

DZone, Inc. | www.dzone.com

#18

CONTENTS INCLUDE:

n	 Common .NET Types
	n	 Formatting Strings
n	 Declaring Events
n	 Generics
n	 Query Expressions (C# 3)
n	 Tips and more...

The .NET Framework has been growing steadily since its birth—
the API for .NET 3.5 is far bigger than that of .NET 1.0. With so
much to remember, you’ll find this refcard useful for those core
pieces of information which you need so often but which (if
you’re like me) you can never quite recall without looking them
up—topics like string formatting, and how to work with dates
and times effectively. This reference card deals only with the
core of .NET, making it applicable for whatever kind of project
you’re working on.

The .NET Framework has a massive set of types in it, but some
are so important that C# and VB have built-in keywords for
them, as listed in table 1.

One common task which always has me reaching for MSDN
is working out how to format numbers, dates and times as
strings. There are two ways of formatting in .NET: you can
call ToString directly on the item you wish to format, passing
in just a format string or you can use composite formatting
with a call to String.Format to format more than one item
at a time, or mix data and other text. In either case you can
usually specify an IFormatProvider (such as CultureInfo) to help
with internationalization. Many other methods in the .NET
Framework also work with composite format strings, such as
Console.WriteLine and StringBuilder.AppendFormat.

Composite format strings consist of normal text and format
items containing an index and optionally an alignment and
a format string. Figure 1 shows a sample of using composite
format string, with each element labeled.

When the alignment isn’t specified you omit the comma; when
the format string isn’t specified you omit the colon. Every format
item must have an index as this says which of the following
arguments to format. Arguments can be used any number of
times, and in any order. In general, the alignment is used to

Apart from Object and String, all the types above are value
types. When choosing between the three floating point types
(Single, Double and Decimal):
	 n	 For financial calculations (i.e. when dealing with money),
 use Decimal

 n	 For scientific calculations (i.e. when dealing with physical
 quantities with theoretically infinite precision, such as
 weights), use Single or Double

The Decimal type is better suited for quantities which occur
in absolutely accurate amounts which can be expressed as
decimals: 0.1, for example, can be expressed exactly as a
decimal but not as a double. For more information, read http://
pobox.com/~skeet/csharp/decimal.html and http://pobox.
com/~skeet/csharp/floatingpoint.html.

ABOUT .NET

COMMON .NET TYPES

FORMATTING STRINGS

C
o

re
 .

N
E

T

w

w
w

.d
zo

n
e.

co
m

 G

e
t

M
o

re
 R

e
fc

ar
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

n Authoritative content
n Designed for developers
n Written by top experts
n Latest tools & technologies
n Hot tips & examples
n Bonus content online
n New issue every 1-2 weeks

Subscribe Now for FREE!
Refcardz.com

Get More Refcardz
(They’re free!)

Core .NET
By Jon Skeet

→
Table 1. Common types and their language-specific aliases

Figure 1. The anatomy of a call to String.Format

C# Alias VB Keyword .NET Type Size(bytes)

object Object System.Object 12 (8 bytes are normal overhead for all
reference types)

string String System.String Approx. 20 + 2*(length in characters)

bool Boolean System.Boolean 1

byte Byte System.Byte 1

sbyte SByte System.SByte 1

short Short System.Int16 2

ushort UShort System.UInt16 2

int Integer System.Int32 4

uint UInteger System.UInt32 4

long Long System.Int64 8

ulong ULong System.UInt64 8

float Single System.Single 4 (accurate to 7 significant digits)

double Double System.Double 8 (accurate to 15 significant digits)

decimal Decimal System.Decimal 16 (accurate to 28 significant digits)

char Char System.Char 2

n/a Date System.DateTime 8

Method call

Format item:
Index=0
Alignment= -10
Format String=
(Unspecified)

Format item:
Index=1
Alignment=8
Format String=p2

Object list
(items to be
formatted)Composite format string

String.Format ("Name: {0,-10} Score: {1,8:p2}", name, score)

Core .NET
2

DZone, Inc. | www.dzone.com

 tech facts at your fingertips

Formatting Strings, continued
specify a minimum width – if this is negative, the result is padded
with spaces to the right; if it’s positive, the result is padded with
spaces to the left. The effect of the format string depends on
the type of item being formatted. To include a brace as normal
text in a composite format string (instead of it indicating the
beginning or end of a format item), just double it. For example,
the result of String.Format("{{0}}") is "{0}".

Numeric format strings
Numbers can be formatted in two ways: with standard or
custom format strings. The standard ones allow some flexibility
in terms of the precision and style, but the custom ones can be
used for very specific formats.

Standard numeric format strings
Standard numeric format strings all take the form of a single
letter (the format specifier) and then optionally one or two
digits (the precision). For example, a format string of N5 has
N as the format specifier and 5 as the precision. The exact
meaning of the precision depends on the format specifier,
as described in table 2. If no precision is specified a suitable
default is used based on the current IFormatProvider.

Custom numeric format strings
To format numbers in a custom fashion, you provide a
pattern to the formatter, consisting of format specifiers
as shown in table 3.

Table 4 shows examples of custom numeric format strings,
when formatted with a US English format provider.

Date and time format strings
Dates and times tend to have more cultural sensitivity than
numbers—the ordering of years, months and days in dates
varies between cultures, as do the names of months and so
forth. As with numbers, .NET allows both standard and custom
format strings for dates and times.

Custom numeric format strings, continued

Table 2. Standard numeric format strings

Table 3. Custom numeric format specifiers

Table 4. Sample custom numeric format strings and their results

Format Description Precision Examples (with US
English IFormatProvider)

C or c Currency – exact
format is specified by
NumberFormatInfo

Number of
decimal places

123.4567, “c” =>
“$123.46”
123.4567, “c3” =>
“$123.457”

D or d Decimal (integer types
only)

Minimum number
of digits

123, “d5” => “00123”
123, “d2” => “123”

E or e Scientific – used to
express very large
or small numbers in
exponential format.

Number of digits
after the decimal
point

123456, “e2” =>
“1.23e+005”
123456, “E4” =>
“1.2345E+005”

F or f Fixed point Number of
decimal places

123.456, “f2” => “123.46”
123.4, “f3” => “123.400”

G or g General—chooses
fixed or scientific
notation based on
number type and
precision

Depends on
exact format used
(see http://msdn.
microsoft.com/
en-us/library/
dwhawy9k.aspx
for details)

123.4, “g2” => “1.2e+02”
123.4, “g6” => “123.4”
123.400m, “g” =>
“123.400”

N or n Number—decimal
form including
thousands indicators
(e.g. commas)

Number of
decimal places

1234.567, “n2” =>
“1,234.57”

P or p Percentage—number
is multiplied by 100
and percentage sign is
applied

Number of
decimal places

0.1234, “p1” => “12.3 %”

R or r Round-trip—if you later
parse the result, you’re
guaranteed to get the
original number.

Ignored 0.12345, “r” => 0.12345

X or x Hexadecimal (integer
types only). The case of
the result is the same as
the case of the format
specifier.

Minimum number
of digits

123, “x” => “7b”
123, “X4” => “007B”

Format
Specifier

Name Description

0 Zero placeholder Always formatted as 0 or a digit from the original number

Decimal
placeholder

Formatted as a digit when it’s a significant digit in the
number, or omitted otherwise

. Decimal point Formatted as the decimal point for the current
IFormatProvider

, Thousands
separator and
number scaling
specifier

When used between digit or zero placeholders,
formatted as the group separator for the current
IFormatProvider. When it’s used directly before a
decimal point (or an implicit decimal point) each
comma effectively means “divide by a thousand”.

% Percentage
placeholder

Formatted as the percent symbol for the current
IFormatProvider, and also multiplies the number by 100

‰ (\u2030) Per mille
placeholder

Similar to the percentage placeholder, but the
number is multiplied by 1000 instead of 100, and the
per mille symbol for the culture is used instead of
the percent symbol.

E0, e0,
E+0, e+0,
E-0, or e-0

Scientific
notation

Formats the number with scientific (exponential)
notation. The number of 0s indicates the minimum
number of digits to use when expressing the exponent.
For E+0 and e+0, the exponent’s sign is always
expressed; otherwise it’s only expressed for
negative exponents.

" or ' Quoting for
literals

Text between quotes is formatted exactly as it
appears in the format string (i.e. it’s not interpreted
as a format pattern)

; Section
separator

A format string can consist of up to three sections,
separated by semi-colons. If only a single section is
present, it is used for all numbers. If two sections are
present, the first is used for positive numbers and
zero; the second is used for negative numbers. If
three sections are present, they are used for positive,
negative and zero numbers respectively.

\c Single-character
escape

Escapes a single character, i.e. the character c is
displayed verbatim

Number Format String Output Notes

123 ####.00# 123.00 0 forces a digit; # doesn’t

12345.6789 ####.00# 12345.679 Value is rounded to 3 decimal places

1234 0,0.# 1,234 Decimal point is omitted when
not required

1234 0,.#### 1.234 Value has been divided by 1000

0.35 0.00% 35.00% Value has been multiplied by 100

0.0234 0.0\u2030 23.4‰

0.1234 0.00E0 1.23E-1 Exponent specified with single digit

1234 0.00e00 1.23e03 Exponent is specified with two digits,
but sign is omitted

1234 ##'text0'### 1text0234 The text0 part is not parsed as a
format pattern

12.34 0.0;000.00;
'zero'

12.3 First section is used

-12.34 0.0;000.00;
'zero'

012.34 Second section is used

0 0.0;000.00;
'zero'

zero Third section is used

3

DZone, Inc. | www.dzone.com

Core .NET
 tech facts at your fingertips

Standard date and time format strings
Standard date and time format strings are always a single
character. Any format string which is longer than that (including
whitespace) is interpreted as a custom format string. The round-
trip (o or O), RFC1123 (r or R), sortable (s) and universal sortable
(u) format specifiers are culturally invariant—in other words, they
will produce the same output whichever IFormatProvider is used.
Table 5 lists all of the standard date and time format specifiers.

Custom date and time format strings
As with numbers, custom date and time format strings form
patterns which are used to build up the result. Many of the format
specifiers act differently depending on the number of times
they’re repeated. For example, ‘d’ is used to indicate the day—for
a date falling on a Friday and the 5th day of the month, “d” (in
a custom format string) would produce “5”, “dd” would produce
“05”, “ddd” would produce “Fri” and “dddd” would produce
“Friday” (in US English—other cultures will vary). Table 6 shows
each of the custom date and time format specifiers, describing
how their meanings change depending on repetition.

Custom date and time format strings, continued

Typically only years within the range 1-9999 can be represented,
but there are some exceptions due to cultural variations. See
http://msdn.microsoft.com/en-us/library/8kb3ddd4.aspx for
more details on this and all of the formatting topics.

Table 7 shows examples of custom date and time format strings,
when formatted with a US English format provider. (The date
and time in question is the same one used to demonstrate
the standard format strings.)

→
Table 6. Custom date and time format specifiers

Table 5. Standard date and time format specifiers

Format
Specifier

Description Example (US English)

d Short date pattern 5/30/2008

D Long date pattern Friday, May 30, 2008

f Full date/time pattern (short time) Friday, May 30, 2008 8:40 PM

F Full date/time pattern (long time) Friday, May 30, 2008 8:40:36 PM

g General date/time pattern (short time) 5/30/2008 8:40 PM

G General date/time pattern (long time) 5/30/2008 8:40:36 PM

M or m Month day pattern May 30

O or o Round-trip pattern 2008-05-30T20:40:36.8460000+01:00

R or r RFC1123 pattern
(Assumes UTC: caller must convert.)

Fri, 30 May 2008 19:40:36 GMT

s Sortable date pattern
(ISO 8601 compliant)

2008-05-30T20:40:36

t Short time pattern 8:40 PM

T Long time pattern 8:40:36 PM

u Universal sortable date pattern
(Assumes UTC: caller must convert.)

2008-05-30 19:40:36Z

U Universal full date/time pattern
(Format automatically converts to UTC.)

Friday, May 30, 2008 7:40:36 PM

Y or y Year month pattern May, 2008

Format
Specifier

Meaning Notes and variance by repetition

d, dd, ddd,
dddd

Day d 1-31
dd 01-31
ddd Abbreviated day name (e.g. Fri)
dddd Full day name (e.g. Friday)

f, ff ... fffffff Fractions of a
second

f Tenths of a second
ff Hundredths of a second (etc)

The specified precision is always used, with
insignificant zeroes included if necessary

F, FF ...
FFFFFFF

Fractions of a
second

Same as f ... fffffff except insignificant zeroes
are omitted

g Period or era For example, “A.D.”

h, hh Hour in 12 hour
format

h 1-12
hh 01-12

H, HH Hour in 24 hour
format

H 0-23
HH 00-23

K Time zone offset For example, +01:00; outputs Z for UTC values.

m, mm Minute m 0-59
mm 00-59

M ...
MMMM

Month M 1-12
MM 01-12
MMM Abbreviated month name (e.g. Jan)
MMMM Full day name (e.g. January)

s, ss Seconds s 0-59
ss 00-59

Format
Specifier

Meaning Notes and variance by repetition

t, tt AM/PM
designator

t First character only (e.g. “A” or “P”)
tt Full designator (e.g. “AM” or “PM”)

y ... yyyyy Year y 0-99 (least significant two digits are used)
yy 00-99 (least significant two digits are used)
yyy 000-9999 (three or four digits as necessary)
yyyy 0000-9999
yyyyy 00000-99999

z ... zzz Offset from
UTC (of local
operating system)

z -12 to +13, single or double digit
zz -12 to +13, always double digit (e.g. +05)
zzz -12:00 to +13:00, hours and minutes

: Time separator Culture-specific symbol used to separate hours from
minutes, etc.

/ Date separator Culture-specific symbol used to separate months from
days, etc.

' Quoting for literals Text between two apostrophes is displayed verbatim.

%c Single custom
format specifier

Uses c as a custom format specifier; used to force a
pattern to be interpreted as a custom instead of a
standard format specifier.

\c Single-character
escape

Escapes a single character, i.e. the character c is
displayed verbatim.

Table 7. Sample custom date and time format strings and their results

Table 6. Custom date and time format specifiers, continued

Format String Output Notes

yyyy/MM/dd’T’HH:mm:ss.fff 2008/05/30T20:40:36.846 T is quoted for clarity only—T is
not a format specifier, so would
have been output anyway.

d MMMM yy h:mm tt 30 May 08 8:40 PM 12 hour clock, single digit used

HH:mm:sszzz 20:40:36+01:00 24 hour clock, always two digits

yyyy g 2008 A.D. Rarely used—
era is usually implicit

yyyyMMddHHmmssfff 20080530204036846 Not very readable, but easily
sortable—handy for log
filenames. Consider using
UTC though.

The support in .NET for dates and times has changed significantly
over time. It’s never simple to do this properly (particularly taking
time zones and internationalization into account, along with all
the normal worries about leap years and other idiosyncrasies) but
the support has definitely improved. A full discussion of all the
subtleties is beyond the scope of this reference card, but MSDN
has an excellent page which goes into more depth: http://msdn.
microsoft.com/en-us/library/bb384267.aspx.

I suggest you read that article and other resources, but use this
reference card as a quick aide mémoire.

DateTime and TimeZone have been in the .NET Framework
since version 1.0. DateTime simply stores the number of ticks
since midnight on January 1st, 1 A.D.— where a tick is 100ns.
This structure was improved in .NET 2.0 to allow more sensible
time zone handling, but it’s still not entirely satisfactory. It’s useful
when you don’t care about time zones, but newer alternatives
have been introduced. TimeZone is sadly restricted to retrieving
the time zone of the local machine.

WORKING WITH DATES AND TIMES

4

DZone, Inc. | www.dzone.com

Core .NET
 tech facts at your fingertips

Working with dates and times, continued

.NET 2.0SP1 (which is part of .NET 3.0SP1 and .NET 3.5)
introduced DateTimeOffset which is effectively a DateTime
with an additional Offset property representing the difference
between the local time and UTC. This unambiguously
identifies an instant in time. However, it’s not inherently aware
of time zones—if you add six months, the result will have the
same Offset even if the “logical” answer would be different
due to daylight saving time.

.NET 3.5 introduced TimeZoneInfo which is a much more
powerful class for representing time zones than TimeZone—
the latter is now effectively deprecated. TimeZoneInfo allows
you access to all the time zones that the system knows about,
as well as creating your own. It also contains historical data
(depending on your operating system) instead of assuming that
every year has the same rules for any particular time zone.

Tips
	 n If you’re using .NET 2.0SP1 or higher, you should consider
 DateTimeOffset to be the “default” date and time type.
 Some databases are easier to work with using DateTime,
 however.

	 n It is usually a good idea to use a UTC representation for as
 much of the time as possible, unless you really need to
 preserve an original time zone. Convert to local dates and
 times for display purposes.

	 n If you need to preserve the original time zone instead
 of just the offset at a single point in time, keep the relevant
 TimeZoneInfo.

 n There are situations where the time zone is irrelevant,
 primarily when either just the date or just the time is
 important. Identify these situations early and make sure
 you don’t apply time zone offsets.

 n In almost all commonly used formats:

 10:00:00.000+05:00 means “the local time is 10am;
 in UTC it’s 5am”

 10:00:00.000-05:00 means “the local time is 10am;
 in UTC it’s 3pm”

	 n DateTimeOffset.Offset is positive if the local time is later
 than UTC, and negative if the local time is earlier than UTC.
 In other words, Local = UTC + Offset

In addition to the types described above, the Calendar and
DateTimeFormatInfo classes in the System.Globalization
namespace are important when parsing or formatting dates
and times. However, their involvement is usually reasonably
well hidden from developers.

Text encodings, continued

will display to your user, you need to make sure you can
accurately move textual data around—which means you
need to know about encodings.

Whenever you use a string in .NET, it uses Unicode for its
internal representation. Unicode is a standard way of converting
characters (‘a’, ‘b’, ‘c’, etc.) into numbers (97, 98, 99 respectively,
in this case). Each number is a 16 bit unsigned integer—in other
words it’s in the range 0-65535.. You need to be careful how you
read your text to start with, and how you output it. This almost
always involves converting between the textual representation
(your string) and a binary representation (plain bytes)—either in
memory or to disk, or across a network. This is where different
encodings represent characters differently.

The System.Text.Encoding class is at the heart of .NET’s encoding
functionality. Various classes are derived from it, but you rarely
need to access them directly. Instead, properties of the Encoding
class provide instances for various common encodings. Others
(such as ones using Windows code pages) are obtained by calling
the relevant Encoding constructor. Table 8 describes the
encodings you’re most likely to come across.

→

Internationalization (commonly abbreviated to i18n) is
another really thorny topic. Guy Smith-Ferrier’s book, .NET
Internationalization (Addison-Wesley Professional, 2006)
is probably the definitive guide. However, before you even
consider what resources, localized strings, and so forth, you

TEXT ENCODINGS

FYI

There are actually more than 65536 characters in
Unicode, so some have to be stored as pairs of
surrogate characters. Most of the time you
don’t need to worry about this—most useful

characters are in the Basic Multilingual Plane (BMP).

Name How To Create Description

UTF-8 Encoding.UTF8 The most common multi-byte representation,
where ASCII characters are always represented
as single bytes, but other characters can take
more—up to 3 bytes for a character within the
BMP. This is usually the encoding used by .NET
if you don’t specify one (for instance, when
creating a StreamReader). When in doubt, UTF-8
is a good choice of encoding.

System
default

Encoding.Default This is the default encoding for your operating
system—which is not the same as it being the
default for .NET APIs! It’s typically a Windows
code page—1252 is the most common value for
Western Europe and the US, for example.

UTF-16 Encoding.Unicode,

Encoding.
BigEndianUnicode

UTF-16 represents each character in a .NET
string as 2 bytes, whatever its value. Encoding.
Unicode is little-endian, as opposed to Encoding.
BigEndianUnicode.

ASCII Encoding.ASCII ASCII contains Unicode values 0-127. It does not
include any accented or “special” characters.
“Extended ASCII” is an ambiguous term usually
used to describe one of the Windows code pages.

Windows
code page

Encoding.
GetEncoding(page)

If you need a Windows code page encod-
ing other than the default, use Encoding.
GetEncoding(Int32).

ISO-8859-1
ISO-Latin-1

Encoding.
GetEncod-
ing(28591)

Windows code page 28591 is also known as
ISO-Latin-1 or ISO-8859-1, which is reasonably
common outside Windows.

UTF-7 Encoding.UTF7 This is almost solely used in email, and you’re
unlikely to need to use it. I only mention it because
many people think they’ve got UTF7-encoded text
when it’s actually a different encoding entirely.

Table 8. Common text encodings

5

DZone, Inc. | www.dzone.com

Core .NET
 tech facts at your fingertips

Monitors and wait handles, continued

Threading is an exciting field, but it can be hugely complex to
implement. In theory, if you’re not too ambitious, it should be
simple to follow these rules. In practice, keeping track of what’s
going on can be extremely tricky.

For Windows Forms and WPF:
	 n Don’t perform any tasks on the UI thread which may take
 a long time or block. This will result in an unresponsive UI.

	 n Don’t access controls from a non-UI thread except as a way
 to invoke an operation on the UI thread (with Control.Invoke/
 BeginInvoke for Windows Forms and Dispatcher.Invoke/
 BeginInvoke for WPF).

	 n When invoking an operation on the UI thread with Invoke
 (which blocks until the operation completes) avoid holding
 any locks when you make the call—if the UI thread attempts
 to acquire the same lock, your program will deadlock.

In general:
	 n If the same data is going to be accessed and potentially
 changed in more than one thread, you’ll need to synchronize
 access, usually with a lock (C#) or SyncLock (VB) statement.
 Immutable objects can be freely shared between threads.

	 n Try to avoid locking for any longer than you have to. Be careful
 what you call while you own a lock—if the code you call
 acquires any locks as well, you could end up with a deadlock.

	 n Avoid locking on references which other code may try to
 lock on—in particular, avoid locking on this (C#) / Me (VB),
 and instances of Type or String. A private read-only variable
 created solely for the purpose of locking is usually a good idea.

	 n If you ever need to acquire more than one lock at a time,
 make sure you always acquire those locks in the same order.
 Deadlock occurs when one thread owns lock A and tries
 to acquire lock B, while another thread owns lock B and is
 trying to acquire lock A.

	 n Suspending, interrupting or aborting a thread can leave
 your application in a highly unpredictable state unless you
 are extremely careful. These are inappropriate actions in
 almost all situations: consult a dedicated threading book
 before using them.

	 n When waiting on one thread for something to occur on another,
 rather than going round a loop and sleeping each time, use
 Monitor.Wait or WaitHandle.WaitOne, and signal the monitor
 or handle in the other thread. This is more efficient during the
 wait and more responsive when you can proceed.

Monitors and wait handles
Monitors are the “native” synchronization primitives in .NET.
There is a monitor logically associated with every object (although
the monitor is actually lazily created when it’s first needed). All
members of the System.Threading.Monitor class are static—you
pass in an object reference, and it is that object’s monitor which
is used by the method.

Wait handles are .NET wrappers around the Win32 synchronization
primitives, and all derive from the System.Threading.WaitHandle
class. Wait handles provide some extra abilities over monitors—in
particular, as well as being able to wait until one handle is available
(WaitOne), you can wait on multiple handles at a time, either until
they’re all available (WaitAll) or until any one of them is available
(WaitAny). In addition, wait handles can be used across multiple
processes for inter-process synchronization. There are four
commonly used WaitHandle subclasses, shown in table 10.

Some C# 3.0 and VB 9.0 features can be used freely when
building a project in VS 2008 which targets .NET 2.0; some
require a bit of extra work; a couple don’t work at all.

Fully available features
Automatically implemented properties, implicitly typed local
variables and arrays, object and collection initializers, anonymous
types, partial methods, and lambda expressions (converted
to delegate instances) can all be used at will. Note that lamdba
expressions are slightly less useful in .NET 2.0 without the Func
and Action families of delegate types, but these can easily be
declared in your own code to make it “.NET 3.5-ready”.

More details are available in my threading tutorial at
http://pobox.com/~skeet/csharp/threads or consult Joe Duffy’s
Concurrent Programming on Windows (Addison-Wesley
Professional, 2008) for a truly deep dive into this fascinating area.

Table 9. Methods of the System.Threading.Monitor class

Table 10. WaitHandle subclasses

Method Description

Enter Acquires the monitor (used automatically by lock/SyncLock)

Exit Releases the monitor (used automatically by lock/SyncLock)

TryEnter Attempts to acquire the monitor, with a timeout

Wait Releases the monitor (temporarily) and then blocks until it’s pulsed

Pulse Unblocks a single thread waiting on the monitor

PulseAll Unblocks all threads waiting on the monitor

WaitHandle Subclass Description

A Mutex acts quite like
a monitor.

A single thread can acquire the mutex multiple times by
waiting on it; the same thread has to release the mutex
with ReleaseMutex as many times as it has acquired it
before any other threads can acquire it. Only the thread
which owns the mutex can release it.

A Semaphore has a count
associated with it.

The initial value of the semaphore is specified in the
constructor call. When a thread waits on a semaphore, if
the count is greater than zero it is decreased and the call
completes. If the count is zero, the thread blocks until the
count is increased by another thread. The Release method
increases the count, and can be called from any thread.

AutoResetEvent and
ManualResetEvent wait
handles both logically
have a single piece of
state: the event is either
signaled or not

An event is signaled with the Set method. In both cases
a thread calling one of the Wait methods will block if the
event isn’t signaled. The difference between the two is that
an AutoResetEvent is reset (to the non-signaled state)
as soon as a thread has successfully called Wait on it.
A ManualResetEvent stays signaled until Reset is called.
Physical metaphors can help to remember this behavior.
AutoResetEvent is like a ticket barrier: when a ticket has
been inserted, the barrier opens but only allows one person
to go through it. ManualResetEvent is like a gate in a field:
once it’s opened, many people can go through it until it is
manually closed again.

USING C# 3.0 AND VB 9.0 WHEN TARGETING
.NET 2.0 AND 3.0

THREADING

FYI

When using .NET 3.5, prefer ReaderWriter-
LockSlim over ReaderWriterLock—it performs
better, has simpler characteristics and provides
fewer opportunities for deadlock.

Core .NET
6

 tech facts at your fingertips

DZone, Inc.
1251 NW Maynard
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2008 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher. Reference: C# in Depth, Jon Skeet, Manning Publications, April 2008.

Version 1.0

$7
.9

5

ISBN-13: 978-1-934238-16-5
ISBN-10: 1-934238-16-3

9 781934 238165

5 0 7 9 5

ABOUT THE AUTHOR

C# in Depth is designed to bring
you to a new level of programming
skill. It dives deeply into key C#
topics—in particular the new ones
in C# 2 and 3. Make your code
more expressive, readable and
powerful than ever with LINQ and
a host of supporting features.

RECOMMENDED BOOK

BUY NOW
books.dzone.com/books/csharp

Jon Skeet
Jon Skeet is a software engineer with experience in both C# and Java,
currently working for Google in the UK. Jon has been a C# MVP since 2003,
helping the community through his newsgroup posts, popular web articles,
and a blog covering C# and Java. Jon’s recent book C# in Depth looks
at the details of C# 2 and 3, providing an ideal guide and reference for
those who know C# 1 but want to gain expertise in the newer features.

Publications
Author of C# in Depth (Manning, 2008), co-author of Groovy in Action (Manning, 2007)

Blog Web Site
http://msmvps.com/jon.skeet http://pobox.com/~skeet/csharp

Using C# 3.0 AND VB 9.0 When Targeting
.NET 2.0 and 3.0, continued

Partially available features—Extension methods and
query expressions
Extension methods require an attribute which is normally part
of .NET 3.5. However, you can define it yourself, at which point
you can write and use extension methods to your heart’s delight.
Just cut and paste the declaration for ExtensionAttribute from
http://msdn.microsoft.com/library/System.Runtime.
CompilerServices.ExtensionAttribute.aspx into your own project,
declaring it in the System.Runtime.CompilerServices namespace.

Query expressions themselves are available regardless of framework
version, as they’re only translations into "normal" C# 3.0 and VB
9.0. However, they’re not much good unless you’ve got something to
implement, such as Select and Where methods. These are normally
part of .NET 3.5, but LINQBridge (http://www.albahari.com/nutshell/
linqbridge.html) is an implementation of LINQ to Objects for
.NET 2.0. This allows in-process querying with query expressions.
(LINQBridge also contains the ExtensionAttribute mentioned earlier.)

Unavailable features—Expression trees and XML literals
As far as I’m aware, there’s no way to get the compiler to create
expression trees when using .NET 2.0, not least because all the
expression tree library classes are part of .NET 3.5. It’s just possible
that there may be a way to reimplement them just as LINQBridge
reimplements LINQ to Objects, but I wouldn’t hold your breath—
and it would be much more complicated to do this. As a corollary,
you can’t use "out of process" LINQ without .NET 3.5, as that
relies on expression trees.

XML literals in VB 9.0 rely on LINQ to XML, which is part of .NET
3.5, so it’s unavailable when targeting .NET 2.0.

Note
In VB you have to have an empty root namespace

for this to work—if necessary, create a separate

class library project just to hold this attribute.

Get More FREE Refcardz. Visit refcardz.com now!

Upcoming Refcardz:

Core Seam

Core CSS: Part III

Hibernate Search

Equinox

EMF

XML

JSP Expression Language

ALM Best Practices

HTML and XHTML

Available:
Essential Ruby
Essential MySQL
JUnit and EasyMock
Getting Started with MyEclipse

Spring Annotations

Core Java

Core CSS: Part II

PHP

Getting Started with JPA

JavaServer Faces

Core CSS: Part I

Struts2

Core .NET

Very First Steps in Flex

C#

Groovy

NetBeans IDE 6.1 Java Editor

RSS and Atom

GlassFish Application Server

Silverlight 2

Visit refcardz.com for a complete listing of available Refcardz.

Design Patterns
Published June 2008

FREE

DZone communities deliver over 4 million pages each month to

more than 1.7 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheatsheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

