by postid as a post structure.

metaWeblog.
getRecentPosts

string blogid, string username, string password,
int numPosts

Returns the most recent blog post as an array of
post structures. Maximum number of posts to return is
numPosts.

metaWeblog.
newMediaObject

string blogid, string username, string password,
struct object

Uploads an image, video, or audio file to the blog
specified by blogid. The file is specified by the object
structure with fields name, type, and bits. The bits field
is the file data encoded as Base64 data. Returns a string,
which is the URL of the uploaded file.

MetaWeblog.
getCategories

string blogid, string username, string password

Returns the categories available in the blog specified
by blogid as a structure of structures, each structure
representing a category and having members description,
htmlUrl, and rssUrl.

The MetaWeblog API was created by Dave Winer; it extends the
Blogger API by adding six new methods to allow posting and
editing blog entries with better metadata than the Blogger API
and to allow uploading of media files (image, video, etc.).

List of Methods

List of Methods, continued

RSS and Atom
4

DZone, Inc. | www.dzone.com

 tech facts at your fingertips

http://books.dzone.com/books/rss-and-atom
http://rome.dev.java.net
http://www.dzone.com
http://www.refcardz.com

<?xml version="1.0” encoding='utf-8'?>

<service xmlns="http://www.w3.org/2007/app">

 <workspace title="My blog" >

 <collection title="Entries"

 href="http://example.org/reilly/main" >

 <accept>entry</accept>

 </collection>

 <collection title="Pictures"

 href="http://example.org/reilly/pic" >

 <accept>image/*</accept>

 </collection>

 </workspace>

</service>

THE ATOM PROTOCOL

Atom protocol (RFC-5023) is a REST-based protocol for creating,
retrieving, updating and deleting collections of objects on a
server. Objects are represented as Atom entries and collections
as Atom feeds.

Service Document
To find out what workspaces and collections are available on an
Atom server, send an authenticated HTTP GET request to the
server’s end-point URI.

You’ll get back an Atom service document like the one below,
which includes one workspace that contains two collections: one
of entries and one of images. Note that each collection has a
collection URI.

APP CLIENT APP SERVER

SERVICE
DOCUMENT

HTTP GET request to end-point URL

HTTP GET response

<feed xmlns="http://www.w3.org/2005/Atom">
 <link rel="next"
 href="http://example.org/entries/60" />
 <link rel="previous"
 href="http://example.org/entries/20" />
 ...
 <entry> ... </entry>
 <entry> ... </entry>
 <entry> ... </entry>
 <entry> ... </entry>
 ...
</feed>

Listing Collections
To retrieve the contents of a collection, send an authenticated
HTTP GET request to the collection’s URI.

The server will respond by sending back an Atom feed containing
the first portion of the collection and a next URI, which you can
use to retrieve the next portion of the collection.

APP CLIENT APP SERVER

PARTIAL
COLLECTION

HTTP GET request to collection URL

HTTP response

APP CLIENT APP SERVER

NEXT PORTION
OF COLLECTION

HTTP GET request to next URL

HTTP response

Creating an Entry
To create a new entry within a collection, you simply post the XML
for the entry to the collection’s URI. For example, here’s an example
entry suitable for posting to an Atom server.

The server will respond by creating an entry based on what you
posted. It will fill in some blanks, such as the ID, and will return
the Atom entry as it appears on the server. It will add in an edit
URI, as shown below in bold, which you can use to retrieve, up-
date or delete the entry.

APP CLIENT APP SERVER

ATOM
ENTRY

HTTP POST request to entry edit URL

HTTP response

<?xml version="1.0" encoding="UTF-8"?>
<entry xmlns="http://www.w3.org/2005/Atom">
 <id></id>
 <title>Atom test post title</title>
 <content>Atom test post content</content>
 <updated>2006-05-16T00:00:00Z</updated>
</entry>

<?xml version="1.0" encoding="UTF-8"?>
<entry xmlns="http://www.w3.org/2005/Atom">
 <id>http://example.com/blog/entry/2223</id>
<link rel="alternate" type="text/html"
 href="http://example.com/blog/entry/2223" />
<link rel="edit" type="text/html"
 href="http://example.com/app/blog/entry/2223" />
<title>Atom test post title</title>
 <content>Atom test post content</content>
 <updated>2006-05-16T00:00:00Z</updated>
</entry>

RSS and Atom

Making a Post with MetaWeblog API
Here is an example that uses Apache XML-RPC to post a blog
entry with a title and description to a blog with a blogid, user-
name and password.The blog server has an endpointURL.

import	java.util.*;

import	java.io.*;

import	org.apache.xmlrpc.XmlRpcClient;

Hashtable	post	=	new	Hashtable();

post.put("dateCreated",	new	Date());

if	(title	!=	null)	post.put("title",	title);

post.put("description",	description);

Vector	params	=	new	Vector();

params.addElement(blogid);

params.addElement(username);

params.addElement(password);

params.addElement(post);

params.addElement(Boolean.TRUE);

XmlRpcClient	xmlrpc	=	new	XmlRpcClient(endpointURL);

String newEntryId =

	 (String)xmlrpc.execute("metaWeblog.newPost",	params);

5

DZone, Inc. | www.dzone.com

 tech facts at your fingertips

http://www.dzone.com
http://www.refcardz.com

ATOMPUB IN THE WILD

Dave Johnson
Dave Johnson is a North Carolina-based software developer who has worked in a
variety of software companies including Rogue Wave, HAHT Software and SAS Institute.
In 2002, unable to satisfy his urge to create cool software at work, Dave worked
nights and weekends to create the open source, Java-based Roller blog server.
Roller’s popularity at JRoller.com led to its adoption by Sun and IBM for internal and

external blogs. It’s now known as Apache Roller and is a project of the Apache Software Foundation.
Dave now works as a Social Software Architect on the App Platform team at Sun Microsystems.

Publications
n	 RSS and Atom in Action, 2006
n	 ProJSP, 2002
n	 Article: Building a J2EE Weblogger, 2002

Projects
n	 Original developer of the Roller blog server
n	 Contributor to ROME feed parser/generator

Blogs
n	 Blogging Roller, personal weblog, 2002 – present

ABOUT THE AUTHOR

RSS and Atom
6

The Atom Protocol, continued

Updating an Entry
To update an entry, you first send an authenticated HTTP GET
request to the entry’s edit URI to get the latest copy of the entry.
You then edit the entry and use an authenticated HTTP PUT to
the edit URI to update it on the server.

Atom protocol has been spreading like wildfire since the specifi-
cation was finalized in October 2007. Google and Microsoft have
adopted it as the basis for many of their web services interfaces,
for example:

Google Data (GData)—more than a dozen APIs that use Atom
protocol plus extensions: http://code.google.com/apis/gdata

OpenSocial—access and manage Social Graph data via Atom
protocol: http://code.google.com/apis/opensocial

Microsoft Windows Live—manage photos and store gadget
data with Atom protocol: http://dev.live.com

Microsoft ADO.Net Data Services—use Atom protocol to
access relational databases: http://astoria.mslivelabs.com

APP
CLIENT

APP
SERVER

ATOM
ENTRY

HTTP GET request to entry edit URL

HTTP response

HTTP PUT request to entry edit URL

HTTP response

RSS and Atom in Action offers
clear, concise, and up-to-date
coverage of all feed formats,
web services protocols for
blogging, and the very latest
programming toolkits for Java
and C# developers. It’s the first
book to cover the all-new IETF

Atom Publishing Protocol, the Java-based ROME
feeds toolkit and Microsoft’s new Feeds API for IE7
and Windows Vista.

RECOMMENDED BOOK

BUY NOW
books.dzone.com/books/rss-and-atom

 tech facts at your fingertips

DZone communities deliver over 3.5 million pages per month to

more than 1.5 million software developers, architects and designers.

DZone offers something for every developer, including news,

tutorials, blogs, cheatsheets, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

DZone, Inc.
1251 NW Maynard
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2008 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher. Reference: RSS and Atom in Action, Dave Johnson, Manning Publications, August 2006.

Version 1.0

$7
.9

5

ISBN-13: 978-1-934238-00-4
ISBN-10: 1-934238-00-7

9 781934 238004

5 0 7 9 5

Want More? Download Now. Subscribe at refcardz.com

Getting Started with Ajax
Published April 2008

GWT Style, Configuration
and JSNI Reference
Published April 2008

FREE

Upcoming Refcardz: Available:

Available:

n		NetBeans IDE 6 Java Editor
n	Ruby
n		Groovy
n		Core .NET
n		Adobe Flex
n		Apache Struts 2
n	C#

Published June 2008
n	 jQuerySelectors
n	Design Patterns
n	Flexible Rails: Flex 3 on Rails 2

Published May 2008
n	Windows PowerShell
n	Dependency Injection in EJB 3

Published April 2008
n	Spring Configuration
n	Getting Started with Eclipse

Published July 2008
n		GlassFish Application Server
n		Silverlight 2
n		IntelliJ IDEA

http://jroller.com
http://books.dzone.com/books/rss-and-atom
http://rollerweblogger.org/roller/
http://code.google.com/apis/gdata
http://code.google.com/apis/opensocial
http://dev.live.com
http://astoria.mslivelabs.com
http://books.dzone.com/books/rss-and-atom
http://books.dzone.com/books/rss-and-atom
http://books.dzone.com/books/rss-and-atom
http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.refcardz.com
http://refcardz.dzone.com/refcardz/getting-started-ajax
http://refcardz.dzone.com/refcardz/getting-started-ajax
http://refcardz.dzone.com/refcardz/gwt-style-configuration-and-js
http://refcardz.dzone.com/refcardz/gwt-style-configuration-and-js
http://refcardz.dzone.com/refcardz/gwt-style-configuration-and-js
http://refcardz.dzone.com/refcardz/getting-started-ajax
http://refcardz.dzone.com/refcardz/gwt-style-configuration-and-js
http://refcardz.dzone.com/refcardz/jquery-selectors
http://refcardz.dzone.com/refcardz/design-patterns
http://refcardz.dzone.com/refcardz/flexible-rails
http://refcardz.dzone.com/refcardz/windows-powershell
http://refcardz.dzone.com/refcardz/dependency-injection-in-ejb3
http://refcardz.dzone.com/refcardz/spring-configuration
http://refcardz.dzone.com/refcardz/getting-started-eclipse
http://refcardz.dzone.com/refcardz/glassfish-application-server
http://refcardz.dzone.com/refcardz/silverlight2
http://refcardz.dzone.com/refcardz/intellij-idea

