

DZone, Inc. | www.dzone.com

By Mike Keith

G
e

tt
in

g
 S

ta
rt

e
d

 w
it

h
 J

PA
 2

.0

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#127

CONTENTS INCLUDE:
n	 Whats New in JPA 2.0
n	 JDBC Properties
n	 Access Mode
n	 Mappings
n	 Shared Cache
n	 Additional API and more...

Getting Started with
 JPA 2.0

 www.engineyard.com

DEPLOY AND SCALE
PHP APPS INTO THE

CLOUD WITH EASE

http://www.refcardz.com
http://www.dzone.com
http://www.refcardz.com
http://www.engineyard.com/

DZone, Inc. | www.dzone.com

G
et

 M
o

re
 R

ef
ca

rd
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#23
P

H
P

 5
.4

By Bradley Holt

ABOUT PHP 5.4

PHP is a scripting language most commonly used for processing and
rendering Web pages server-side. Its syntax is simple enough to be easily
learned by novices, yet the language is powerful enough to run some of
the world’s most popular websites. PHP is also the language of choice for
many popular web software packages.

DATA TYPES

PHP has scalar data types, compound data types, and special data types.
PHP is a weakly typed language. Variables are not declared with a specific
data type. Instead, a variable’s type is determined based on the context in
which it is used. This is often referred to as type juggling. It is possible to
use type casting in order to force a variable to be evaluated as a specific
type. See http://php.net/types.type-juggling for details on type juggling
and type casting. PHP has two sets of comparison operators, those that
compare values after type juggling and those that compare both values
and types. See http://php.net/types.comparisons for details on how PHP
handles type comparisons.

The scalar data types in PHP are boolean, integer, float, and string. By
definition, scalar data types can only contain a single value. Boolean
values can either be true or false. Integers are whole numbers that also
include negative numbers (PHP does not support unsigned integers). The
size of an integer is dependent on the platform on which PHP is running.
Integer literals can be specified in decimal, octal, hexadecimal, or binary
(as of PHP 5.4) format. A float is a number that can contain a fraction. Like
integers, the size of a float is dependent on the platform on which PHP is
running. Float literals can be specified in decimal format or in scientific
notation format. A string in PHP is really just an array of bytes, with each
byte typically representing a character. See the section on strings for more
information about working with strings.

The compound data types in PHP are array and object. See the respective
sections on arrays and objects for details on working with each.

The special data types in PHP are resource, NULL, and callable. A resource
is a special type that holds a reference to some external resource. This
external resource can be a stream or a database connection, for example.
A complete list of resource types can be found at http://php.net/resource.
NULL is both a data type and the only value possible for that type. A
variable with a NULL value is a variable with no value. A variable can come
to be NULL by being assigned the special NULL value, by being declared
but not yet set to any value, or by having its value cleared with the unset
function. Some of PHP’s built-in functions accept user-defined callbacks.
These parameters are considered to be of type callable. The callable type
can also be used as a type hint within your user-defined functions and
methods.

STRINGS

PHP supports several syntaxes for string literals: single quoted, double
quoted, heredocs, and (added in PHP 5.3) nowdocs. Single quoted strings
is the simplest syntax. See the documentation on strings at http://php.
net/types.string for more information about working the various string
syntaxes.

Double quoted strings support variable interpolation. This means that you
can place a variable within a double quoted string and the variable’s value
will be expanded into the resulting string. Single quoted strings do not
support variable interpolation.

The heredoc syntax works similarly to double quoted string literals.
Heredocs make it easy to create multi-line string literals. The heredoc
syntax also supports variable interpolation. Nowdocs (added in PHP 5.3)
are the single quoted string equivalent of heredocs. Nowdocs do not allow
for variable interpolation.

String Functions
PHP has many useful built-in string functions. For example, the implode
function produces a string by gluing together array values using a given
string. The explode function does the opposite and splits a string by a
delimiter, returning an array. You can find the full list of string functions at
http://php.net/ref.strings.

Regular Expressions
Regular expressions are a technique for pattern matching against strings.
PHP supports Perl-Compatible Regular Expressions (PCRE). You can find
out more about PCRE at http://php.net/pcre.

ARRAYS

PHP arrays are an ordered map, meaning that values are mapped to
keys. PHP arrays can be used as arrays, lists, hash tables, dictionaries,
collections, stacks, and queues. Although PHP arrays support many
different data structures, the Standard PHP Library (SPL) provides
specialized data structures that are often faster and use less memory (but
are less flexible). See http://php.net/spl.datastructures for a list of available
SPL data structures.

PHP supports both enumerative and associative arrays. Enumerative
arrays are indexed by an integer key, while associative arrays are indexed
by a string key. Array values can be any PHP data type, including arrays.
When an array contains an array it is referred to as a multidimensional
array. PHP has many built-in array related functions. The full list of array
functions can be found at http://php.net/ref.array.

CONTENTS INCLUDE:

❱	Configuration

❱	Debugging

❱	Data Types

❱	Package and Dependency Management

❱	Frameworks

❱	Arrays... and More!

PHP 5.4Updated for
PHP 5.4

Sponsored By:

http://www.refcardz.com
http://www.dzone.com
http://www.refcardz.com
http://us2.php.net/types.type-juggling
http://us2.php.net/types.comparisons
http://us1.php.net/resource
http://us3.php.net/types.string
http://us3.php.net/types.string
http://us2.php.net/ref.strings
http://us3.php.net/pcre
http://us2.php.net/spl.datastructures
http://us3.php.net/ref.array
http://www.engineyard.com/
http://www.engineyard.com/

2 PHP 5.4

DZone, Inc. | www.dzone.com

Creating Arrays

PHP arrays have a flexible syntax. An example of creating an array using
the array() language construct:

$colors = array(‘red’, ‘green’, ‘blue’);

The above is an example of an enumerative array, meaning that it is
indexed by a numerical key. Since the keys were not specified, PHP will
automatically increment the key starting with 0.

PHP 5.4 introduced a short array syntax:

$colors = [‘red’, ‘green’, ‘blue’];

An example of creating an associative array:

$colors = array(
 ‘red’ => 83,
 ‘green’ => 114,
 ‘blue’ => 124
);

The output will be identical to the previous example:

PHP 5.4 introduced a short array syntax, allowing you to replace array()
with []. An example:

$colors = [‘red’, ‘green’, ‘blue’];

An example of creating an associative array:

$colors = array(
 ‘red’ => 83,
 ‘green’ => 114,
 ‘blue’ => 124
);
print_r($colors);

Accessing Array Values

Individual array values are accessed by their keys. An example of accessing
a value within an enumerative array:

$colors = array(‘red’, ‘green’, ‘blue’);
print_r($colors[0]); // red

When accessing a value within an associative array, you would provide a
string as the key instead of an integer. PHP 5.4 introduced function array
dereferencing, meaning that you can use the result of a function that
returns an array directly without first needing to assign the result to a
variable. For example:

function getColors()
{
 return array(
 ‘red’ => 83,
 ‘green’ => 114,
 ‘blue’ => 124
);
}
print_r(getColors()[‘red’]); // 83

Iteration Constructs
The simplest way to iterate over the values of an array is with the foreach
language construct. An example:

$colors = array(
 ‘red’ => 83,
 ‘green’ => 114,
 ‘blue’ => 124
);
foreach ($colors as $value) {
 var_dump($value);
}

You can also access the array keys while iterating, for example:

$colors = array(
 ‘red’ => 83,
 ‘green’ => 114,
 ‘blue’ => 124
);
foreach ($colors as $key => $value) {
 var_dump($key);
 var_dump($value);
}

Sorting Arrays
PHP has several built-in functions for sorting arrays in various ways. Some
functions sort on array keys, others on values. Some functions maintain
key/value associations after sorting, others do not. Functions can sort in
ascending, descending, numerical, natural, random, or user-defined order.
All of the array sort functions manipulate the source array, rather than
returning a new array that is sorted. Read the documentation on sorting
arrays at http://php.net/array.sorting for more details.

FUNCTIONS

PHP has well over one thousand internal, or built-in, functions (the number
of internal functions depends on which extensions are installed). In addition
to its internal functions, PHP supports user-defined functions. Functions
can accept arguments and can return values.

Internal Functions
Using an internal function is as simple as calling that function using its
name, for example:

$id = uniqid();
print_r($id);

User-Defined Functions
User-defined functions can be created by providing a name, zero or more
arguments, and a return value (optional). For example:

function sayHello($to)
{
 return “Hello, $to.”;
}

Anonymous Functions
PHP 5.3 introduced anonymous functions in the form of lambdas and
closures. An example of defining and calling a lambda:

$sayHello = function($to)
{
 return “Hello, $to.”;
};
$message = $sayHello(‘Bradley’);
print_r($message); // Hello, Bradley.

Unlike lambdas, closures use variables from the scope in which the closure
was defined. For example:

$greeting = ‘Hello’;
$sayHello = function($to) use($greeting)
{
 return “$greeting, $to.”;
};
$message = $sayHello(‘Bradley’);
print_r($message); // Hello, Bradley.

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
http://us1.php.net/array.sorting

3 PHP 5.4

DZone, Inc. | www.dzone.com

CLASSES AND OBJECTS

Object-oriented programming is a commonly used software design
paradigm. Objects encapsulate properties as well as methods that operate
on those properties. An object is instantiated from a class and multiple
object instances can be instantiated from the same class. Please refer to
the documentation on classes and objects at http://php.net/oop5 for more
details.

DATES AND TIMES

PHP has many built-in functions and classes for handling dates and times.
In order to use this functionality, the default timezone should first be set.
This can be done with the date.timezone PHP INI setting. The full list of
supported timezones can be found at http://php.net/timezones.

The DateTime class can be used to represent a specific date and time,
and to perform operations on date and time values. To instantiate a new
DateTime instance, provide the date/time in a valid format (an optional
timezone can be supplied as the second parameter):

$date = new DateTime(‘2012-05-18’);

Formatting
The DateTime:: format method allows a date/time to be formatted in
pretty much any way conceivable through the use of format characters.
The DateTime class includes several predefined constants for common
formats. For example, outputing a date/time in ISO 8601 format:

$date = new DateTime(‘2012-05-18’);
$formattedDate = $date->format(DateTime::ISO8601);
print_r($formattedDate); // 2012-05-18T00:00:00+0000

The list of predefined constants for the DateTime class can be found at
http://php.net/class.datetime. The list of format characters can be found at
http://php.net/date.

Date Math
PHP also includes a DateInterval class that can be used to add or subtract
dates, as well as to find the difference between two dates. This date math
can done with the DateTime::add, DateTime::sub, and DateTime::diff
methods, respectively. Following is an example of subtracting one day from
a date:

$date = new DateTime(‘2012-05-18’);
$interval = new DateInterval(‘P1D’);
$date->sub($interval);
print_r($date->format(DateTime::ISO8601)); // 2012-05-17T00:00:00+0000

DATABASES

PHP supports integration with databases through a variety of database
extensions. PHP Data Objects (PDO) is a very commonly used database
abstraction layer. Additionally, there are over twenty vendor-specific
database extensions available in PHP.

PHP Data Objects (PDO)
The PHP Data Objects (PDO) extension provides a common interface for
accessing multiple types of databases in PHP. See the list of database-
specific PDO drivers at http://php.net/pdo.drivers for a complete list of
supported databases.

Connecting
Creating an instance of the PDO class establishes a database connection.
The first parameter to the PDO class’ constructor is the data source name
(DSN). A DSN can describe properties of the data source such as the type
of database, hostname, port number, and database name. The second
parameter to the PDO class’ constructor is the username and the third is
the password. A fourth parameter specifying driver options may also be
used. To connect to a MySQL database:

try {
 // Assumes $username and $password have been previously set
 $connection = new PDO(‘mysql:host=localhost;dbname=mydb’,
$username, $password);
} catch (PDOException $ex) {
 // Handle exception
}

The PDO constructor will throw a PDOException if there is a connection
error. An exception is a special type of object that can be thrown and
caught in the case of an abnormal condition. The PDOException in this
example can be caught and handled in a way that is appropriate for your
application.

Executing a Query
To perform a SELECT query, call the PDO::query method. This will return a
PDOStatement object which can be treated as an array of database rows
over which you can iterate:

$connection = new PDO(‘mysql:host=localhost;dbname=mydb’, $username,
$password);
$rows = $connection->query(‘SELECT firstname, lastname FROM people’);
foreach ($rows as $row) {
 echo $row[‘firstname’] . ‘ ‘ . $row[‘lastname’] . PHP_EOL;
}

Prepared Statements
When passing parameters to a query, you should always use prepared
statements. There are two major benefits to this approach. One, your
queries are not susceptible to SQL injection attacks if all parameters are
passed via prepared statements. Two, a query can be parsed (analyzed,
compiled, and optimized) once and then executed multiple times with
different parameter values.

Hot
Tip

Not all of the databases with PDO drivers support prepared
statements. If you are using PDO with a database that does not
support prepared statements, then PDO will attempt to emulate
prepared statements. It is important to be aware that, in this
situation, you are not getting all of the benefits of prepared
statements. For example, your queries may be vulnerable to SQL
injection attack. This is true even if PDO still escapes your data—
escaping alone is not enough to mitigate all SQL injection attacks.

Working with prepared statements involves first preparing the statement,
then binding the parameters to values, and finally executing the statement:

$connection = new PDO(‘mysql:host=localhost;dbname=mydb’, $username,
$password);
// Prepare the statement
$statement = $connection->prepare(
 ‘UPDATE people SET email = :email WHERE id = :id’
);
// Bind the email parameter’s value
$statement->bindValue(‘:email’, ‘bob@example.com’);
// Bind the id parameter’s value
$statement->bindValue(‘:id’, 42);
// Execute the statement
$success = $statement->execute();
// Check for success
var_dump($success); // bool(true)

Alternatively, you can bind a variable by reference using the
PDOStatement::bindParam method. With this approach, the value of the
variable will be evaluated when the statement is executed, not when it is
bound.

Transactions
Many of the databases supported by PDO support ACID (Atomicity,
Consistency, Isolation, Durability) properties. These properties allow for the
use of transactions. A transaction is a unit of work that succeeds or fails
as a whole. You can group a series of queries into a transaction through
use of the PDO::beginTransaction and PDO::commit methods. A transaction
that has been started through PDO::beginTransaction can be rolled back by
using the PDO::rollBack method. Read the documentation on transactions
and auto-commit at http://php.net/pdo.transactions for more details.

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
http://us2.php.net/oop5
http://php.net/timezones
http://us1.php.net/class.datetime
http://us1.php.net/manual/en/function.date.php
http://us3.php.net/pdo.drivers
http://us3.php.net/pdo.transactions

4 PHP 5.4

DZone, Inc. | www.dzone.com

Object-Relational Mapping (ORM)
Object-relational mapping (ORM) is a technique for mapping objects to a
relational database. An ORM can be very helpful when using both object-
oriented programming and a relational database. Two of the most popular
PHP ORMs are Doctrine (http://www.doctrine-project.org/) and Propel
(http://www.propelorm.org/).

SECURITY

The two most important security practices for PHP programs are filtering
input and escaping output. These are the areas from which the majority
of security vulnerabilities originate. Some of the most important security
exploits to be aware of are SQL injection, cross-site scripting (XSS), cross-
site request forgery (CSRF), and session fixation. Another common problem
is securely storing sensitive user data, such as passwords. Note that
there is much more to security than what is covered here. Please consider
these tips to be a starting point, and not a comprehensive treatment of the
subject.

Filter Input
Input can come from many sources such as the end user, a database, an
incoming web services API request, and countless other possible sources.
At its most basic level, filtering is a form of a “sanity check” on a given
input and then sanitizing that input appropriately for the given context.
The following is one example of filtering input.The strip_tags function can
mitigate XSS attacks by removing HTML and PHP tags from an input string:

$unfiltered = ‘Click Me!’;
$filtered = strip_tags($unfiltered);
print_r($filtered); // Click Me!

Escape Output
Your application may send output to many places including the end
user, a database, an outgoing web services API request, and many other
possible outlets. Escaping output basically means ensuring that the output
is encoded properly for a given destination. Following is one example of
escaping output.

The htmlspecialchars function can mitigate XSS attacks by converting
special characters to their equivalent HTML entities:

$unescaped = ‘Click Me!’;
$escaped = htmlspecialchars($unescaped);
print_r($escaped); // Click
Me!

Password Encryption
Often an application will need to store sensitive user data, such as
passwords. Passwords should never be stored in cleartext. Passwords
should be encrypted in order to mitigate the impact of compromised
passwords. In the case of passwords, the encryption should be one-way.
One-way encryption means that, once a value is encrypted, it cannot be
decrypted. Two encryption methods that meet these requirements are
bcrypt (a cryptographic hash function) and PBKDF2 (a key derivation
function). These encryption algorithms are adaptive, meaning that they can
be made slower to keep up with Moore’s law.

Hot
Tip

You will find many resources on hashing passwords—or salting
and hashing passwords—using algorithms such as MD5 or SHA1.
Hashed passwords are susceptible to rainbow table attacks. A
rainbow table is a precomputed list of reversed hashes. Salting
helps mitigate rainbow table attacks, but hashed and salted
passwords are still vulnerable to brute force attacks. An adaptive
hashing algorithm such as bcrypt exponentially increases the
cost of launching a brute force attack, as compared to a standard
hashing algorithm.

When a user first registers and provides his or her password, encrypt the
password as follows:

// Password supplied upon registration
$registrationPassword = ‘MySuperSecretPassword’;
// Create a unique 22 character salt
$salt = substr(str_replace(‘+’, ‘.’, base64_
encode(sha1(microtime(true), true))), 0, 22);
// Choose a two digit cost parameter from 04-31
$cost = ‘16’;
// Create an encrypted hash
$encryptedHash = crypt($registrationPassword, ‘$2a$’. $cost. ‘$’ .
$salt);

The $2a$ string at the beginning of the second parameter instructs the
crypt function to use the Blowfish cypher (on which bcrypt is built). The two
digit cost (a value between 04 and 31) indicates how much computational
power should be used. The higher the cost parameter, the longer it will take
for crypt to execute, and the more secure your users’ passwords will be.
As computers get faster, this value should be increased. Finally, the salt
prevents rainbow table attacks. See the crypt function’s documentation at
http://php.net/crypt for more details.

The encrypted hash ($encryptedHash) can now be stored in your database
for reference when the user attempts to login. When the user attempts to
login, the original cost, salt, and encrypted password can be extracted from
the encrypted hash as follows:

// Assumes $encryptedHash has been retrieved from the database
// Extract the original cost
$cost = substr($encryptedHash, 4, 2);
// Extract the original salt
$salt = substr($encryptedHash, 7, 22);

Finally, we can generate an encrypted hash using the password from the
user attempting to login and compare it to the stored encrypted hash:

// Password supplied during a login attempt
$loginAttemptPassword = ‘MySuperSecretPassword’;
// Create an encrypted hash
$loginAttemptEncryptedHash = crypt($loginAttemptPassword, ‘$2a$’.
$cost. ‘$’ . $salt);
// Compare the two encrypted hashes
if ($loginAttemptEncryptedHash == $encryptedHash) {
 echo ‘Login successful!’;
} else {
 echo ‘Login failed!’;
}

As you can see demonstrated above, it is not necessary to store a user’s
cleartext password in order to later verify that user’s password when he
or she attempts to login. You may choose to instead use the PBKDF2 key
derivation function, but PBKDF2 is not as easy to implement as bcrypt
using PHP’s built-in functionality.

FRAMEWORKS

A framework is a tool that aims to provide a set of features that can be
reused from project to project, making more efficient user of programmers’
time. There are many frameworks available to PHP programmers. Some
of the most popular frameworks include Zend Framework, Symfony,
CodeIgniter, CakePHP, and Lithium. Microframeworks such as Silex, Slim,
and Limonade are also gaining in popularity. Choosing a framework is
a decision involving many context-specific factors. A comparison of
frameworks is beyond the scope of this reference guide.

CONFIGURATION

PHP’s behavior can be configured at a variety of levels:

Global Configuration
The php.ini file is PHP's configuration file, containing more than 200
directives capable of tweaking nearly every aspect of the language's
behavior. This file is parsed every time PHP is invoked, which for the server
module version occurs only when the web server starts, and every time for
the CGI version.

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
http://www.doctrine-project.org/
http://www.propelorm.org/
http://us3.php.net/crypt

5 PHP 5.4

DZone, Inc. | www.dzone.com

PHP is packaged with two INI files. You can choose to use one of these
files as the starting point for your PHP configuration settings. The php.
ini-production file contains settings that are recommended for a production
environment and the php.ini-development file contains settings that are
recommend for a development environment. Likely your operating system
or package manager has already picked one of these starting points for
you. If so, you can still find references to recommend development and
production values in your php.ini file. For example, the recommended
values for the display_errors directive from the php.ini file (the semicolon
character is a comment, meaning that these lines are for reference only):

; display_errors
; Default Value: On
; Development Value: On
; Production Value: Off

The actual setting, also in the php.ini file, contains details as to why those
settings are recommended:

; This directive controls whether or not and where PHP will output errors,
; notices and warnings too. Error output is very useful during development, but
; it could be very dangerous in production environments. Depending on the code
; which is triggering the error, sensitive information could potentially leak
; out of your application such as database usernames and passwords or worse.
; It’s recommended that errors be logged on production servers rather than
; having the errors sent to STDOUT.
; Possible Values:
; Off = Do not display any errors
; stderr = Display errors to STDERR (affects only CGI/CLI binaries!)
; On or stdout = Display errors to STDOUT
; Default Value: On
; Development Value: On
; Production Value: Off
; http://www.php.net/manual/en/errorfunc.configuration.php#ini.display-errors
display_errors = On

Host- and Directory-specific Configuration
If you lack access to the php.ini file, you may be able to change desired
directives within Apache’s httpd.conf or .htaccess files. For instance, to
force the display of all PHP errors for your development machine, add the
following to an .htaccess file:

php_value error_reporting -1
php_flag display_errors on

Displaying errors is very helpful—and highly recommended—in
development. For security reasons, though, you should not display errors in
production. Instead, errors can be logged for later review. For more details
please read the documentation on error handling and logging at http://php.
net/errorfunc.

Hot
Tip

Each directive is assigned one of three permission levels (PHP_INI_
ALL, PHP_INI_PER_DIR, PHP_INI_SYSTEM) which determines where
it can be set. Be sure to consult the PHP documentation before
tweaking settings outside of the php.ini file. See http://php.net/ini
for a complete list of directives.

Script-specific Configuration
Occasionally you'll want to tweak directives on a per-script basis. For
instance to change PHP's maximum allowable execution time for a script
tasked with uploading large files, you could call the ini_set() function from
within your PHP script like so:

ini_set(‘max_execution_time’, 60);

BUILT-IN WEB SERVER

PHP 5.4 introduced a built-in web server. This functionality should only be
used for development purposes—it should not be used in production. To
start the web server, first navigate to your project’s document root and then
start the web server:

$ cd public
$ php -S localhost:8080

The web server will now be accessible at http://localhost:8080/.

DEBUGGING

A common debugging tactic in PHP is to make calls to the print_r or
var_dump functions within your code. The print_r function accepts an
expression to be printed and an optional boolean value indicating whether
or not the function should return its output rather than printing it directly
(the default value is false). The var_dump function accepts one or more
expressions to be dumped and provides more detail about the expression
or expressions.

A helpful PHP extension for debugging is Xdebug. When installed, Xdebug
replaces PHP’s var_dump function with its own. Xdebug’s var_dump
function outputs HTML (assuming PHP’s html_errors configuration
directive is set to On and PHP is not being used from the command line)
with different colors for different data types.

Hot
Tip

Xdebug provides a powerful set of debugging and profiling features.
These features include stack traces, function traces, infinite
recursion protection, time tracking, improved variable debugging
display, code coverage analysis, code profiling, and remote
debugging. Xdebug should not be installed on production servers.
More information about Xdebug can be found at http://xdebug.org/.

A better approach to debugging than that described previously is to use
Xdebug’s remote debugging feature. This feature allows a developer
to interactively step through and debug PHP code. Xdebug’s remote
debugging feature is supported by a command line client that is bundled
with Xdebug as well as a number of integrated development environments
(IDE) and other tools. A list of supported clients can be found at http://
xdebug.org/docs/remote.

UNIT TESTING

Unit testing is a method of verifying the correctness of code components
through automated tests. PHPUnit is by far the most popular unit testing
framework for PHP applications. Using PHPUnit, you can write tests
that exercise your code and perform assertions to check that your code
behaves correctly. More information about PHPUnit can be found at http://
www.phpunit.de/.

PACKAGE AND DEPENDENCY MANAGEMENT

PHP Extension Application Repository (PEAR)
The PHP Extension Application Repository (PEAR) is a package
management tool and component distribution system. Packages are
available from the main repository at http://pear.php.net/ as well as from
independently maintained repositories. Once PEAR is installed on your
system, installing a PEAR package is as simple as using the pear install
command, for example:

$ pear install HTTP_Request2

A list of available PEAR packages can be found on the PEAR website.
There are many PEAR packages available from other sources as well. For
example, the PHPUnit testing framework is available from the pear.phpunit.
de PEAR channel. In order to install a package from a source other than
pear.php.net you must first discover its channel, for example:

$ pear channel-discover pear.phpunit.de

Once the channel has been discovered, you can install a package from that
channel using the install command, for example:

$ pear install phpunit/PHPUnit

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
http://xdebug.org/
http://xdebug.org/docs/remote
http://xdebug.org/docs/remote
http://www.phpunit.de/
http://www.phpunit.de/
http://pear.php.net/

Browse our collection of over 150 Free Cheat Sheets
Upcoming Refcardz

Free PDF

6 PHP 5.4

Version 1.0

$7
.9

5

RECOMMENDED BOOK

If you’re using PHP 5.3 or later, then you can instead use PEAR2 and Pyrus
to install PEAR packages. More information about Pyrus can be found at
http://pear2.php.net/.

Composer
While PEAR is a tool for managing system-wide packages, Composer
is a tool for managing dependencies on a per-project basis. Declaring
dependencies is as simple as adding a JavaScript Object Notation (JSON)
formatted file named composer.json to the root of your project. For
example, you can indicate that your project requires PHPUnit version 3.7
with the following composer.json file:

{
 “require”: {
 “phpunit/phpunit”: “3.7.*”
 }
}

Next, you need to install Composer by downloading it in to the root of your
project:

$ curl -s https://getcomposer.org/installer | php

Once Composer is installed in your project, you can then install
dependencies with the install command:

$ php composer.phar install

You can learn more about Composer by visiting http://getcomposer.org/.

USEFUL ONLINE RESOURCES

Table 1. Useful Online Resources

Name URL
The PHP Website http://php.net/

PHP Zone http://php.dzone.com/

Zend Developer Zone http://devzone.zend.com/

php|architect http://www.phparch.com/

Planet PHP http://www.planet-php.net/

PHPDeveloper.org http://phpdeveloper.org/

O'Reilly Media PHP Development and
Resources

http://oreilly.com/php/

Highest Voted ‘PHP Questions on Stack
Overflow

http://stackoverflow.com/questions/
tagged/php

ABOUT THE AUTHOR

Bradley Holt is Co-Founder & Technical Director of
Found Line (http://foundline.com), a creative studio with
capabilities in web development, web design, and print
design. He organizes the Burlington, Vermont PHP Users
Group and is a co-organizer of Vermont Code Camp
(http://vtcodecamp.org) as well as the Northeast PHP
Conference (http://nephp.org). He has spoken at SXSW
Interactive, OSCON, the jQuery Conference, ZendCon, and
CouchConf. He can be found on Twitter as @BradleyHolt.

If you want to use CouchDB to support real-world
applications, you’ll need to create MapReduce
views that let you query this document-oriented
database for meaningful data. With this short and
concise ebook, you’ll learn how to create a variety of
MapReduce views to help you query and aggregate
data in CouchDB’s large, distributed datasets.

Copyright © 2011 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise,
without prior written permission of the publisher.

DZone communities deliver over 6 million pages each month to
more than 3.3 million software developers, architects and decision
makers. DZone offers something for everyone, including news,
tutorials, cheat sheets, blogs, feature articles, source code and
more. “DZone is a developer’s dream,” says PC Magazine.

DZone, Inc.
150 Preston Executive Dr.
Suite 201
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome

refcardz@dzone.com

Sponsorship Opportunities

sales@dzone.com

MongoDB
Drupal
Modularity Patterns
Deployment Automation Patterns

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
http://pear2.php.net/
http://php.net/
http://php.dzone.com/
http://devzone.zend.com/
http://www.phparch.com/
http://www.planet-php.net/
http://phpdeveloper.org/
http://oreilly.com/php/
http://stackoverflow.com/questions/tagged/php
http://stackoverflow.com/questions/tagged/php
http://shop.oreilly.com/product/0636920018247.do
http://foundline.com/
http://vtcodecamp.org/
http://www.northeastphp.org/
https://twitter.com/BradleyHolt
http://shop.oreilly.com/product/0636920018247.do
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com

