

DZone, Inc. | www.dzone.com

 tech facts at your fingertips

CONTENTS INCLUDE:

n	 Core Spring Annotations
n	 Spring MVC Annotations
n	 AspectJ Annotations
n	 JSR-250 Annotations
n	 Testing Annotations
n	 Hot Tips and more...

From its beginning, Spring’s most common means of configuration
has been XML-based. But as developers grow weary of navigating
through a seemingly endless maze of angle-brackets, some
have started looking for other ways to wire the beans in their
Spring-enabled applications. Spring has responded with several
annotation-driven configuration options. In this reference card,
you'll find a guide to all of the annotations supported in Spring 2.5.

Autowiring Bean Properties, continued
	 @Autowired
	 public void setTreasureMap(TreasureMap treasureMap) {
		 this.treasureMap = treasureMap;
	 }
}

…and if you were to configure annotation configuration in Spring
using the <context:annotation-configuration> element like this…

<beans ... >
	 <bean id="pirate" class="Pirate">
		 <constructor-arg value="Long John Silver" />
 	 </bean>
	 <bean id="treasureMap" class="TreasureMap" />
	 <context:annotation-config />
</beans>

…then the “treasureMap” property will be automatically
injected with a reference to a bean whose type is assignable to
TreasureMap (in this case, the bean whose ID is “treasureMap”).

Autowiring Without Setter Methods
@Autowired can be used on any method (not just setter methods).
The wiring can be done through any method, as illustrated here:

@Autowired
public void directionsToTreasure(TreasureMap
treasureMap) {
 this.treasureMap = treasureMap;
}

And even on member variables:
@Autowired
private TreasureMap treasureMap;

To resolve any autowiring ambiguity, use the @Qualifier attribute
with @Autowired.
@Autowired
@Qualifier(“mapToTortuga”)
private TreasureMap treasureMap;

SPRING ANNOTATIONS

CORE SPRING ANNOTATIONS

n 	Authoritative content
n 	Designed for developers
n 	Written by top experts
n 	Latest tools & technologies
n	 Hot tips & examples
n 	Bonus content online
n 	New issue every 1-2 weeks

Subscribe Now for FREE!
Refcardz.com

Get More Refcardz
(They’re free!)

Context Configuration Annotations

These annotations are used by Spring to guide creation and
injection of beans.

Annotation Use Description

@Autowired Constructor, Field,
Method

Declares a constructor, field, setter
method, or configuration method
to be autowired by type. Items
annotated with @Autowired do not
have to be public.

@Configurable Type Used with <context:spring-
configured> to declare types whose
properties should be injected, even
if they are not instantiated by Spring.
Typically used to inject the properties
of domain objects.

@Order Type, Method, Field Defines ordering, as an alternative
to implementing the org.
springframework.core.Ordered
interface.

@Qualifier Field, Parameter, Type,
Annotation Type

Guides autowiring to be performed by
means other than by type.

@Required Method (setters) Specifies that a particular property
must be injected or else the
configuration will fail.

@Scope Type Specifies the scope of a bean, either
singleton, prototype, request, session,
or some custom scope.

Spring Annotations
By Craig Walls

Autowiring Bean Properties
A typical Spring bean might have its properties wired something
like this:

<bean id=”pirate” class=”Pirate”>
	 <constructor-arg value=”Long John Silver” />
	 <property name=”treasureMap” ref=”treasureMap” />

</bean>

But it’s also possible to have Spring automatically inject a bean’s
properties from other beans in the context. For example, if the
Pirate class were annotated with @Autowired like this…

public class Pirate {
	 private String name;
	 private TreasureMap treasureMap;
	 public Pirate(String name) { this.name = name; }Sp

ri
ng

 A
nn

ot
at

io
ns

 w

w
w

.d
zo

n
e.

co
m

 G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#26

 tech facts at your fingertips

Spring Annotations

2

DZone, Inc. | www.dzone.com

Ensuring That Required Properties are Set
To ensure that a property is injected with a value, use the
@Required annotation:

@Required
public void setTreasureMap(TreasureMap treasureMap) {
	 this.treasureMap = treasureMap;
}

In this case, the “treasureMap” property must be injected or
else Spring will throw a BeanInitializationException and context
creation will fail.

Stereotyping Annotations

These annotations are used to stereotype classes with
regard to the application tier that they belong to. Classes
that are annotated with one of these annotations will
automatically be registered in the Spring application context if
<context:component-scan> is in the Spring XML configuration.

In addition, if a PersistenceExceptionTranslationPostProcessor is
configured in Spring, any bean annotated with @Repository will
have SQLExceptions thrown from its methods translated into one
of Spring’s unchecked DataAccessExceptions.

Annotation Use Description

@Component Type Generic stereotype annotation for any Spring-managed
component.

@Controller Type Stereotypes a component as a Spring MVC controller.

@Repository Type Stereotypes a component as a repository. Also
indicates that SQLExceptions thrown from the
component’s methods should be translated into Spring
DataAccessExceptions.

@Service Type Stereotypes a component as a service.

Automatically Configuring Beans
In the previous section, you saw how to automatically wire a
bean’s properties using the @Autowired annotation. But it is
possible to take autowiring to a new level by automatically
registering beans in Spring. To get started with automatic
registration of beans, first annotate the bean with one of the
stereotype annotations, such as @Component:

@Component
public class Pirate {
	 private String name;
	 private TreasureMap treasureMap;

	 public Pirate(String name) { this.name = name; }

	 @Autowired
	 public void setTreasureMap(TreasureMap treasureMap) {
		 this.treasureMap = treasureMap;
	 }
}

Then add <context:component-scan> to your Spring XML
configuration:

<context:component-scan
	 base-package=”com.habuma.pirates” />

The base-package annotation tells Spring to scan com.habuma.
pirates and all of its subpackages for beans to automatically
register.

You can specify a name for the bean by passing it as the value of
@Component.

@Component(“jackSparrow”)
public class Pirate { … }

Creating Custom Stereotypes
Autoregistering beans is a great way to cut back on the amount
of XML required to configure Spring. But it may bother you that
your autoregistered classes are annotated with Spring-specific
annotations. If you’re looking for a more non-intrusive way to
autoregister beans, you have two options:

1. Create your own custom stereotype annotation. Doing so is as
simple as creating a custom annotation that is itself annotated
with @Component:
@Component
public @interface MyComponent {
 String value() default “”;
}

2. Or add a filter to <context:component-scan> to scan for
annotations that it normally would not:

<context:component-scan
	 base-package=”com.habuma.pirates”>
	 <context:include-filter type=”annotation”
	 	 expression=”com.habuma.MyComponent” />
	 <context:exclude-filter type=”annotation”
		 expression=
	 	 "org.springframework.stereotype.Component" />
</context:component-scan>

In this case, the @MyComponent custom annotation has been
added to the list of annotations that are scanned for, but
@Component has been excluded (that is, @Component-
annotated classes will no longer be autoregistered).

Regardless of which option you choose, you should be able to
autoregister beans by annotating their classes with the custom
annotation:
@MyComponent
public class Pirate { …}

Spring MVC Annotations

These annotations were introduced in Spring 2.5 to make it easier
to create Spring MVC applications with minimal XML configuration
and without extending one of the many implementations of the
Controller interface.

Specifying Scope For Auto-Configured Beans

By default, all beans in Spring, including auto-con-
figured beans, are scoped as singleton. But you
can specify the scope using the @Scope annota-
tion. For example:

@Component
@Scope(“prototype”)
public class Pirate { ... }

This specifies that the pirate bean be scoped as a
prototype bean.

Hot
Tip

Annotation Use Description

@Controller Type Stereotypes a component as a Spring
MVC controller.

@InitBinder Method Annotates a method that customizes
data binding.

@ModelAttribute Parameter,
Method

When applied to a method, used
to preload the model with the value
returned from the method. When applied
to a parameter, binds a model attribute
to the parameter.

table continues on next page

 tech facts at your fingertips

Spring Annotations

3

DZone, Inc. | www.dzone.com

Spring MVC Annotations, continued

Setting up Spring for Annotated Controllers
Before we can use annotations on Spring MVC controllers, we’ll
need to add a few lines of XML to tell Spring that our controllers
will be annotation-driven. First, so that we won’t have to register
each of our controllers individually as <bean>s, we’ll need a
<context:component-scan>:
<context:component-scan
base-package="com.habuma.pirates.mvc"/>

In addition to autoregistering @Component-annotated beans,
<context:component-scan> also autoregisters beans that are
annotated with @Controller. We’ll see a few examples of
@Controller-annotated classes in a moment.

But first, we’ll also need to tell Spring to honor the other Spring MVC
annotations. For that we’ll need <context:annotation-config> :
<context:annotation-config/>

Annotation Use Description

@RequestMapping Method, Type Maps a URL pattern and/or HTTP method
to a method or controller type.

@RequestParam Parameter Binds a request parameter to a method
parameter.

@SessionAttributes Type Specifies that a model attribute should be
stored in the session.

Creating a Simple MVC Controller
The following HomePage class is annotated to function as a
Spring MVC controller:

@Controller
@RequestMapping("/home.htm")
public class HomePage {
	 @RequestMapping(method = RequestMethod.GET)
	 public String showHomePage(Map model) {

		� List<Pirate> pirates = pirateService.
 getPirateList();

	 	 model.add(“pirateList”, pirates);

	 	 return "home";
	 }
	 @Autowired
	 PirateService pirateService;
}

There are several important things to point out here. First, the
HomePage class is annotated with @Controller so that it will be
autoregistered as a bean by <context:component-scan>. It is also
annotated with @RequestMapping, indicating that this controller
will respond to requests for “/home.htm”.

Within the class, the showHomePage() method is also annotated
with @RequestMapping. In this case, @RequestMapping indicates
that HTTP GET requests to “/home.htm” will be handled by the
showHomePage() method.

Creating a Form-Handling Controller
In a pre-2.5 Spring MVC application, form-processing controllers
would typically extend SimpleFormController (or some similar
base class). But with Spring 2.5, a form-processing controller just
has a method that is annotated to handle the HTTP POST request:

Use a conventions-based view resolver.

If you use a conventions-based view resolver, such
as Spring's UrlBasedViewResolver or InternalRe-

sourceViewResolver, along with <context:component-scan>
and <context:annotation-config>, you can grow your applica-
tion indefinitely without ever touching the Spring XML again.

Hot
Tip

Creating a Form-Handling Controller, continued
@Controller
@RequestMapping("/addPirate.htm")
public class AddPirateFormController {

	 @RequestMapping(method = RequestMethod.GET)
	 public String setupForm(ModelMap model) {
		 return "addPirate";
	 }

	 @ModelAttribute("pirate")
	 public Pirate setupPirate() {
		 Pirate pirate = new Pirate();
		 return pirate;
	 }

	 @RequestMapping(method = RequestMethod.POST)
	 protected String addPirate(@ModelAttribute("pirate")
	 Pirate pirate) {
		 pirateService.addPirate(pirate);
		 return "pirateAdded";
	 }

	 @Autowired
	 PirateService pirateService;
}

Here the @RequestMapping annotation is applied to two different
methods. The setupForm() method is annotated to handle HTTP
GET requests while the addPirate() method will handle HTTP POST
requests. Meanwhile, the @ModelAttribute is also pulling double
duty by populating the model with a new instance of Pirate before
the form is displayed and then pulling the Pirate from the model
so that it can be given to addPirate() for processing.

Transaction Annotations

The @Transactional annotation is used along with the
<tx:annotation-driven> element to declare transactional
boundaries and rules as class and method metadata in Java.

Annotation Use Description

@Transactional Method, Type Declares transactional boundaries and
rules on a bean and/or its methods.

Annotating Transactional Boundaries
To use Spring’s support for annotation-declared transactions,
you’ll first need to add a small amount of XML to the Spring
configuration:
<?xml version=”1.0” encoding=”UTF-8”?>
<beans xmlns=”http://www.springframework.org/schema/
beans”
	 xmlns:tx=”http://www.springframework.org/schema/tx”
	 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
	 �xsi:schemaLocation=”http://www.springframework.org/

schema/beans
	 �http://www.springframework.org/schema/beans/

 springbeans-2.5.xsd
	 http://www.springframework.org/schema/tx
	 �http://www.springframework.org/schema/tx/spring-tx-

 2.5.xsd”>
	 <tx:annotation-driven />
…
</beans>

The <tx:annotation-driven> element tells Spring to keep an eye
out for beans that are annotated with @Transactional. In addition,
you’ll also need a platform transaction manager bean declared in
the Spring context. For example, if your application uses Hibernate,
you’ll want to include the HibernateTransactionManager:

<bean id=”transactionManager”
	 �class=”org.springframework.orm.hibernate3.

 HibernateTransactionManager”>
	 <property name=”sessionFactory” ref=”sessionFactory”
/>
</bean>

 tech facts at your fingertips

Spring Annotations

4

DZone, Inc. | www.dzone.com

Annotating Transactional Boundaries, continued Aspect J Annotations, continued

With the basic plumbing in place, you’re ready to start annotating
the transactional boundaries:
@Transactional(propagation=Propagation.SUPPORTS,
readOnly=true)
public class TreasureRepositoryImpl implements
TreasureRepository {
…
	 �@Transactional(propagation=Propagation.REQUIRED,

 readOnly=false)
	 public void storeTreasure(Treasure treasure) { …}
…
}

At the class level, @Transactional is declaring that all methods
should support transactions and be read-only. But, at the
method-level, @Transactional declares that the storeTreasure()
method requires a transaction and is not read-only.

Note that for transactions to be applied to @Transactional-
annotated classes, those classes must be wired as beans in Spring.

JMX Annotations

These annotations, used with the <context:mbean-export>
element, declare bean methods and properties as MBean
operations and attributes.

Annotations Use Description

@ManagedAttribute Method Used on a setter or getter method
to indicate that the bean’s property
should be exposed as a MBean
attribute.

@ManagedNotification Type Indicates a JMX notification emitted
by a bean.

@ManagedNotifications Type Indicates the JMX notifications
emitted by a bean.

@ManagedOperation Method Specifies that a method should be
exposed as a MBean operation.

@ManagedOperationParameter Method Used to provide a description for an
operation parameter.

@ManagedOperationParameters Method Provides descriptions for one or
more operation parameters.

@ManagedResource Type Specifies that all instances of a class
should be exposed a MBeans.

Exposing a Spring Bean as a MBean
To get started with Spring-annotated MBeans, you’ll need to
include <context:mbean-export> in the Spring XML configuration:
<context:mbean-export/>

Then, you can annotate any of your Spring-managed beans to be
exported as MBeans:
@ManagedResource(objectName="pirates:name=PirateService")
public interface PirateService {
 @ManagedOperation(
 description="Get the pirate list")
 public List<Pirate> getPirateList();
}

Here, the PirateService has been annotated to be exported as a
MBean and its getPirateList() method is a managed operation.

Annotation Use Description

@AfterReturning Method Declares a method to be called after a
pointcut returns successfully.

@AfterThrowing Method Declares a method to be called after a
pointcut throws an exception.

@Around Method Declares a method that will wrap the
pointcut.

@Before Method Declares a method to be called before
proceeding to the pointcut.

@DeclareParents Static Field Declares that matching types should be
given new parents—that is, it introduces new
functionality into matching types.

@Pointcut Method Declares an empty method as a pointcut
placeholder method.

What’s important to note, however, is that while you can use
AspectJ annotations to define Spring aspects, those aspects will
be defined in the context of Spring AOP and will not be handled
by the AspectJ runtime. This is significant because Spring AOP
is limited to proxying method invocations and does not provide
for the more exotic pointcuts (constructor interception, field
interception, etc.) offered by AspectJ.

Annotating Aspects
To use AspectJ annotations to create Spring aspects, you’ll first
need to provide a bit of Spring XML plumbing:

<beans xmlns="http://www.springframework.org/schema/
beans"
	 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
	 xmlns:aop="http://www.springframework.org/schema/aop"
	 �xsi:schemaLocation="http://www.springframework.org/

 schema/beans
	 	 �http://www.springframework.org/schema/beans/

 spring-beans-2.5.xsd
	 	 http://www.springframework.org/schema/aop
	 	 �http://www.springframework.org/schema/aop/spring-

 aop-2.5.xsd">
…
 <aop:aspectj-autoproxy/>
…
</beans>

The <aop:aspectj-autoproxy> element tells Spring to watch for
beans annotated with AspectJ annotations and, if it finds any, to
use them to create aspects. Then you can annotate bean classes
to be aspects:
@Aspect
public class ChantySinger {
	 @Pointcut(“execution(* Pirate.plunder(..))”)
	 public void plunderPC() {}

	 @Before(“plunderPC()”)
	 public void singYoHo() {
		 …
	 }

	 @AfterReturning(“plunderPC()”)
	 public void singAPiratesLifeForMe() {
		 …
	 }
}

This simple annotation-based aspect has a pointcut that is
triggered by the execution of a plunder() method on the Pirate
class. Before the Pirate.plunder() method is executed, the
singYoHo() method is called. Then, after the Pirate.plunder()
method returns successfully, the singAPiratesLifeForMe()

ASPECTJ ANNOTATIONS

For defining aspects, Spring leverages the set of annotations
provided by AspectJ.

Annotation Use Description

@Aspect Type Declares a class to be an aspect.

@After Method Declares a method to be called after a
pointcut completes.

 tech facts at your fingertips

Spring Annotations

5

DZone, Inc. | www.dzone.com

In addition to Spring’s own set of annotations, Spring also
supports a few of the annotations defined by JSR-250, which is
the basis for the annotations used in EJB 3.

Annotation Use Description

@PostConstruct Method Indicates a method to be invoked after a
bean has been created and dependency
injection is complete. Used to perform any
initialization work necessary.

@PreDestroy Method Indicates a method to be invoked just
before a bean is removed from the Spring
context. Used to perform any cleanup work
necessary.

@Resource Method, Field Indicates that a method or field should be
injected with a named resource (by default,
another bean).

Wiring Bean Properties with @Resource
Using @Resource, you can wire a bean property by name:
public class Pirate {
 @Resource
 private TreasureMap treasureMap;
}

In this case, Spring will attempt to wire the “treasureMap”
property with a reference to a bean whose ID is “treasureMap”.
If you’d rather explicitly choose another bean to wire into the
property, specify it to the name attribute:
public class Pirate {
 @Resource(name=”mapToSkullIsland”)
 private TreasureMap treasureMap;
}

Initialization and Destruction Methods
Using JSR-250’s @PostConstruct and @PreDestroy methods,
you can declare methods that hook into a bean’s lifecycle. For
example, consider the following methods added to the Pirate
class:
public class Pirate {
…
	 @PostConstruct
	 public void wakeUp() {
	 	 System.out.println(“Yo ho!”);
	 }

	 @PreDestroy
	 public void goAway() {
	 	 System.out.println(“Yar!”);
	 }
}

As annotated, the wakeUp() method will be invoked just after
Spring instantiates the bean and goAway() will be invoked just
before the bean is removed from the Spring container.

JSR-250 ANNOTATIONS

Annotating Aspects, continued
TESTING ANNOTATIONS

These annotations are useful for creating unit tests in the JUnit 4
style that depend on Spring beans and/or require a transactional
context.

Annotation Use Description

@AfterTransaction Method Used to identify a method to be
invoked after a transaction has
completed.

@BeforeTransaction Method Used to identify a method to be
invoked before a transaction starts.

@ContextConfiguration Type Configures a Spring application
context for a test.

@DirtiesContext Method Indicates that a method dirties the
Spring container and thus it must
be rebuilt after the test completes.

@ExpectedException Method Indicates that the test method
is expected to throw a specific
exception. The test will fail if the
exception is not thrown.

@IfProfileValue Type,
Method

Indicates that the test class or
method is enabled for a specific
profile configuration.

@NotTransactional Method Indicates that a test method must
not execute in a transactional
context.

@ProfileValueSourceConfiguration Type Identifies an implementation of a
profile value source. The absence
of this annotation will cause profile
values to be loaded from system
properties.

@Repeat Method Indicates that the test method must
be repeated a specific number of
times.

@Rollback Method Specifies whether or not the
transaction for the annotated
method should be rolled back
or not.

@TestExecutionListeners Type Identifies zero or more test
execution listeners for a test class.

@Timed Method Specifies a time limit for the test
method. If the test does not
complete before the time has
expired, the test will fail.

@TransactionConfiguration Type Configures test classes for
transactions, specifying the
transaction manager and/or the
default rollback rule for all test
methods in a test class.

Writing a Spring-Aware Test
The key to writing a Spring-aware test is to annotate the test class
with @RunWith, specifying SpringJUnit4ClassRunner as the class
runner behind the test:

@RunWith(SpringJUnit4ClassRunner.class)
public class PirateTest {
…
}

In this case, the Spring test runner will try to load a Spring
application context from a file named PirateTest-context.xml. If
you’d rather specify one or more XML files to load the application
context from, you can do that with @ContextConfiguration:

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(locations = { "pirates.xml" })
public class PirateTest {
…
}

With test configured to load a Spring application context, you
now may request that Spring autowire properties of the test class
with beans from the Spring context:

method is invoked. (For more advanced examples of AspectJ
annotations, see the AspectJ documentation at http://www.
eclipse.org/aspectj/docs.php.)

Note the rather odd looking plunderPC() method. It is annotated
with @Pointcut to indicate that this method is a pointcut
placeholder. The key thing here is that the most interesting stuff
happens in the annotation itself and not in the method. In fact,
pointcut placeholder methods must be empty methods and
return void.

6

 tech facts at your fingertips
Spring Annotations

DZone, Inc.
1251 NW Maynard
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2008 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher. Reference: Spring in Action, 2nd Edition, Craig Walls, Manning Publications, 2007.

Version 1.0

$7
.9

5

ISBN-13: 978-1-934238-29-5
ISBN-10: 1-934238-29-5

9 781934 238295

5 0 7 9 5

ABOUT THE AUTHOR

Spring in Action, 2nd Edition is

a practical and comprehensive

guide to the Spring Frame-

work, the framework that for-

ever changed enterprise Java

development. What’s more, it’s

also the first book to cover the

new features and capabilities in

Spring 2.

RECOMMENDED BOOK

Craig Walls
Craig Walls is a Texas-based software developer with more than 13 years experi-
ence working in the telecommunication, financial, retail, educational, and software
industries. He’s a zealous promoter of the Spring Framework, speaking frequently
at local user groups and conferences and writing about Spring on his blog. When
he’s not slinging code, Craig spends as much time as he can with his wife, two
daughters, six birds, three dogs, and an ever-fluctuating number of tropical fish.

BUY NOW
books.dzone.com/books/spring-in-action

Publications
n	 Spring in Action, 2nd Edition, 2007
n	 XDoclet in Action, 2003

Blog
n	 http://www.springinaction.com

Projects
n	 Committer to XDoclet project;
	 Originator of Portlet and Spring modules for XDoclet

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(locations = { "pirates.xml" })
public class PirateTest {
	 @Autowired
	 private Pirate pirate;
	 @Autowired
	 private TreasureMap treasureMap;
	 @Test
	 public void annotatedPropertyShouldBeAutowired() {
	 	 assertNotNull(pirate.getTreasureMap());
	 assertEquals(treasureMap, pirate.getTreasureMap());
	 }
}

In this case, the pirate and treasureMap properties will be wired
with the beans whose ID are “pirate” and “treasureMap”,
respectively.

Accessing the Spring Context in a Test
If you need the Spring application context itself in a test, you can
autowire it into the test the same as if it were a bean in the context:
@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(locations = { "pirates.xml" })
public class PirateTest {
	 @Autowired
	 private Pirate pirate;

	 @Autowired
	 private ApplicationContext applicationContext;

	 @Test
	 public void annotatedPropertyShouldBeAutowired() {
	 	 assertNotNull(pirate.getTreasureMap());
	 	 �assertEquals(applicationContext.

 getBean("treasureMap"), pirate
							 .getTreasureMap());
	 }
}

Writing a Spring-Aware Test, continued

Get More FREE Refcardz. Visit refcardz.com now!

Upcoming Refcardz:

Core Seam

Core CSS: Part III

Hibernate Search

Equinox

EMF

XML

JSP Expression Language

ALM Best Practices

HTML and XHTML

Available:
Essential Ruby
Essential MySQL
JUnit and EasyMock
Getting Started with MyEclipse

Spring Annotations

Core Java

Core CSS: Part II

PHP

Getting Started with JPA

JavaServer Faces

Core CSS: Part I

Struts2

Core .NET

Very First Steps in Flex

C#

Groovy

NetBeans IDE 6.1 Java Editor

RSS and Atom

GlassFish Application Server

Silverlight 2

Visit refcardz.com for a complete listing of available Refcardz.

Design Patterns
Published June 2008

FREE

DZone communities deliver over 4 million pages each month to

more than 1.7 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheatsheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

