

DZone, Inc. | www.dzone.com

 tech facts at your fingertips

CONTENTS INCLUDE:

n	 String Literals
	n	 Delegates
n	 Declaring Events
n	 Generics
n	 Query Expressions (C# 3)
n	 Hot Tips and more...

As C# has evolved over the past few years, there’s more and
more to remember. While it’s still a compact language, it’s
helpful to have an aide mémoire available when you just can’t
remember that little bit of syntax which would be so handy right
now. You’ll find this reference card useful whatever type of C#
project you’re working on, and whichever version of C# you’re
using. It covers many topics, from the basics of string escape
sequences to the brave new world of query expressions and
LINQ in C# 3.

C# has two kinds of string literals—the regular ones, and
verbatim string literals which are of the form @"text". Regular
string literals have to start and end on the same line of source
code. A backslash within a string literal is interpreted as an
escape sequence as per table 1.

Delegates show up in various different contexts in .NET—
for event handlers, marshalling calls to the UI thread in Windows
Forms, starting new threads, and throughout LINQ. A delegate
type is known as a function type in other languages—it represents
some code which can be called with a specific sequence of
parameters and will return a specific type of value.

Delegate type declarations
Declaring a delegate type is like declaring a method, but with
the keyword delegate before it. For example:

 delegate bool StringPredicate(string x)

Any instance of the StringPredicate type declared above can be
invoked with a string parameter, and will return a Boolean value.

Creating delegate instances
Over the course of its evolution, C# has gained more and more
ways of creating delegate instances.

C# 1
In C# 1 only a single syntax was available to create a delegate
instance from scratch .

 new delegate-type-name (method-name)

Verbatim string literals can span multiple lines (the whitespace
is preserved in the string itself), and backslashes are not
interpreted as escape sequences. The only pseudo-escape
sequence is for double quotes—you need to include the double
quotes twice. Table 2 shows some examples of verbatim string
literals, regular string literal equivalents, and the actual resulting
string value.

ABOUT THIS REFCARD

STRING LITERALS

DELEGATES

C
#

w

w
w

.d
zo

n
e.

co
m

 G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

n Authoritative content
n Designed for developers
n Written by top experts
n Latest tools & technologies
n Hot tips & examples
n Bonus content online
n New issue every 1-2 weeks

Subscribe Now for FREE!
Refcardz.com

Get More Refcardz
(They’re free!)

Escape sequence Result in string

\' Single quote (This is usually used in character literals. Character
literals use the same escape sequences as string literals.)

\" Double quote

\\ Backslash

\0 Unicode character 0
(the “null” character used to terminate C-style strings)

\a Alert (Unicode character 7)

\b Backspace (Unicode character 8)

\t Horizontal tab (Unicode character 9)

\n New line (Unicode character 10 = 0xa)

\v Vertical quote (Unicode character 11 = 0xb)

\f Form feed (Unicode character 12 = 0xc)

\r Carriage return (Unicode character 13 = 0xd)

\uxxxx Unicode escape sequence for character with hex value xxxx. For
example, \u20AC is Unicode U+20AC, the Euro symbol.

\xnnnn
(variable length)

Like \u but with variable length—escape sequence stops at first
non-hexadecimal character. Very hard to read and easy to create
bugs—avoid!

\Uxxxxxxxx Unicode escape sequence for character with hex value xxxxxxxx—
generates two characters in the result, used for characters not in
the basic multilingual plane.

Verbatim string literal Regular string literal Result

@"Here is a backslash \" "Here is a backslash \\" Here is a backslash \

@"String on
two lines"

"String on\r\ntwo lines" String on
two lines

@"Say ""Hello,"" and wave." "Say \"Hello,\" and wave." Say "Hello," and wave.

@"ABC" "\u0041\x42\U00000043" ABC

C#
By Jon Skeet

→

Table 1. String/character escape sequences

Table 2. Sample verbatim and regular string literals

#16

C#
2

DZone, Inc. | www.dzone.com

 tech facts at your fingertips

Delegates, continued
The method name (known as a method group in the specification)
can be prefixed by a type name to use a static method from a
different type, or an expression to give the target of the delegate.
For instance, to create an instance of StringPredicate which will
return true when passed strings which are five characters long or
shorter, and false otherwise, you might use code like this:

 class LengthFilter
 {
 int maxLength;
 public LengthFilter(int maxLength)
 {
 this.maxLength = maxLength;
 }

 public bool Filter(string text)
 {
 return text.Length <= maxLength;
 }
 }
 // In another class
	 LengthFilter	fiveCharacters	=	new	LengthFilter(5);
 StringPredicate predicate =
						 new	StringPredicate(fiveCharacters.Filter);

C# 2
C# 2 introduced two important improvements in the ways we
can create delegate instances.

1. You no longer need the new delegate-type part:

	 			StringPredicate	predicate	=	fiveCharacters.Filter;

2. Anonymous methods allow you to specify the logic of
 the delegate in the same statement in which you create the
 delegate instance. The syntax of an anonymous method is
 simply the keyword delegate followed by the parameter list,
 then a block of code for the logic of the delegate.

All of the earlier code to create a StringPredicate can be
expressed in a single statement:

 StringPredicate predicate = delegate (string text)
	 	 {	return	text.Length	<=	5;	}	;

Note that you don’t declare the return type of the anonymous
method—the compiler checks that every return value within
the anonymous method can be implicitly converted to the
return type of the delegate. If you don’t need to use any of the
delegate’s parameters, you can simply omit them. For instance,
a StringPredicate which returns a result based purely on the
time of day might look like this:

 StringPredicate predicate = delegate
 { return DateTime.Now.Hour >= 12; } ;

One important feature of anonymous methods is that they
have access to the local variables of the method in which
they’re created. This implements the notion of closures in other
languages. There are important subtleties involved in closures,
so try to keep things simple. See http://csharpindepth.com/
Articles/Chapter5/Closures.aspx or chapter 5 of C# in Depth
(Manning, 2008) for more details.

C# 3
C# 3 adds lambda expressions which are like anonymous
methods but even more concise. In their longest form, lambda
expressions look very much like anonymous methods, but with
=> after the parameter list instead of delegate before it:

 StringPredicate predicate =
						 (string	text)	=>	{	return	text.Length	<=5;		};

However, lambda expressions have many special cases to
make them shorter:
	 n	 If the compiler can infer the types of the parameters
 (based on the context) then the types can be omitted.
 (C# 3 has far more powerful type inference than C# 2.)
	 n If there is only a single parameter and its type is inferred,
 the parentheses around the parameter list aren’t needed.
	 n If the body of the delegate is just a single statement, the
 braces around it aren’t needed—and for single-statement
 delegates returning a value, the return keyword isn’t needed.

Applying all of these shortcuts to our example, we end up with:

	 StringPredicate	predicate	=	text	=>	text.Length	<=5;

Events are closely related to delegates, but they are not the
same thing. An event allows code to subscribe and unsubscribe
using delegate instances as event handlers. The idea is that
when an event is raised (for instance when a button is clicked)
all the event handlers which have subscribed to the event are
called. Just as a property is logically just the two operations
get and set, an event is also logically just two operations:
subscribe and unsubscribe. To declare an event and explicitly
write these operations, you use syntax which looks like a property
declaration but with add and remove instead of get and set:

 public	event	EventHandler	CustomEvent
 {
 add
 {
										 //	Implementation	goes	here:	“value”	variable	is	the
										 //	handler	being	subscribed	to	the	event
 }
						 remove
 {
										 //	Implementation	goes	here:	“value”	variable	is	the
										 //	handler	being	unsubscribed	from	the	event
 }
 }

Many events are implemented using a simple variable to store
the subscribed handlers.

C# allows these events to be created simply, as field-like events:

	 public	event	EventHandler	SimpleEvent;

This declares both the event and a variable at the same time.
It’s roughly equivalent to this:

 private	EventHander	__hiddenField;
 public	event	EventHandler	SimpleEvent
 {
 add
 {
 lock(this)
 {
													 	 __hiddenField	+=	value;
 }
 }
						 remove
 {
 lock(this)
 {
													 	 __hiddenField	-=	value;
 }
 }
 }

DECLARING EVENTS

Hot
Tip

Don’t forget that a single delegate instance can
refer to many actions, so you only need one
variable even if there are multiple subscribers.

3

DZone, Inc. | www.dzone.com

C#
 tech facts at your fingertips

Declaring Events, continued

Everywhere you refer to SimpleEvent within the declaring type,
the compiler actually references __hiddenField, which is why
you’re able to raise the event by calling SimpleEvent(). Outside
the type declaration, however, SimpleEvent only refers to the
event. This duality has caused confusion for many developers—
you just need to remember that fields and events really are
very different things, and field-like events are just the compiler
doing some work for you.

Nullable value types were introduced in .NET 2.0 and C# 2, with
support being provided by the framework, the language and
the runtime. The principle is quite straightforward: a new struct
System.Nullable<T> has been introduced which contains a
value of type T (which must be another value type) and a flag
to say whether or not this value is "null". The HasValue property
returns whether or not it’s a null value, and the Value property
returns the embedded value or throws an exception if you try to
call it on a null value. This is useful when you want to represent
the idea of an unknown value.

The runtime treats nullable value types in a special manner when
it comes to boxing and unboxing. The boxed version of a
Nullable<int> is just a boxed int or a null reference if the
original value was a null value. When you unbox, you can either
unbox to int or to Nullable<int> (this follows for all nullable
value types—I’m just using int as a concrete example).

C# support for nullable value types
C# adds a sprinkling of syntactic sugar. Firstly, writing
Nullable<int> etc. can get quite tedious—so C# lets you just
add a question mark to the normal type name to mean “the
nullable version”. Thus Nullable<int> and int? are exactly the
same thing, and can be used entirely interchangeably.

The null-coalescing operator has been introduced to make
working with null values (both of nullable value types and
normal reference types) easier. Consider this expression:

 left ?? right

At execution time, first left is evaluated. If the result is non-null,
that’s the result of the whole expression and right is never
evaluated. Otherwise, right is evaluated and that’s the result of
the expression. The null-coalescing operator is right associative,
which means you can string several expressions together like this:

	 first	??	second	??	third	??	fourth	??	fifth

The simple way of understanding this is that each expression
is evaluated, in order, until a non-null result is found, at which
point the evaluation stops.

The biggest feature introduced in C# 2 was generics—the
ability to parameterise methods and types by type parameters.
It’s an ability which is primarily used for collections by most
people, but which has a number of other uses too. I can’t cover
generics in their entirety in this reference card—please read
online documentation or a good book about C# for a thorough
grounding on the topic—but there are some areas which are
useful to have at your fingertips. Following are some references:

Syntax: declaring generic types and methods
Only types and methods can be generic. You can have other
members which use the type parameter of declaring type (just
as the Current property of IEnumerable<T> is of type T, for
example) but only types and methods can introduce new type
parameters.

For both methods and types, you introduce new type
parameters by putting them after the name, in angle brackets.
If you need more than one type parameter, use commas to
separate them. Here are examples, both from List<T> (one
of the most commonly used generic types). (In MSDN a lot
of other interfaces are also listed, but they’re all covered by
ICollection<T> anyway.)

Generic type declaration:

	 public	class	List<T>	:	ICollection<T>

Generic method declaration:

	 public	List<TOutput>	ConvertAll<TOutput>

						 (Converter<T,	TOutput>	converter)

A few things to note here:

	 n	 You can use the newly introduced type parameters for the rest
 of the declaration—the interfaces a type implements, or its
 base type it derives from, and in the parameters of a method.

 n Even though ConvertAll uses both T and TOutput, it only
 introduces TOutput as a type parameter—the T in the
 declaration is the same T as for the List<T> as a whole.

→

NULLABLE VALUE TYPES

GENERICS

Hot
Tip

One thing to be aware of is that there is also
a nongeneric class System.Nullable, which
just provides some static support methods for

nullable types. Don’t get confused between Nullable
and Nullable<T>.

Hot
Tip

The C# compiler also lifts operators and
conversions—for instance, because int has an
addition operator, so does Nullable<int>.

Beware of one conversion you might not expect or want
to happen—a comparison between a normal non-nullable
value type, and the null literal. Here’s some code you
might not expect to compile:

 int i = 5;
 if (i == null)
 {
 ...
 }

How can it possibly be null? It can’t, of course, but the
compiler is using the lifted == operator for Nullable<int>
which makes it legal code. Fortunately the compiler issues
a warning in this situation.

Reference Resource

MSDN http://msdn.microsoft.com/en-us/library/512aeb7t.aspx

C# in Depth
(Manning Publications)

http://books.dzone.com/books/csharp

4

DZone, Inc. | www.dzone.com

C#
 tech facts at your fingertips

Generics, continued

	 n The parameter to ConvertAll is another generic type—
 in this case, a generic delegate type, representing a
 delegate which can convert a value from one type (T in
 this case) to another (TOutput).

	 n Method signatures can get pretty hairy when they use
 a lot of type parameters, but if you look at where each
 one has come from and what it’s used for, you can tame
 even the wildest declaration.

Type constraints
You can add type constraints to generic type or method
declarations to restrict the set of types which can be used, with
the where contextual keyword. For instance, Nullable<T> has
a constraint so that T can only be a non-nullable value type—
you can’t do Nullable<string> or Nullable<Nullable<int>>,
for example. Table 3 shows the constraints available.

In both methods and type declarations, the constraints come
just before the opening brace of the body of the type/method.
For example:

 // Generic type
 public class ResourceManager<T> where T : IDisposable
 {
 // Implementation
 }
 // Generic method
	 public	void	Use<T>(Func<T>	source,	Action<T>	action)
 where T : IDisposable
 {
 using (T item = source())
 {
 action(item);
 }
 }

Type constraints can be combined (comma-separated) so
long as you follow certain rules. For each type parameter:

	 n Only one of “class” or “struct” can be specified, and it
 has to be the first constraint.

	 n You can’t force a type parameter to inherit from two
 different classes, and if you specify a class it must be the
 first inheritance constraint. (However, you can specify a
 class, multiple interfaces, and multiple type parameters—
 unlikely as that may be!)

	 n You can’t force a type parameter to inherit from a sealed
 class, System.Object, System.Enum, System.ValueType or
 System.Delegate.

	 n You can’t specify a “class” constraint and specify a class
 to derive from as it would be redundant.

	 n You can’t specify a “struct” constraint and a “new()”
 constraint—again, it would be redundant.

	 n A “new()” constraint always comes last.

You can specify different sets of constraints for different type
parameters; each type parameter’s constraints are introduced
with an extra where. All of the examples below would be
valid type declarations (and the equivalent would be valid for
method declarations too):

 class	Simple<T>	where	T	:	Stream,	new()
	 class	Simple<T>	where	T	:	struct,	IComparable<T>
	 class	Simple<T,	U>	where	T	:	class	where	U	:	struct
	 class	Odd<T,	U>	where	T	:	class	where	U	:	struct,	T
	 class	Bizarre<T,	U,	V>	where	T	:	Stream,	IEnumerable,	
																																					IComparable,	U,	V

The Odd class may appear to have constraints which are
impossible to satisfy—how can a value type inherit from a
reference type? Remember that the “class” constraint also
includes interfaces, so Odd<IComparable,int> would be valid,
for example. It’s a pretty strange set of constraints to use though.

Using type parameters
We’ve seen that you can use type parameters in type and
method declarations, but you can do much more with them,
treating them much like any “normal” type name:
	 n Declare variables using them, such as:

 T currentItem;
 T[] buffer;
	 	 	 IEnumerable<T>	sequence;

	 n Use typeof to find out at execution time which type is
 actually being used:

 Type t = typeof(T);

	 n Use the default operator to get the default value for that
 type. This will be null for reference types, or the same result
 returned by new T() for value types. For example:

 T defaultValue = default(T);

	 n Create instances of other generic classes:

	 	 	 sequence	=	new	LinkedList<T>();

Lack of variance:
why a List<Banana> isn’t a List<Fruit>
Probably the most frequently asked question around .NET
generics is why it doesn’t allow variance. This comes in two
forms: covariance and contravariance—but the actual terms
aren’t as important as the principle. Many people initially
expect the following code to compile:

 List<Banana> bananas = new List<Banana>();
 List<Fruit> fruit = bananas;

It would make a certain amount of sense for that to work – after
all, if you think of it in human language, a collection of bananas
is a collection of fruit. However, it won’t compile for a very good
reason. Suppose the next line of code had been:

	 fruit.Add(new	Apple());

That would have to compile—after all, you can add an Apple to
a List<Fruit> with no problems... but in this case our list of fruit
is actually meant to be a list of bananas, and you certainly can’t
add an apple to a list of bananas!

Syntax Notes

T : class T must be a reference type—a class or delegate, an array, or an interface

T : struct T must be a non-nullable value type (e.g. int, Guid, DateTime)

T : Stream
T : IDisposable
T : U

T must inherit from the given type, which can be a class, interface, or
another type parameter. (T can also be the specified type itself – for
instance, Stream satisfies T : Stream.)

T : new() T must have a parameterless constructor. This includes all value types.

Table 3. Type constraints for generic type parameters

→

FYI
Note that the typeof operator can be used to get
generic types in their “open” or “closed” forms,
e.g. typeof(List<>) and typeof(List<int>). Re-
flection with generic types and methods is tricky,

but MSDN (http://msdn.microsoft.com/library/System.Type.
IsGenericType.aspx) has quite good documentation on it.

5

DZone, Inc. | www.dzone.com

C#
 tech facts at your fingertips

Generics, continued

Extension methods were introduced in C# 3. They’re static
methods declared in static classes—but they are usually used
as if they were instance methods of a completely different type!
This sounds bizarre and takes a few moments to get your head
round, but it’s quite simple really. Here’s an example:
 using System;

	 public	static	class	Extensions
 {
						 public	static	string	Reverse(this	string	text)
 {
								 	 char[]	chars	=	text.ToCharArray();
									 	 Array.Reverse(chars);
 return new string(chars);
 }
 }

Note the use of the keyword this in the declaration of the
text parameter in the Reverse method. That’s what makes it
an extension method—and the type of the parameter is what
makes it an extension method on string. It’s useful to be able to
talk about this as the extended type of the extension method,
although that’s not official terminology.

The body of the method is perfectly ordinary. Let’s see it in use:
 class Test
 {
						 static	void	Main()
 {
									 	 Console.WriteLine	("dlrow	olleH".Reverse());
 }
 }

There’s no explicit mention of the Extensions class, and we’re
using the Reverse method as if it were an instance method on
string. To let the compiler know about the Extensions class, we
just have to include a normal using directive for the namespace
containing the class. That’s how IEnumerable<T> seems to
gain a load of extra methods in .NET 3.5—the System.Linq
namespace contains the Enumerable static class, which has lots
of extension methods. A few things to note:
	 n Extension methods can only be declared in static
 non-nested classes.
	 n If an extension method and a regular instance method
 are both applicable, the compiler will always use the
 instance method.
	 n Extension methods work under the hood by the
 compiler adding the System.Runtime.CompilerServices.	
	 	 ExtensionAttribute attribute to the declaration. If you want
 to target .NET 2.0 but still use extension methods, you just
 need to write your own version of the attribute. (It doesn’t
 have any behaviour to implement.)
	 n The extended type can be almost anything, including value
 types, interfaces, enums and delegates. The only restriction
 is that it can’t be a pointer type.

	 n The first parameter of an extension method can’t have any
 other modifiers such as out or ref.
	 n Unlike normal instance methods, extension methods can
 be called “on” a null reference. In other words, don’t
 assume that the first parameter will be non-null.
	 n Extension methods are fabulous for allowing the result
 of one method to be the input for the next. Again, this is
 how LINQ to Objects works—many of the extension
 methods return an IEnumerable<T> (or another interface
 inheriting from it) which allows another method call to
 appear immediately afterwards. For example:

	 	 	 people.Where(p	=>	p.Age	>=18
 .OrderBy(p => p.LastName)
 .Select(p => p.FullName)

FYI
Unfortunately, when this becomes a problem
you just have to work around it. That may mean
copying data into the right kind of collection, or

it may mean introducing another type parameter somewhere
(i.e. making a method or type more generic). It varies on a
case-by-case basis, but you’re in a better position to imple-
ment the workaround when you understand the limitation.

If you've seen any articles at all on C# 3, you'll almost certainly
have seen a query expression, such as this:

 from person in people
	 where	person.Age	>=	18
 orderby person.LastName

 select person.FullName

Query expressions are the “LIN” part of LINQ—they provide
the language integration. The query expression above looks
very different from normal C#, but it is extremely readable. Even
if you've never seen one before, I expect you can understand
the basics of what it's trying to achieve.

Query expressions are translated into “normal” C# 3 as a
sort of pre-processor step. This is done in a manner which
knows nothing about LINQ itself—there are no ties between
query expressions and the System.Linq namespace, or
IEnumerable<T> and IQueryable<T>. The translation rules are all
documented in the specification—there’s no magic going on, and
you can do everything in query expressions in “normal” code too.

The details can get quite tricky, but table 4 gives an example
of each type of clause available, as well as which methods are
called in the translated code.

QUERY EXPRESSIONS (C# 3)

EXTENSION METHODS

Clause Full example Methods called for clause

First “from”
(implicit type)

from p in people
select p

n/a

First “from”
(explicit type)

from Person p in people
select p

Cast<T>
(where T is the specified type)

Subsequent
“from”

from p in people
from j in jobs
select new { Person=p, Job=j }

SelectMany

where from p in people
where p.Age >= 18
select p

Where

select from p in people
select p.FullName

Select

let from p in people
let income = p.Salary +
 p.OtherIncome
select new { Person=p,
 Income=income}

Select

orderby from p in people
orderby p.LastName,
 p.FirstName,
 p.Age descending

OrderBy
OrderByDescending
ThenBy
ThenByDescending
(depending on clauses)

join from p in people
join job in jobs
 on p.PrimarySkill
 equals job.RequiredSkill
select p.FullName + ": "
 + job.Description

Join

Table 4. Clauses used in query expressions

C#
6

 tech facts at your fingertips

DZone, Inc.
1251 NW Maynard
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2008 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher. Reference: C# in Depth, Jon Skeet, Manning Publications, April 2008.

Version 1.0

$7
.9

5

ISBN-13: 978-1-934238-15-8
ISBN-10: 1-934238-15-5

9 781934 238158

5 0 7 9 5

ABOUT THE AUTHOR

C# in Depth is designed to bring
you to a new level of programming
skill. It dives deeply into key C#
topics—in particular the new ones
in C# 2 and 3. Make your code
more expressive, readable and
powerful than ever with LINQ and
a host of supporting features.

RECOMMENDED BOOK

BUY NOW
books.dzone.com/books/csharp

Jon Skeet
Jon Skeet is a software engineer with experience in both C# and Java,
currently working for Google in the UK. Jon has been a C# MVP since 2003,
helping the community through his newsgroup posts, popular web articles,
and a blog covering C# and Java. Jon’s recent book C# in Depth looks
at the details of C# 2 and 3, providing an ideal guide and reference for
those who know C# 1 but want to gain expertise in the newer features.

Publications
Author of C# in Depth (Manning, 2008), co-author of Groovy in Action (Manning, 2007)

Blog
http://msmvps.com/jon.skeet

Web Site
http://pobox.com/~skeet/csharp

Clause Full example Methods called for clause

join ... into from p in people
join job in jobs
 on p.PrimarySkill
 equals job.RequiredSkill
 into jobOptions
select p.FullName + ": "
 + jobOptions.Count()

GroupJoin

group ... by from p in people
group p by p.LastName

GroupBy

Table 4. Clauses used in query expressions

Query Expressions (C#3), continued

If a “select” or “group ... by” clause is followed by “into”,
it effectively splits the query into two. For instance, take the
following query, which shows the size of all families containing
more than 4 people:

 var	result	=	from	p	in	people
 group p by p.LastName into family
	 	 let	size	=	family.Count()
 where size > 4
	 	 select	family.Key	+	":	"	+	size

We can split the above into two separate query expressions:

 var	tmp	=	from	p	in	people
 group p by p.LastName;

	 var	result	=	from	family	in	tmp
														 let	size	=	family.Count()
 where size > 4
														 select	family.Key	+	":	"	+	size;

Splitting things up this way can help to turn a huge query into several
more manageable ones, and the results will be exactly the same.

This is only scratching the surface of LINQ. For further details,
I recommend reading LINQ in Action (Manning, 2008).

Get More FREE Refcardz. Visit refcardz.com now!

Upcoming Refcardz:

Core Seam

Core CSS: Part III

Hibernate Search

Equinox

EMF

XML

JSP Expression Language

ALM Best Practices

HTML and XHTML

Available:
Essential Ruby
Essential MySQL
JUnit and EasyMock
Getting Started with MyEclipse

Spring Annotations

Core Java

Core CSS: Part II

PHP

Getting Started with JPA

JavaServer Faces

Core CSS: Part I

Struts2

Core .NET

Very First Steps in Flex

C#

Groovy

NetBeans IDE 6.1 Java Editor

RSS and Atom

GlassFish Application Server

Silverlight 2

Visit refcardz.com for a complete listing of available Refcardz.

Design Patterns
Published June 2008

FREE

DZone communities deliver over 4 million pages each month to

more than 1.7 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheatsheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

