

CONTENTS INCLUDE:

n	 Groovy/Java Integration
 n	 Language Elements
n	 Operators
n	 Collective Datatypes
n	 Meta Programming
n	 Hot Tips and more...

DZone, Inc. | www.dzone.com

Groovy is a dynamic language for the Java™ Virtual Machine
(JVM). It shines with full object-orientation, scriptability, optional
typing, operator customization, lexical declarations for the
most common data types, advanced concepts like closures and
ranges, compact property syntax and seamless Java™ integra-
tion. This reference card provides exactly the kind of information
you are likely to look up when programming Groovy.

Install Groovy from http://groovy.codehaus.org and you will
have the following commands available:

The groovy command comes with -h and --help options to
show all options and required arguments. Typical usages are:

Execute file MyScript.groovy

 	 groovy MyScript

Evaluate (e) on the command line
 	 groovy -e "print 12.5*Math.PI"

Print (p) for each line of input
 	 echo 12.5 | groovy -pe

 	 "line.toDouble() * Math.PI"

Inline edit (i) file data.txt by reversing each line and save a backup 	
	 groovy -i.bak –pe

 	 "line.reverse()" data.txt

From Groovy, you can call any Java code like you would do from
Java. It’s identical.

From Java, you can call Groovy code in the following ways.
Note that you need to have the groovy-all.jar in your classpath.

Cross-compilation
Use groovyc, the <groovyc/> ant task or your IDE integration to
compile your groovy code together with your Java code. This
enables you to use your Groovy code as if it was written in Java.

Eval
Use class groovy.util.Eval for evaluating simple code that is
captured in a Java String: (int) Eval.xyz(1,2,3,"x+y+z");

Classes & Scripts
A Groovy class declaration looks like in Java. Default visibility
modifier is public

class MyClass {

 void myMethod(String argument) {

 }

}

GroovyShell
Use groovy.util.GroovyShell for more flexibility in the Binding
and optional pre-parsing:

	 GroovyShell shell= new GroovyShell();

	 Script scpt = shell.parse("y = x*x");

	 Binding binding = new Binding();

	 scpt.setBinding(binding);

	 binding.setVariable("x", 2);

	 scpt.run();

	 (int) binding.getVariable("y");

Chapter 11 of Groovy in Action has more details about
integration options. Here is an overview:

ABOUT GROOVY

STARTING GROOVY

GROOVY / JAVA INTEGRATION

LANGUAGE ELEMENTS

G
ro

o
vy

 w

w
w

.d
zo

n
e.

co
m

 G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

n 	Authoritative content
n 	Designed for developers
n 	Written by top experts
n 	Latest tools & technologies
n	 Hot tips & examples
n 	Bonus content online
n 	New issue every 1-2 weeks

Subscribe Now for FREE!
Refcardz.com

Get More Refcardz
(They’re free!)

Command Purpose

groovy Execute Groovy code

groovyc Compile Groovy code

groovysh Open Groovy shell

groovyConsole Open Groovy UI console

java2groovy Migration helper

Integration option Features/properties

Eval/GroovyShell for small expressions + reloading, security

GroovyScriptEngine for dependent scripts + reloading
 - classes, security

GroovyClassLoader the catch-all solution + reloading, security

Spring Beans integrates with Spring + reloading

JSR-223 easy language switch but limited in API
- reloading, security
requires Java 6

Groovy
By Dierk König

→

#15

Groovy
2

DZone, Inc. | www.dzone.com

 tech facts at your fingertips

Hot
Tip

Actively look for opportunities to implement
operator methods in your own Groovy class.
This often leads to more expressive code.
Typical candidates are ==, <=>, +, -, <<,
and isCase(). See also Ranges.

Language Elements (Classes and Scripts), continued

When a .groovy file or any other source of Groovy code
contains code that is not enclosed in a class declaration,
then this code is considered a Script, e.g.

	 println "Hello World"

Scripts differ from classes in that they have a Binding that
serves as a container for undeclared references (that are not
allowed in classes).

	 println text 	 // expected in Binding

	 result = 1 	 // is put into Binding

Optional Typing
Static types can be used like in Java and will be obeyed
at runtime. Dynamic typing is used by replacing the type
declaration with the def keyword. Formal parameters to
method and closure declarations can even omit the def.

Properties
Properties are declared as fields with the default visibility
modifier, no matter what type is used.

class MyClass {

 String stringProp

 def dynamicProp

}

Java-style getters and setters are compiled into the bytecode
automatically.

Properties are referred to like

println obj.stringProp 	// getter

obj.dynamicProp = 1 	 // setter

regardless of whether obj was written in Java or Groovy, the
respective getters/setters will be called.

Multimethods
Methods are dispatched by the runtime type, allowing code like

class Pers {
 String name
 boolean equals(Pers other) {
 name == other.name
 }
}
assert new Pers(name:'x') == new Pers(name:'x')

assert new Pers(name:'x') != 1

Customizable Operators
Operators can be customized by implementing/ overriding
the respective method.

Numbers
All Groovy numbers are objects, not primitive types. Literal
declarations are:

Customizable Operators, continued

Special Operators

OPERATORS
SIMPLE DATATYPES

Operator Method

a + b a.plus(b)

a – b a.minus(b)

a * b a.multiply(b)

a / b a.div(b)

a % b a.mod(b)

a++
++a

a.next()

Type Example literals

java.lang.Integer 15, 0x1234ffff

java.lang.Long 100L, 100l

java.lang.Float 1.23f, 4.56F

java.lang.Double 1.23d, 4.56D

java.math.BigInteger 123g, 456G

java.math.BigDecimal 1.23, 4.56, 1.4E4, 2.8e4, 1.23g, 1.23G

Operator Method

a--
--a

a.previous()

a**b a.power(b)

a|b a.or(b)

a&b a.and(b)

a^b a.xor(b)

~a ~a a.bitwiseNegate() // sometimes referred to as negate
| +a a.positive() // sometimes referred to as unaryMinus
| -a a.negative() // sometimes referred to as unaryPlus

a[b] a.getAt(b)

a[b] = c a.putAt(b, c)

a << b a.leftShift(b)

a >> b a.rightShift(b)

a >>> b a.rightShiftUnsigned(b)

switch(a){
 case b:
}
[a].grep(b)
if(a in b)

b.isCase(a)
// b is a classifier

a == b a.equals(b)

a != b ! a.equals(b)

a <=> b a.compareTo(b)

a > b a.compareTo(b) > 0

a >= b a.compareTo(b) >= 0

a < b a.compareTo(b) < 0

a <= b a.compareTo(b) <= 0

a as B a.asType(B)

Operator Meaning Name

a ? b : c if (a) b else c ternary if

a ?: b a ? a : b Elvis

a?.b a==null ? a : a.b null safe

a(*list) a(list[0], list[1], ...) spread

list*.a() [list[0].a(), list[1].a() ...] spread-dot

a.&b reference to method b in
object a as closure

method closure

a.@field direct field access dot-at

3

DZone, Inc. | www.dzone.com

Groovy
 tech facts at your fingertips

Simple Datatypes (Numbers), continued

Coercion rules for math operations are explained in Groovy
in Action, chapter 3. Some examples to remember are:

Regular Expressions, continued

Strings
	 'literal String'
	 '''literal
	 multiline String'''

	 def lang = 'Groovy'
	 "GString for $lang"
	 "$lang has ${lang.size()} chars"

	 """multiline GString with

	 late eval at ${-> new Date()}"""

Placeholders in GStrings are dereferenced at declaration time
but their text representation is queried at GStringString
conversion time.

	 /String with unescaped \ included/

Regular Expressions
The regex find operator =~
The regex match operator ==~
The regex Pattern operator ~String

Examples:
	 def twister = 'she sells sea shells'

// contains word 'she'
	 assert twister =~ 'she'

// starts with 'she' and ends with 'shells'
	 assert twister ==~ /she.*shells/

// same precompiled
	 def pattern = ~/she.*shells/

	 assert pattern.matcher(twister).matches()

// matches are iterable
// words that start with 'sh'
	 def shwords = (twister =~ /\bsh\w*/).collect{it}.join(' ')

	 assert shwords == 'she shells'

// replace through logic
	 assert twister.replaceAll(/\w+/){

 it.size()

 } == '3 5 3 6'

// regex groups to closure params
// find words with same start and end
	 def matcher = (twister =~ /(\w)(\w+)\1/)
	 matcher.each { full, first, rest ->
 assert full in ['sells','shells']
 assert first == 's'
	 }

Expression Result type

1f * 2f Double

1f / 2f Double

(Byte)1 + (Byte)2 Integer

1 * 2L Long

1 / 2 BigDecimal (0.5)

(int)(1/2) Integer (0)

1.intdiv(2) Integer (0)

Integer.MAX_VALUE+1 Integer

2**31 Integer

2**33 Long

2**3.5 Double

2G + 1G BigInteger

2.5G + 1G BigDecimal

1.5G == 1.5F Boolean (true)

1.1G == 1.1F Boolean (false)

Symbol Meaning

. any character

^ start of line (or start of document, when in single-line mode)

$ end of line (or end of document, when in single-line mode)

\d digit character

\D any character except digits

\s whitespace character

\S any character except whitespace

\w word character

\W any character except word characters

\b word boundary

() grouping

(x|y) x or y as in (Groovy|Java|Ruby)

\1 backmatch to group one, e.g. find doubled characters with (.)\1

x* zero or more occurrences of x.

x+ one or more occurrences of x.

x? zero or one occurrence of x.

x{m,n} at least “m” and at most “n” occurrences of x.

x{m} exactly “m” occurrences of x.

[a-f] character class containing the characters 'a', 'b', 'c', 'd', 'e', 'f'

[^a] character class containing any character except 'a'

(?is:x) switches mode when evaluating x; i turns on ignoreCase, s single-line mode

(?=regex) positive lookahead

(?<=text) positive lookbehind

COLLECTIVE DATATYPES

Ranges
Ranges appear inclusively like 0..10 or half-exclusively like
0..<10. They are often enclosed in parentheses since the
range operator has low precedence.
	 assert (0..10).contains(5)
	 assert (0.0..10.0).containsWithinBounds(3.5)

	 for (item in 0..10) 	{ println item }
	 for (item in 10..0) 	{ println item }

	 (0..<10).each { println it }

Integer ranges are often used for selecting sublists. Range
boundaries can be of any type that defines previous(), next() and
implements Comparable. Notable examples are String and Date.

Lists
Lists look like arrays but are of type java.util.List plus new methods.

	 [1,2,3,4] 	 == (1..4)
	 [1,2,3] + [1] 	== [1,2,3,1]
	 [1,2,3] << 1 	== [1,2,3,1]
	 [1,2,3,1] - [1] 	 == [2,3]
	 [1,2,3] * 2 	 == [1,2,3,1,2,3]
	 [1,[2,3]].flatten() 	 == [1,2,3]
	 [1,2,3].reverse() 	== [3,2,1]
	 [1,2,3].disjoint([4,5,6]) 	 == true
	 [1,2,3].intersect([4,3,1]) 	 == [3,1]
	 [1,2,3].collect{ it+3 } 	 == [4,5,6]
	 [1,2,3,1].unique().size() 	 == 3
	 [1,2,3,1].count(1) 	 == 2
	 [1,2,3,4].min() 	 == 1
	 [1,2,3,4].max() 	 == 4
	 [1,2,3,4].sum() 	 == 10
	 [4,2,1,3].sort() 	 == [1,2,3,4]
	 [4,2,1,3].findAll{it%2 == 0} == [4,2]
	 def anims=['cat','kangaroo','koala']
	 anims[2] == 'koala'
	 def kanims = anims[1..2]
	 anims.findAll{it =~ /k.*/}	==kanims
	 anims.find{ it =~ /k.*/} 	 ==kanims[0]
	 anims.grep(~/k.*/) 	 ==kanims

→

4

DZone, Inc. | www.dzone.com

Groovy
 tech facts at your fingertips

Collective Datatypes, continued
Lists
The sort() method is often used and comes in three flavors:

Lists can also be indexed with negative indexes and
reversed ranges.

	 def list = [0,1,2]
	 assert list[-1] == 2
	 assert list[-1..0] == list.reverse()

	 assert list == [list.head()] + list.tail()

Sublist assignments can make a list grow or shrink and lists
can contain varying data types.

	 list[1..2] = ['x','y','z']

	 assert list == [0,'x','y','z']

Maps
Maps are like lists that have an arbitrary type of key instead
of integer. Therefore, the syntax is very much aligned.

	 def map = [a:0, b:1]

Maps can be accessed in a conventional square-bracket
syntax or as if the key was a property of the map.	

	 assert map['a'] == 0
	 assert map.b == 1
	 map['a'] = 'x'
	 map.b = 'y'

	 assert map == [a:'x', b:'y']

There is also an explicit get method that optionally takes a
default value.

	 assert map.c == null
	 assert map.get('c',2) == 2
	 assert map.c == 2

Map iteration methods take the nature of Map.Entry objects
into account.
map.each { entry ->
 println entry.key
 println entry.value
}
map.each { key, value ->
 println "$key $value"
}
for (entry in map) {
 println "$entry.key $entry.value"
}

GPath

Calling a property on a list returns a list of the property for
each item in the list.

	 employees.address.town

returns a list of town objects.

To do the same with method calls, use the spread-dot operator.

	 employees*.bonus(2008)

calls the bonus method on each employee and stores the
result in a list.

Sort call Usage

col.sort() natural sort for comparable objects

col.sort {
 it.propname
}

applying the closure to each item before comparing
the results

col.sort { a,b ->
 a <=> b
}

closure defines a comparator for each comparison

Closure Parameters

{ ... } zero or one (implicit 'it')

{-> ... } zero

{x -> ... } one

{x=1 -> ... } one or zero with default

{x,y -> ... } two

{ String x -> ... } one with static type

CLOSURES

Closures capture a piece of logic and the enclosing scope.
They are first-class objects and can receive messages, can
be returned from method calls, stored in fields, and used as
arguments to a method call.

Use in method parameter

	 def forEach(int i, Closure yield){

 for (x in 1..i) yield(x)

	 }

Use as last method argument

	 forEach(3) { num -> println num }

Construct and assign to local variable

	 def squareIt = { println it * it}

	 forEach(3, squareIt)

Bind leftmost closure param to fixed argument

	 def multIt = {x, y -> println x * y}

	 forEach 3, multIt.curry(2)

	 forEach 3, multIt.curry('-')

Closure parameter list examples:

Closure.isCase(b) sends b to the closure and returns the call
result as boolean. Use as in

	 switch ('xy'){

 case {it.startsWith('x')} :...

	 }

	 [0,1,2].grep { it%2 == 0 }

Methods for java.lang.Object

Get object info

	 println obj.dump()

or in a GUI

	 import groovy.inspect.swingui.*

	 ObjectBrowser.inspect(obj)

Print properties, methods, and fields of obj

	 println obj.properties

	 println obj.class.methods.name

	 println obj.class.fields.name

Two ways to invoke a method dynamically

	 obj.invokeMethod(name, paramsAry)

	 obj."$name"(params)

GDK

5

DZone, Inc. | www.dzone.com

Groovy
 tech facts at your fingertips

GDK (Methods for java.lang.Object). continued

Further methods
	 is(other) // identity check
	 isCase(candidate) //default:equality
	 obj.identity {...}; obj.with {...}
	 print(); print(value),
	 println(); println(value)
	 printf(formatStr, value)
	 printf(formatStr, value[])
	 sleep(millis)
	 sleep(millis) { onInterrupt }
	 use(categoryClass) { ... }
	 use(categoryClassList) { ... }

Every object is iterable in Groovy—even if it was implemented
in Java. See Groovy in Action, chapter 9 on what strategy
Groovy applies to make this happen.

Not only can you use any obj in loops like
	 for (element in obj) { ... }

but you can also apply the following iterative objects methods:

Files and I/0, continued

Often used reading methods

	 def file = new File('/data.txt')

	 println file.text

	 (also for Reader, URL, InputStream,Process)

	 def listOfLines = file.readLines()

	 file.eachLine { line -> ... }

	 file.splitEachLine(/\s/) { list -> }

	 file.withReader { reader -> ... }

	 (also for Reader, URL, InputStream)

	 file.withInputStream { is -> ...}
	 (also for URL)

Often-used writing methods

	 out << 'content'

	 for out of type File, Writer, OutputStream, Socket, and Process

	 file.withWriter('ASCII') {writer -> }

	 file.withWriterAppend('ISO8859-1'){

 writer -> ... }

Reading and writing with Strings

	 def out = new StringWriter()

	 out << 'something'

	 def str = out.toString()

	 def rdr = new StringReader(str)

	 println rdr.readLines()

Connecting readers and writers

	 writer << reader

Special logic for writable objects, e.g. writeTo()

	 writer << obj

Transform (with closure returning the replacement) and filter
(with closure returning boolean)

	 reader.transformChar(writer){c -> }

	 reader.transformLine(writer){line-> }

	 src.filterLine(writer){line-> }

	 writer << src.filterLine {line -> }

For src in File, Reader, InputStream

Threads & Processes

Two ways of spawning new threads

	 def thread = Thread.start { ... }

	 def t = Thread.startDaemon { ... }

Two ways of talking to an external process
('cmd /c' is for Windows platforms only)

	 today = 'cmd /c date /t'

 .execute().text.split(/\D/)

	 proc = ['cmd','/c','date']

 .execute()

	 Thread.start {System.out << proc.in}

	 Thread.start {System.err << proc.err}

	 proc << 'no-such-date' + "\n"

	 proc << today.join('-') + "\n"

	 proc.out.close()

	 proc.waitForOrKill(0)

Files and I/0

Often-used filesystem methods

	 def dir = new File('somedir')

	 def cl = {File f -> println f}

	 dir.eachDir cl

	 dir.eachFile cl

	 dir.eachDirRecurse cl

	 dir.eachFileRecurse cl

	 dir.eachDirMatch(~/.*/, cl)

	 dir.eachFileMatch(~/.*/, cl)

GDK

Hot
Tip

Implement the iterator() method that returns
an Iterator object to give your own Groovy
class meaningful iterable behavior with the
above methods.

Returns Purpose

Boolean any {...}

List collect {...}

Collection collect(Collection collection) {...}

(void) each {...}

(void) eachWithIndex {item, index-> ...}

Boolean every {...}

Object find {...}

List findAll {...}

Integer findIndexOf {...}

Integer findIndexOf(startIndex) {...}

Integer findLastIndexOf {...}

Integer findLastIndexOf(startIndex) {...}

List findIndexValues {...}

List findIndexValues(startIndex) {...}

Object inject(startValue) {temp, item -> ...}

List grep(Object classifier)
// uses classifier.isCase(item)

6

DZone, Inc. | www.dzone.com

Groovy
 tech facts at your fingertips

Reading XML
Decide to use the parser (for state-based processing) or the
slurper (for flow-based processing)

	 def parser = new XmlParser()
	 def slurper = new XmlSlurper()

Common parse methods:

The parse methods of parser and slurper return different ob-
jects (Node vs. GPathResult) but you can apply the following
methods on both:

	 result.name()
	 result.text()
	 result.toString()
	 result.parent()
	 result.children()
	 result.attributes()
	 result.depthFirst()
	 result.iterator() // see GDK hot tip

Shorthands for children, child, and attribute access:

Reading the first ten titles from a blog:

	 def url= 'http://'+
 		 'www.groovyblogs.org/feed/rss'
	 def rss = new XmlParser().parse(url)
	 rss.channel.item.title[0..9]*.text()

Writing XML
Groovy (Streaming-) MarkupBuilder allows you to produce
proper XML with logic while keeping a declarative style.

	 def b=new groovy.xml.MarkupBuilder()
	 b.outermost {
 		 simple()
 			 'with-attr' a:1, b:'x', 'content'
 			 10.times { count ->
 			 nesting { nested count }
 			 }
	 }

SQL, continued
Alternative with using a datasource
	 import org.hsqldb.jdbc.*
	 def source 	= new jdbcDataSource()
	 source.database 	= 'jdbc:hsqldb:mem:GInA'
	 source.user 	 = 'user-name'
	 source.password 	= 'password'
	 def db = new groovy.sql.Sql(source)

Submitting Queries
When a query contains wildcards, it is wise to use a
PreparedStatement. Groovy SQL does this automatically when
you supply either the list of values in an extra list or when the
statement is a GString. So each method below has three variants:

	 method('SELECT ... ')
	 method('SELECT ...?,?', [x,y])
	 method("SELECT ... $x,$y")

In the above, attributes can be fetched from each row by
index or by name

	 db.eachRow('SELECT a,b ...'){ row ->
 	 println row[0] + ' ' + row.b
	 }

Combine with GPath

	 List hits = db.rows('SELECT ...')
	 hits.grep{it.a > 0}

DataSet
For easy DB operations without SQL

	 def dataSet = db.dataSet(tablename)
	 dataSet.add (
 	 a: 1,
 	 b: 'something'
)
	 dataSet.each { println it.a }

	 dataSet.findAll { it.a < 2 }

In the last statement, the expression in the findAll closure will
map directly to a SQL WHERE clause.

Connecting to the DB
Getting a new Sql instance directly. For example, a HSQLDB

	 import groovy.sql.Sql

	 def db = Sql.newInstance(

 	 'jdbc:hsqldb:mem:GInA',

 	 	 'user-name',

 	 'password',

 	 'org.hsqldb.jdbcDriver')

XML

SQL

Returns Method name Parameters

boolean execute prepStmt

Integer executeUpdate prepStmt

void eachRow prepStmt
{ row -> }

void query prepStmt
{ resultSet -> ... }

List rows prepStmt

Object firstRow prepStmt

Shorthand Result

['elementName']
All child elements of that name

.elementName

[index] Child element by index

['@attributeName']

The attribute value stored under that name.'@attributeName'

.@attributeName

parse(org.xml.saxInputSource)

parse(File)

parse(InputStream)

parse(Reader)

parse(String uri)

parseText(String text)

Categories
Group of methods assigned at runtime to arbitrary classes
that fulfill a common purpose. Applies to one thread. Scope is
limited to a closure.

	 class IntCodec {
 		 static String encode(Integer self){self.toString()}
 		 static Integer decode(String self){self.toInteger()}
	 }
	 use(IntCodec) {42.encode().decode()}

ExpandoMetaClass
Same example but change applies to all threads and
unlimited scope.
	 Integer.metaClass.encode << {delegate.toString()}
	 String.metaClass.decode << {delegate.toInteger()}
	 42.encode().decode()

META PROGRAMMING

Groovy
7

 tech facts at your fingertips

DZone, Inc.
1251 NW Maynard
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2008 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher.

Version 1.0

$7
.9

5

ISBN-13: 978-1-934238-09-7
ISBN-10: 1-934238-09-0

9 781934 238097

5 0 7 9 5

ABOUT THE AUTHOR

Groovy in Action introduces Groovy
by example, presenting lots of
reusable code while explaining
the underlying concepts. Java
developers new to Groovy find a
smooth transition into the dynamic
programming world. Groovy experts
gain a solid reference that challenges

them to explore Groovy deeply and creatively.

RECOMMENDED BOOK

BUY NOW
books.dzone.com/books/groovy-in-action

Dierk König
Dierk is a committer to the Groovy and Grails project since its early days
and lead author of the renowned Gina (Groovy in Action) book. He works
for Canoo Engineering AG in Basel, Switzerland, as a software developer,
mentor, and coach. He enjoys his daily hands-on work in software projects
as well as publishing in leading magazines and speaking at international
conferences.

Dierk holds degrees in both business administration and computer science, and has
worked as a professional Java programmer for over 10 years while always keeping an eye
on evolving languages. He is an acknowledged reviewer and/or contributor to numerous
leading books on the topics of Extreme Programming, Test-Driven Development, Groovy,
and Grails. His strong focus on delivering quality software led him to founding the open-
source Canoo WebTest project and managing it since 2001.

Meta Programming, continued

Method Invocation Hooks
In your Groovy class, implement the method

	 Object invokeMethod(String name, Object args)

to intercept calls to unavailable methods.

Additionally, implement the interface GroovyInterceptable to
intercept also calls to available methods.

Implement

	 Object 	 getProperty(String name)

	 void 		 setProperty(

 		 String name, Object value)

to intercept property access.

A bit easier to handle are the variants

Object methodMissing(
 String name, Object args)
Object propertyMissing(

 String name, Object args)

that are called like the name suggests.

Instead of implementing the above methods, they can also
be added to the MetaClass of any arbitrary class (or object) to
achieve the same effect.

	 Integer.metaClass.methodMissing << {
 		 String name, Object args ->
 		 Math."$name"(delegate)
	 }
	 println 3.sin()

	 println 3.cos()

Get More FREE Refcardz. Visit refcardz.com now!

Upcoming Refcardz:

Core Seam

Core CSS: Part III

Hibernate Search

Equinox

EMF

XML

JSP Expression Language

ALM Best Practices

HTML and XHTML

Available:
Essential Ruby
Essential MySQL
JUnit and EasyMock
Getting Started with MyEclipse

Spring Annotations

Core Java

Core CSS: Part II

PHP

Getting Started with JPA

JavaServer Faces

Core CSS: Part I

Struts2

Core .NET

Very First Steps in Flex

C#

Groovy

NetBeans IDE 6.1 Java Editor

RSS and Atom

GlassFish Application Server
Silverlight 2

Visit refcardz.com for a complete listing of available Refcardz.

Design Patterns
Published June 2008

FREE

DZone communities deliver over 4 million pages each month to

more than 1.7 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheatsheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

