

DZone, Inc. | www.dzone.com

CONTENTS INCLUDE:

n	 Bijection in a Nutshell
	n	 Contextual Components
n	 Common Application Configuration
n	 Seam Security
n	 Application Framework
n	 Hot Tips and More...

Seam is a next generation web framework that integrates standard
Java EE technologies with a wide variety of nonstandard
technologies into a consistent, unified, programming model. Seam
drove the development of the Web Beans specification (JSR-299)
and continues to develop innovations that are changing the face
of web development as well as Java EE technologies. If you
haven’t taken a look at Seam, I suggest you do.

As you develop Seam applications, you'll find this quick reference
a handy guide for understanding core concepts, configuration,
and tool usage. This quick reference is not intended to cover all
of what Seam provides, but will cover the most commonly used
annotations and XML elements as of Seam 2.1. In addition, this
guide will point you to examples distributed with Seam to see real
examples of how the configuration options can be used in practice.

When a method is invoked on a component, its dependencies
are injected from the current context. Seam performs a context
lookup in the following order of precedence: Event Scope,
Page Scope, Conversation Scope, Session Scope, Business
Scope, Application Scope.

Component Annotations

Component Definition Annotations
In order for your Seam components to take advantage of bijection,
you must register them with the Seam container. Registering
your component with Seam is as simple as annotating it with
@Name. The following annotations will register your component
and define its lifecycle.

Dependency injection is an inversion of control technique that
forms the core of modern-day frameworks. Traditionally objects
have held the responsibility for obtaining references to the
objects they collaborate with. These objects are extroverted as
they reach out to get their dependencies. This leads to tight
coupling and hard to test code.

Dependency injection allows us to create introverted objects.
The objects dependencies are injected by a container or by
some external object (e.g. a test class). Bijection is described
by the following formula:

 dependency injection + context = bijection

With bijection, when dependencies are injected context counts!
Dependencies are injected prior to each component method
invocation. In addition, components can contribute to the
context by outjecting values.

As you can see the HotelBookingAction is scoped to and
executes within a context. This behavior allows us to quit
worrying about shuffling values into and out of contexts like the
HttpSession, allows components to hold state, and unifies the
component model across application tiers.

AbOUT SEAM CONTExTUAL COMpONENTS

bIjECTION IN A NUTShELL

Get support for Seam 2
JBoss Enterprise Application Platform
now includes Seam 2
• JBoss Enterprise Application Platform pre-integrates
 JBoss Application Server, Seam, and Hibernate

• Latest feature pack includes support for Seam 2

• Includes caching, clustering, messaging, transactions,
 and integrated web services stack

• Support for industry-leading Java and newer technologies,
 including JAX-WS, EJB 3.0, JPA 1.0, JSF 1.2, and JTA 1.1

Download today: jboss.com/download

© 2008 Red Hat Middleware, LLC. All Rights Reserved. Red Hat, Red Hat Enterprise Linux, the
Shadowman logo and JBoss are registered trademarks of Red Hat, Inc. in the U.S. and other
countries. Linux is a registered trademark of Linus Torvalds.

Core Seam
By Jacob Orshalick

Annotation Use Description

@Name Type Declares a Seam component by name. The component is
registered with Seam and can be referenced by name through
Expression Language (EL), injection, or a context lookup.

@Scope Type Defines the scope (or context) the Seam component will be
placed into by the container when created.

@AutoCreate Type Specifies that a component should be created when being
injected if not available in the current context.

@Startup Type Indicates that an application scoped component should be
created when the application is initialized or that a session
component should be created when a session is started. Not
valid for any other contexts.

@Install Type Declares whether a Seam component should be installed based
on availability of dependencies or precedence.

@Role Type Defines an additional name and scope associated with the
component. The @Roles annotation allows definition of
multiple roles.

C
o

re
 S

e
am

 w
w

w
.d

zo
n

e.
co

m

 G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#31

About Seam Core Quick Reference

Seam is a next generation web framework that integrates standard Java EE

technologies with a wide variety of nonstandard technologies into a consistent,

unified, programming model. Seam drove the development of the Web Beans

specification (JSR-299) and continues to develop innovations that are changing the

face of web development as well as Java EE technologies. If you haven't taken a

look at Seam, I suggest you do.

As you develop Seam applications, you'll find this quick reference a handy guide for

understanding of core concepts, configuration, and tool usage. This quick reference

is not intended to cover all of what Seam provides, but will cover the most

commonly used annotations and XML elements as of Seam 2.1. In addition, this

guide will point you to examples distributed with Seam to see real examples of how

the configuration options can be used in practice.

Bijection in a Nutshell

Dependency injection is an inversion of control technique that forms the core of

modern-day frameworks. Traditionally objects have held the responsibility for

obtaining references to the objects they collaborate with. These objects are

extroverted as they reach out to get their dependencies. This leads to tight coupling

and hard to test code.

Dependency injection allows us to create introverted objects. The objects

dependencies are injected by a container or by some `external object (e.g. a test

class). Bijection is described by the following formula:

dependency injection + context = bijection

With bijection, when dependencies are injected context counts! Dependencies are

injected prior to each component method invocation. In addition, components can

contribute to the context by outjecting values.

As you can see the HotelBookingAction is scoped to and executes within a

context. This behavior allows us to quit worrying about shuffling values into and

out of contexts like the HTTPSession, allows components to hold state, and

unifies the component model across application tiers.

Contextual Components

When a method is invoked on a component, its dependencies are injected from the

current context. Seam performs a context lookup in the following order of

precedence: Event Scope, Page Scope, Conversation Scope, Session Scope,

Business Scope, Application Scope.

Component Annotations

Component Definition Annotations

In order for the Seam container to provide bijection to your components you must

register your components. Fortunately registering your component with Seam is as

simple as annotating it with @Name. The following annotations will register your

component and define its lifecycle.

Annotation Use Description

@Name Type Declares a Seam component by name. The component is

registered with Seam and can be referenced by name

through EL, injection, or a context lookup.

@Scope Type Defines the scope (or context) the Seam component will

be placed into by the container when created.

@AutoCreate Type Specifies that a component should be created when being

injected if not available in the current context.

@Startup Type Indicates that an application scoped component should be

created when the application is initialized or that a

session component should be created when a session is

started. Not valid for any other contexts.

@Install Type Declares whether a Seam component should be installed

based on availability of dependencies or precedence.

@Role Type Defines an additional name and scope associated with the

component. The @Roles annotation allows definition of

multiple roles.

Component Bijection Annotations

Once you have defined a component, you can specify the dependencies of your

component and what the component contributes back to the context.

Annotation Use Description

@In Field,

Method

Declares a dependency that will be injected from the

context, according to context precedence, prior to a

method invocation. Note that these attributes will be

disinjected (or set to null) after the invocation

completes.

@Out Field,

Method

Declares a value that will be outjected after a method

invocation to the context of the component (implicit) or a

specified context (explicit).

Component Lifecycle Annotations

The following annotations allow you to control the lifecycle of a component either

by reacting to events or wrapping the component entirely.

Annotation Use Description

@Create Method Declares that a method should be called after component

instantiation.

@Destroy Method Declares that a method should be called just before

component destruction.

@Factory Method Marks a method as a factory method for a context variable.

A factory method is called whenever no value is bound to

the named context variable and either initializes and

outjects the value or simply returns the value to the context.

@Unwrap Method Declares that the object returned by the annotated getter

method is to be injected instead of the component itself.

Referred to as the "manager component" pattern.

Component Events Annotations

Through Seam's event model, components can raise events or listen for events raised

by other components through simple annotation. In addition, Seam defines a

number of built-in events that the application can use to perform special kinds of

framework integration (see http://seamframework.org/Documentation,

Contextual Events).

Annotation Use Description

@RaiseEvent Method Declares that a named event should be raised after the

method returns a non-null result without exception.

@Observer Method Declares that a method should be invoked on occurrence

of a named event or multiple named events.

The Components Namespace

Schema URI

http://jboss.com/products/seam/components

Schema XSD

http://jboss.com/products/seam/components-2.1.xsd

So far we've seen how components can be declared using annotations. In most cases

this is the preferred approach, but there are some situations when component

definition through annotations is not an option:

● when a class from a library outside of your control is to be exposed as a

component

● when the same class is being configured as multiple components

In addition, you may want to configure values into a component that could change

by environment, e.g. ip-addresses, ports, etc. In any of these cases, we can use XML

HotelBookingAction
bookHotel()

Hotel
Before you begin,

here is the hotel to book...

Booking

Okay then, I'm done,

here's the booking!

Context

Brought to you by...

http://www.dzone.com
http://www.jboss.com/downloads/index
http://www.refcardz.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com

 Core Seam
2

DZone, Inc. | www.dzone.com

 tech facts at your fingertips

Contextual Components, continued

Component Bijection Annotations: Once you have defined a
component, you can specify the dependencies of your component
and what the component contributes back to the context.

Component Lifecycle Annotations: The following annotations
allow you to control the lifecycle of a component either by reacting
to events or wrapping the component entirely.

Component Events Annotations: Through Seam’s event
model, components can raise events or listen for events raised
by other components through simple annotation. In addition,
Seam defines a number of built-in events that the application
can use to perform special kinds of framework integration (see
http://seamframework.org/Documentation, Contextual Events).

The Components Namespace
Schema URI
http://jboss.com/products/seam/components

Schema XSD
http://jboss.com/products/seam/components-2.1.xsd

So far we’ve seen how components can be declared using
annotations. In most cases this is the preferred approach, but
there are some situations when component definition through
annotations is not an option:
	 n		when a class from a library outside of your control is to be
 exposed as a component
	 n		 when the same class is being configured as multiple components
In addition, you may want to configure values into a component
that could change by environment, e.g. ip-addresses, ports,
etc. In any of these cases, we can use XML to configure the
component through the components namespace.

Seam XML Diagram Key
The Seam XML diagrams use the following notations to indicate
required elements, cardinality, and containment:

Components Namespace Diagram

Components Namespace Elements

Component Element Attributes: The attributes of the
component element are synonymous with component definition
through annotations.

Annotation Use Description
@Create Method Declares that a method should be called after component

instantiation.
@Destroy Method Declares that a method should be called just before component

destruction.
@Factory Method Marks a method as a factory method for a context variable. A factory

method is called whenever no value is bound to the named context
variable and either initializes and outjects the value or simply returns
the value to the context.

@Unwrap Method Declares that the object returned by the annotated getter method
is to be injected instead of the component itself. Referred to as the
“manager component” pattern.

Element Description

<component> Defines a component in the Seam container.

<event> Specifies an event type and the actions to execute on occurrence of the event.

<factory> Lets you specify a value or method binding expression that will be evaluated
to initialize the value of a context variable when it is first referenced. Generally
used for aliasing.

<import> Specifies component namespaces that should be imported globally which
allows referencing by unqualified component names. Specified by package.

<action> Specifies an action to execute through a method binding expression.

<property> Injects a value or reference into a Seam component. Can use a value or
method binding expression to inject components.

<key> Defines the key for the following value when defining a map.

<value> For list values, the value to be added. For map values, the value for the
preceding key.

Element Description

name Declares a component by name; synonymous with @Name.

class References the Java class of the component implementation.

scope Defines the scope (or context) the Seam component will be placed into by
the container when created.

precedence Precedence is used when a name-clash is found between two
components (higher precedence wins).

installed Boolean indicating whether the component should be installed.

auto-create Specifies that a component should be created when being injected if
not available in the current context.

startup Indicates that an application scoped component should be created when
the application is initialized or that a session component should be created
when a session is started. Not valid for any other contexts.

startupDepends A list of other application scope components that should be started
before this one, if they are installed.

jndi-name EJB components only. The JNDI name used to lookup the component.
Only used with EJB components that don't follow the global JNDI pattern.

Annotation Use Description
@RaiseEvent Method Declares that a named event should be raised after the method

returns a non-null result without exception.
@Observer Method Declares that a method should be invoked on occurrence of a

named event or multiple named events.

Components Namespace Example

The following examples demonstrate how component configuration is possible with Seam.
The hotelBooking component is configured for injection of a paymentService instance.

<?xml version="1.0" encoding="UTF-8"?>
<components
 xmlns="http://jboss.com/products/seam/components"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 “http://jboss.com/products/seam/components
 http://jboss.com/products/seam/components-2.1.xsd">

 <component name="hotelBooking">
 <property name="paymentService”>
 #{paymentService}
 </property>

 </component>
 <component name=”paymentService” scope=”APPLICATION”
 class=”com.othercompany.PaymentServiceClient”>
 <property name=”ipAddress”>127.0.0.1</property>
 <property name=”port”>9998</property>

 </component>
</components>

Note that we specified a name and class for the PaymentServiceClient instances.
This is required as the PaymentServiceClient is a library implementation. The name
is always required, but the class can be omitted if you are simply configuring the values of
a component with an @Name annotation as shown with the hotelBooking. The scope is
restricted to the scopes provided by Seam; here we use APPLICATION.

Simplify your component configuration through use of namespaces.

Seam makes this quite simple through use of the @Namespace annotation. Just create a
file named package-info.java in the package where your components live:

@Namespace(value="http://solutionsfit.com/example/booking")
package com.solutionsfit.example.booking;
import org.jboss.seam.annotations.Namespace;

Now we can reference the namespace in our components.xml:
<components xmlns=
 "http://jboss.com/products/seam/components"
 xmlns:payment="http://solutionsfit.com/example/booking">

 <payment:hotel-booking
 payment-service=”#{paymentService}”>

Note that component names and attribute names are specified in hyphenated form when
using namespaces. To gain the benefits of auto-completion and validation, a schema
can also be created to represent your components. A custom schema can import the
components namespace to reuse the defined component types.

Annotation Use Description
@In Field,

Method
Declares a dependency that will be injected from the context,
according to context precedence, prior to a method invocation.
Note that these attributes will be disinjected (or set to null) after
the invocation completes.

@Out Field,
Method

Declares a value that will be outjected after a method invocation to
the context of the component (implicit) or a specified context (explicit).

	 	 n		Required XML element 0..* n			Zero or more
0..1 n		Zero or none " Containment

<component> <property>
<key>

<factory>

<event> <action>
<value>

<import>

<components>

http://www.dzone.com
http://www.refcardz.com
http://seamframework.org/Documentation
http://jboss.com/products/seam/components
http://jboss.com/products/seam/components-2.1.xsd

3

DZone, Inc. | www.dzone.com

 Core Seam
 tech facts at your fingertips

The Conversation Model in a Nutshell
The conversation model is the core of Seam. It provides the
basis of context management in Seam applications. A session
holds potentially many concurrent conversations with a user,
each tied to its own unit of work with its own context.

On every user request a temporary conversation is created or a
long-running conversation is resumed. A conversation is resumed
when a valid conversation-id (cid) is sent with the request.

* Note that the filled circle indicates the initial state, while the hollow
 circle containing a smaller filled circle indicates an end state.

CONvErSATION MANAgEMENTrApID AppLICATION DEvELOpMENT

Seam-gen is a rapid application generator shipped with the Seam
distribution. With a few command line commands, seam-gen
generates an array of artifacts for Seam projects to help you get
started. In particular, seam-gen is useful for the following.
	 n		 Automatically generate an empty Seam project with
 common configuration files, a build script, and directories
 for Java code and JSF view pages.
	 n	 Automatically generate complete Eclipse and NetBeans
 project files for the Seam project.
	 n	 Reverse-engineer entity bean objects from relational
 database tables.
	 n	 Generate template files for common Seam components.

Seam-gen Commands
Seam-gen command should be executed in the directory of
your Seam distribution. To get started execute the seam setup
command. Each command provides useful prompts that will
guide you through the configuration specifics.

Seam-gen Source Directories
The source directories created by seam-gen are each dedicated
to holding certain types of source files. This enables seam-gen to
determine what tests need to be executed as well as selectively
hot-deploy your Seam components.

Seam-gen Profiles
Seam-gen supports the concept of "profile". The idea is that
the application probably needs different settings (e.g. database
settings, etc) in the development, test, and production phases.
So, the project provides alternative configuration files for each
of the three scenarios. In the resources directory, you will find the
following configuration files:

Command Description

seam setup Configures seam-gen for your environment: JBoss AS installation
directory, Eclipse workspace, and database connection.

seam
new-project

Creates a new deployable Seam project based on the configuration
settings provided in the setup.

seam -D[profile]
deploy

Deploys the new project you've created with the configuration specific
to the [profile] specified, i.e. dev, test, or prod.

seam new-action Creates a simple web page with a stateless action method. Generates
a facelets page and component for your project.

seam new-form Creates a form with an action.

seam generate-
entities

Generates an application from an existing database. Simply ensure
that your setup points to the appropriate database.

seam generate-ui Generates an application from existing JPA/EJB3 entities placed into
the src/model folder.

seam restart Restarts the application on the server instance.

/src/main Classes to include in the main (static) classpath.

/src/hot Classes to include in the hot deployable classpath when running in
development mode (see the Hot Tip below).

/src/test Test classes should be placed in this source folder. These classes will
not be deployed but will be executed as part of the test target.

/META-INF/
persistence-*.xml

Provides configuration of a JPA persistence-unit for each
environment.

import-*.sql Imports data into a generated schema based on deployment
environment. Generally useful for testing purposes.

components-*.
properties

Allows wild-card replacement of Seam component properties
based on environment (see Hot Tip in the Core Namespace for
more information).

Temporary
Conversations

A temporary conversation is started on every request unless an existing
long-running conversation is being resumed. Even if your application
does not explicitly specify conversation handling a conversation will be
initialized for the request. A temporary conversation survives a redirect.

Long-running
Conversations

A temporary conversation is promoted to longrunning if you tell Seam
to begin a long-running conversation. Promoting a conversation to
long-running informs Seam to maintain the conversation between
requests. The conversation is demoted to temporary if you tell Seam
to end a long-running conversation.

Hot
Tip

Don’t restart your application, use incremental hot deployment. Seam-gen provides support for exploded deployment of
your application. Exploded deployment allows changes to any XHTML file or the pages.xml file to be redeployed without
an application restart. In order to enable incremental hot deployment, you must set Seam and Facelets into debug mode. By

default, a seamgen’d application is debug enabled in the dev profile. If you are using JavaBean action components, they are also deploy-
able without an application restart. Just ensure they are placed in your /src/hot folder and debug mode is turned on.

seam -D[profile]
deploy

Deploys the new project you've created with the

configuration specific to the [profile] specified, i.e. dev, test,

or prod.

seam new-action Creates a simple web page with a stateless action method.

Generates a facelets page and component for your project.

seam new-form Creates a form with an action.

seam generate-
entities

Generates an application from an existing database. Simply

ensure that your setup points to the appropriate database.

seam generate-ui Generates an application from existing JPA/EJB3 entities

placed into the src/model folder.

seam restart Restarts the application on the server instance.

Seam-gen Source Directories

The source directories created by seam-gen each are each dedicated to holding

certain types of source files. This enables seam-gen to determine what tests need to

be executed as well as selectively hot-deploy your Seam components.

● /src/model – JPA entities should be placed in this source folder.

● /src/action – Seam action components should be placed in this

source folder.

● /src/test – Test classes should be placed in this source folder. These

classes will not be deployed but will be executed as part of the test target.

Seam-gen Profiles

Seam-gen supports the concept of "profile". The idea is that the application probably

needs different settings (e.g. database settings, etc) in the development, test, and

production phases. So, the project provides alternative configuration files for each of

the three scenarios. In the resources directory, you will find the following

configuration files:

● /META-INF/persistence-*.xml – provides configuration of a JPA

persistence-unit for each environment.

● import-*.sql – imports data into a generated schema based on

deployment environment. Generally useful for testing purposes.

● components-*.properties – allows wild-card replacement of

Seam component properties based on environment (see Hot Tips in the

Core Namespace for more information).

Hot Tip: Don't restart your application, use incremental hot deployment

Seam-gen provides support for exploded deployment of your application. Exploded

deployment allows changes to any XHTML file or the pages.xml file to be

redeployed without an application restart. In order to enable incremental hot

deployment, you must set Seam and Facelets into debug mode. By default, a seam-

gen'd application is debug enabled in the dev profile. If you are using JavaBean

action components, they are also deployable without an application restart. Just

ensure they are placed in your /src/action folder and debug mode is turned on.

Conversation Management

The Conversation Model in a Nutshell

The conversation model is the core of Seam. It provides the basis of context

management in Seam applications. A session holds potentially many concurrent

conversations with a user, each tied to its own unit of work with its own context.

On every user request a temporary conversation is created or a long-running

conversation is resumed. A conversation is resumed when a valid conversation-id

(cid) is sent with the request.

* Note that the filled circle indicates the initial state, while the hollow circle containing a

smaller filled circle indicates an end state.

Temporary Conversations A temporary conversation is started on every request

unless an existing long-running conversation is being resumed. Even if your

application does not explicitly specify conversation handling a conversation will be

initialized for the request. A temporary conversation survives a redirect.

Long-running Conversations A temporary conversation is promoted to long-

running if you tell Seam to begin a long-running conversation. Promoting a

conversation to long-running informs Seam to maintain the conversation between

requests. The conversation is demoted to temporary if you tell Seam to end a long-

running conversation.

Hot Tip: Let your conversations time-out!

It is a common misconception that conversations should always be ended when

navigating elsewhere in an application. Seam ensures that these abandoned, or

background conversations are cleaned up after a period of time (the

conversation-timeout setting). The conversation that the user last

interacted, the foreground conversation, will only timeout when the session times

out. See the core namespace to learn how to configure the conversation-

timeout setting.

Conversation Management

Conversation Management Annotations

These annotations provide declarative conversation management through Seam

components.

Annotation Use Description

@Conversational Type,

Method

A component or method annotated as

@Conversational can only be accessed in the

context of a long-running conversation.

@Begin Method Marks a method as beginning a long-running

conversation. The long-running conversation will

only end upon method return if: the method is

void return-type or the method returns a non-null

outcome.

@End Method Marks a method as ending a long-running

conversation. The long-running conversation will

only begin upon method return if: the method is

void return-type or the method returns a non-null

outcome.

Conversation Management Usage

Some example usage patterns for conversation propagation.

1. Begin a conversation when the selectHotel method is invoked:

@Begin
public void selectHotel(Hotel selectedHotel)
{
 hotel = em.merge(selectedHotel);
}

2. End a conversation when the booking is confirmed:

Temporary Long-running

Destroyed

[end conversation]

[resume conversation][no conversation]

[conversation timeout

or session-timeout]
[request complete]

[begin conversation]

seam -D[profile]
deploy

Deploys the new project you've created with the

configuration specific to the [profile] specified, i.e. dev, test,

or prod.

seam new-action Creates a simple web page with a stateless action method.

Generates a facelets page and component for your project.

seam new-form Creates a form with an action.

seam generate-
entities

Generates an application from an existing database. Simply

ensure that your setup points to the appropriate database.

seam generate-ui Generates an application from existing JPA/EJB3 entities

placed into the src/model folder.

seam restart Restarts the application on the server instance.

Seam-gen Source Directories

The source directories created by seam-gen each are each dedicated to holding

certain types of source files. This enables seam-gen to determine what tests need to

be executed as well as selectively hot-deploy your Seam components.

● /src/model – JPA entities should be placed in this source folder.

● /src/action – Seam action components should be placed in this

source folder.

● /src/test – Test classes should be placed in this source folder. These

classes will not be deployed but will be executed as part of the test target.

Seam-gen Profiles

Seam-gen supports the concept of "profile". The idea is that the application probably

needs different settings (e.g. database settings, etc) in the development, test, and

production phases. So, the project provides alternative configuration files for each of

the three scenarios. In the resources directory, you will find the following

configuration files:

● /META-INF/persistence-*.xml – provides configuration of a JPA

persistence-unit for each environment.

● import-*.sql – imports data into a generated schema based on

deployment environment. Generally useful for testing purposes.

● components-*.properties – allows wild-card replacement of

Seam component properties based on environment (see Hot Tips in the

Core Namespace for more information).

Hot Tip: Don't restart your application, use incremental hot deployment

Seam-gen provides support for exploded deployment of your application. Exploded

deployment allows changes to any XHTML file or the pages.xml file to be

redeployed without an application restart. In order to enable incremental hot

deployment, you must set Seam and Facelets into debug mode. By default, a seam-

gen'd application is debug enabled in the dev profile. If you are using JavaBean

action components, they are also deployable without an application restart. Just

ensure they are placed in your /src/action folder and debug mode is turned on.

Conversation Management

The Conversation Model in a Nutshell

The conversation model is the core of Seam. It provides the basis of context

management in Seam applications. A session holds potentially many concurrent

conversations with a user, each tied to its own unit of work with its own context.

On every user request a temporary conversation is created or a long-running

conversation is resumed. A conversation is resumed when a valid conversation-id

(cid) is sent with the request.

* Note that the filled circle indicates the initial state, while the hollow circle containing a

smaller filled circle indicates an end state.

Temporary Conversations A temporary conversation is started on every request

unless an existing long-running conversation is being resumed. Even if your

application does not explicitly specify conversation handling a conversation will be

initialized for the request. A temporary conversation survives a redirect.

Long-running Conversations A temporary conversation is promoted to long-

running if you tell Seam to begin a long-running conversation. Promoting a

conversation to long-running informs Seam to maintain the conversation between

requests. The conversation is demoted to temporary if you tell Seam to end a long-

running conversation.

Hot Tip: Let your conversations time-out!

It is a common misconception that conversations should always be ended when

navigating elsewhere in an application. Seam ensures that these abandoned, or

background conversations are cleaned up after a period of time (the

conversation-timeout setting). The conversation that the user last

interacted, the foreground conversation, will only timeout when the session times

out. See the core namespace to learn how to configure the conversation-

timeout setting.

Conversation Management

Conversation Management Annotations

These annotations provide declarative conversation management through Seam

components.

Annotation Use Description

@Conversational Type,

Method

A component or method annotated as

@Conversational can only be accessed in the

context of a long-running conversation.

@Begin Method Marks a method as beginning a long-running

conversation. The long-running conversation will

only end upon method return if: the method is

void return-type or the method returns a non-null

outcome.

@End Method Marks a method as ending a long-running

conversation. The long-running conversation will

only begin upon method return if: the method is

void return-type or the method returns a non-null

outcome.

Conversation Management Usage

Some example usage patterns for conversation propagation.

1. Begin a conversation when the selectHotel method is invoked:

@Begin
public void selectHotel(Hotel selectedHotel)
{
 hotel = em.merge(selectedHotel);
}

2. End a conversation when the booking is confirmed:

Temporary Long-running

Destroyed

[end conversation]

[resume conversation][no conversation]

[conversation timeout

or session-timeout]
[request complete]

[begin conversation]

Conversation Management Annotations
These annotations provide declarative conversation management
through Seam components.

Annotation Use Description

@Conversational Type,
Method

A component or method annotated as @Conversational
can only be accessed in the context of a long-running
conversation.

@Begin Method Marks a method as beginning a long-running conversation.
The long-running conversation will only end upon method
return if: the method is void return-type or the method
returns a non-null outcome.

@End Method Marks a method as ending a long-running conversation.
The long-running conversation will only begin upon
method return if: the method is void return-type or the
method returns a non-null outcome.

http://www.dzone.com
http://www.refcardz.com

4

DZone, Inc. | www.dzone.com

 Core Seam
 tech facts at your fingertips

Seam Distribution Conversation Management Examples
The following examples are distributed with Seam and
provide great resources for configuring your application.

The Core Namespace
Schema URI
http://jboss.com/products/seam/core
Schema XSD
http://jboss.com/products/seam/core-2.1.xsd

The core namespace includes support for configuration of Seam
components found in org.jboss.seam.core. This includes the JNDI
pattern used to lookup EJB components, debug mode settings,
conversation management, inclusion of custom resource bundles,
and POJO cache settings.

Core Namespace Diagram

Core Namespace Elements

Conversation Management, continued

Conversation Management Usage
Some example usage patterns for conversation propagation.

Example Directory Description

Seam Booking examples/

 booking

Demonstrates the most basic conversation
management through use of annotations.

Nested
Booking

examples/

 nestedbooking

Demonstrates the use of nested conversations
through annotations.

Seam Space examples/

 seamspace

Demonstrates conversation management
through pages.xml as well as use of natural
conversations.

COMMON AppLICATION CONfIgUrATION

1. Begin a conversation when the selectHotel method is invoked:

 @Begin

 public void selectHotel(Hotel selectedHotel)

 {

 hotel = em.merge(selectedHotel);

 }

2. End a conversation when the booking is confirmed:

 @End(beforeRedirect=”true”)

 public void confirm()

 {

 em.persist(booking);

 ...

Note the use of the beforeRedirect parameter. Recall that a conversation is really only

demoted to temporary when ended and survives a redirect. Here the conversation is

destroyed before the redirect.

3. Begin a conversation with manual flushing enabled:

 @In private EntityManager em;

 @Begin(flushMode=FlushModeType.MANUAL)

 public void editBooking(int selectedId)

 {

 booking = em.find(Booking.class, selectedId);

 }

This ensures that the booking would not be persisted until an EntityManager.flush()

is invoked manually. This is only usable with an SMPC and Hibernate as the

persistence provider.

4. Begin or join the conversation when the hotel page is accessed:

 <page view-id="/hotel.xhtml"

 login-required=”true”>

 <description>

 View hotel: #{hotel.name}

 </description>

 <begin-conversation join=”true”>

This example demonstrates conversation management through the pages.xml file.

The pages.xml file provides a navigation-centric approach to conversation management

directly relating the boundaries of a conversation to page navigation.

5. Leave the scope of an existing conversation to return to the main page:

 <s:link view-id=”/main.xhtml” value=”Return to main”

 propagation=”none” />

Use of the <s:link> and <s:button> tags in your view are common to either

propagate a conversation across a GET request or to leave the scope of an existing

conversation.

Element Description

<core:init> Initialization parameters including debug settings and
configuration of the jndiPattern for EJB users.

<core:resource-loader> Allows configuration of custom resource bundle-names for
loading messages.

<core:bundle-names> Custom bundle names can be specified which are searched depth-first
for messages. This overrides the standard messages.properties.

<core:manager> Configures conversation management settings such as timeouts,
parameter names, uri-encoding, and the default-flush-mode.

<core:interceptors> Configures the list of interceptors that should be enabled for all
components. All built-in interceptors must be specified with any
additional interceptors.

Core Namespace Example

The following example demonstrates use of the core namespace:
<?xml version="1.0" encoding="UTF-8"?>
<components
 xmlns="http://jboss.com/products/seam/components"
 xmlns:core="http://jboss.com/products/seam/core"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 " http://jboss.com/products/seam/core
 http://jboss.com/products/seam/core-2.1.xsd
 http://jboss.com/products/seam/components
 http://jboss.com/products/seam/components-2.1.xsd">

 <core:init jndi-pattern="@jndiPattern@" debug="@debug@"/>

 <core:manager conversation-timeout="600000"
 conversation-id-parameter="cid"
	 	 	 	 default-flush-mode=”MANUAL”	/>

The above configuration tells Seam how to find EJB components in the JNDI registry and
whether to operate in debug mode allowing features such as incremental deployment.
The manager configuration ensures that background conversations timeout after 10
minutes through the conversation-timeout setting. Note the setting is configured
in milliseconds. The cid parameter simply specifies how our conversation ID should be
represented in a query string, e.g. /book.seam?cid=20.

Hot
Tip

Let your conversations time-out!

It is a common misconception that conversations
should always be ended when navigating

elsewhere in an application. Seam ensures that these
abandoned, or background conversations are cleaned up
after a period of time (the conversation-timeout setting).
The conversation that the user last interacted, the foreground
conversation, will only timeout when the session times out.
See the Core Namespace to learn how to configure the
conversation-timeout setting.

<core:resource-loader>

<core:init>

<core:manager>

<core:bundle-names>

<core:interceptors>

<components>

http://www.dzone.com
http://www.refcardz.com
http://jboss.com/products/seam/core
http://jboss.com/products/seam/core-2.1.xsd

5

DZone, Inc. | www.dzone.com

 Core Seam
 tech facts at your fingertips

Common Application Configuration, continued

Note the use of the default-flush-mode setting. If you are using
a Seam-managed Persistence Context (SMPC), which will be
discussed shortly, this setting will save constant repetition of the
flush-mode setting when beginning conversations.

The Transaction Namespace

Transaction Namespace URI
http://jboss.com/products/seam/transaction

Transaction Namespace XSD
http://jboss.com/products/seam/transaction-2.1.xsd

Transactions are an essential feature for database-driven web
applications. In each conversation, we typically need to update
multiple database tables. If an error occurs in the database operation
(e.g. a database server crashes), the application needs to inform the
user, and all the updates this conversation has written into the
database must be rolled back to avoid partially updated records.
In other words, all database updates in the conversation must
happen inside an atomic operation. Seam-managed transactions
along with Seam-managed persistence enables you to do just that.

Transaction Namespace Diagram

Transaction Namespace Elements

The Transaction Namespace, continued

The Transaction Namespace, continued

Note that this indicates the application is being deployed to a
JEE 5 environment.

The Persistence Namespace
Persistence Namespace URI
http://jboss.com/products/seam/persistence

Persistence Namespace XSD
http://jboss.com/products/seam/persistence-2.1.xsd

When JPA is used within an EJB environment, an extended
persistence context can be associated with a stateful session
bean. An extended persistence context lives between requests
and is scoped to the stateful component allowing entities to
remain managed. The EJB3 approach has several shortcomings:

 n		 What if my application does not operate in an EJB environment?

 n		 It can be tricky to ensure that the persistence context is
 shared between loosely coupled components.
	 n		 EJB3 does not include the concept of manual flushing.

A Seam-managed persistence context (or SMPC) is available for
use in both environments and alleviates these issues altogether.
An SMPC is just a built-in Seam component that manages an
instance of EntityManager or Hibernate Session in the conversation
context. You can inject it with @In.

Note that many of the options for configuring a
HibernateSessionFactory have been omitted due to
space constraints. For more options on configuring your
HibernateSessionFactory, see the Seam Reference
Documentation (http://seamframework.org/Documentation).

Persistence Namespace Diagram

Element Description

<transaction:

ejb-transaction>

Configures the EJB transaction synchronization component
which should be installed if you are working in a Java EE 5
environment.

<transaction:

entity-transaction>

Configures JPA RESOURCE_LOCAL transaction management
where the the managedpersistence-context is injected as
an Expression Language (EL) attribute. This attribute is not
required if your EntityManager is named entityManager.

<transaction:

hibernate-transaction>

Configures Hibernate managed transactions where the
persistence:managed-hibernatesession is injected as
an Expression Language (EL) attribute. This attribute is not
required if your Session is named session.

<transaction:

no-transaction>

Disables Seam-managed transactions.

<transaction:hibernate-transaction>

<transaction:ejb-transaction>

<transaction:entity-transaction>

<transaction:no-transaction>

<components>

→

Transaction Namespace Example

The following example configures the EJB transaction synchronization component:
<components
 xmlns="http://jboss.com/products/seam/components"
 xmlns:persistence=
 "http://jboss.com/products/seam/persistence"
 xmlns:transaction=
 "http://jboss.com/products/seam/transaction"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://jboss.com/products/seam/persistence
 http://jboss.com/products/seam/persistence-2.1.xsd
 http://jboss.com/products/seam/transaction
 http://jboss.com/products/seam/transaction-2.1.xsd
 http://jboss.com/products/seam/components
 http://jboss.com/products/seam/components-2.1.xsd">

 <persistence:managed-persistence-context name="em"
 auto-create="true" persistence-unit-jndi-name=
 "java:/EMFactories/bookingEntityManagerFactory"/>
 <transaction:ejb-transaction/>
... ...

Hot
Tip

It is generally a good idea to keep some application
configuration in properties files. This makes it
simple for administrators to easily tweak deploy-

ment-specific settings (e.g. database settings).

Seam lets you place wildcards of the form @propertyName@ in
your components.xml file. Seam uses the components.properties
file in the classpath to replace the properties by name. Seam-gen
projects use this approach by default to dynamically replace
the jndiPattern and debug settings.

<persistence:managed-
persistence-context>

<persistence:persistence-
unit-jndi-name>

<persistence:persistence-
unit-properties>

<persistence:
mapping-classes>

<persistence:filters>

<persistence:filter><persistence:managed-
hibernate-session>

<persistence:entity-
manager-factory>

<persistence:hibernate-
session-factory>

<components>

http://www.dzone.com
http://www.refcardz.com
http://jboss.com/products/seam/transaction
http://jboss.com/products/seam/transaction-2.1.xsd
http://jboss.com/products/seam/persistence
http://jboss.com/products/seam/persistence-2.1.xsd
http://seamframework.org/Documentation

6

DZone, Inc. | www.dzone.com

 Core Seam
 tech facts at your fingertips

The Persistence Namespace, continued

Persistence Namespace Elements

Seam Distribution Persistence Configuration Examples
The following examples are distributed with Seam and provide great
resources for configuring your application.

<security:ldap-identity-store>

<security:jpa-identity-store>

<security:identity>

<security:identity-manager>

<security:rule-based-permission-resolver>

<security:jpa-permission-store>

<security:permission-manager>

<security:persistent-permission-resolver>

<components>

Example Directory Description

Booking examples/

 booking

Demonstrates configuration of using a basic EJB
PersistenceContext managed by the EJB container.

Hibernate
Booking

examples/

 hibernate

Demonstrates configuration of using direct Hibernate
persistence with a Seam-managed Hibernate Session.

JPA
Booking

examples/

 jpa

Demonstrates use of an SMPC with JPA RESOURCE_LOCAL
transaction management usable in non-EJB containers
like Tomcat.

Security is arguably one of the most important aspects of
application development. Unfortunately due to its complexity
security is often an afterthought which can lead to gaping
holes in an application for malicious users to take advantage of.
Fortunately, when using Seam this complexity is hidden making it
simple to ensure that your next application is secure.

Seam Security, continued
Seam security provides extensive configuration options making
it useful in a wide array of implementations but also making it
worthy of its own reference card. The basics of Seam security will
be covered here which will address most use-cases and will allow
you to get up-and-running quickly.

The Security Namespace
Security Namespace URI
http://jboss.com/products/seam/security

Security Namespace XSD
http://jboss.com/products/seam/security-2.1.xsd

The security namespace provides the hooks necessary to customize
Seam security to fit your application needs whether you intend to
use LDAP, a relational database, or any other custom authentication /
authorization scheme.

Security Namespace Elements

Security Namespace Diagram

SEAM SECUrITy

Element Description

<security:identity> Configures the application-specific authentication
implementation for the Seam Identity
component. The IdentityManager is used for
authentication by default.

<security:identity-manager> Configures the management of a Seam application’s
users and roles for a type of identity store (database,
LDAP, etc). The JpaIdentityStore is the default.

<security:

ldap-identity-store>

Declares an identity store that allows users and roles
to be stored inside an LDAP directory.

<security:

jpa-identity-store>

Declares an identity store that allows users and roles
to be stored inside a relational database.

<security:

permission-manager>

Configures a PermissionManager instance for
management of persistent permissions which
requires a PermissionStore instance.

<security:

persistent-permission-resolver>

Allows configuration of a custom permission store.
A permission store can be implemented by
implementing the PermissionStore interface.

<security:

rule-based-permission-resolver>

Allows the Drools rule base name to be specified
when rule-based permissions are in use.

<security:jpa-permission-store> PermissionStore implementation allowing user
and role permissions to be stored and retrieved as
JPA entities.

Persistence Namespace Example

The following example demonstrates use of the persistence namespace:

<components
 xmlns="http://jboss.com/products/seam/components"
 xmlns:persistence=
 "http://jboss.com/products/seam/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://jboss.com/products/seam/persistence
 http://jboss.com/products/seam/persistence-2.1.xsd
 http://jboss.com/products/seam/components
 http://jboss.com/products/seam/components-2.1.xsd">
 <persistence:managed-persistence-context name="em"
 auto-create="true" persistence-unit-jndi-name=
	 	 	 "java:/EMFactories/bookingEntityManagerFactory"/>
... ...
</components>

As configured above, a Seam-managed EntityManager can be injected as:

@In EntityManager em;

The EntityManagerFactory is looked up by the configured JNDI name so this name
must be consistent with your persistence.xml configuration. If you are using JBoss this
can be configured with the following in the properties of your persistence-unit definition:

<property name="jboss.entity.manager.factory.jndi.name"
 value="java:/EMFactories/bookingEntityManagerFactory"/>

Element Description

<persistence:

entity-manager-factory>
Informs Seam to bootstrap a JPA EntityManagerFactory
from your persistence.xml file.

<persistence:

managed-persistence-context>
Configures a Seam managed JPA EntityManager to be
available via injection.

<persistence:

persistence-unit-jndi-name>
Allows the persistence unit’s JNDI name to be embedded
as an element rather than an attribute.

<persistence:

hibernate-session-factory>
If you choose to use Hibernate directly, informs Seam to
bootstrap a HibernateSessionFactory. Allows your
Hibernate configuration to be specified through a variety
of approaches with the sub-elements shown in the
namespace diagram.

<persistence:

managed-hibernate-session>
Configures a Seam-managed Hibernate Session to be
available via injection.

<persistence:filters> Defines a set of Hibernate filters. Can only be used with
Hibernate.

<persistence:filter> Defines a Hibernate filter that is enabled whenever an
EntityManager or Hibernate Session is first created. Can
only be used with Hibernate.

<persistence:name> Provides the name of the Hibernate filter.

<persistence:parameters> Specifies key-value pairs setting the parameter values as
Expression Language (EL) expressions for the Hibernate filter.

http://www.dzone.com
http://www.refcardz.com
http://jboss.com/products/seam/security
http://jboss.com/products/seam/security-2.1.xsd

7

DZone, Inc. | www.dzone.com

 Core Seam
 tech facts at your fingertips

AppLICATION frAMEWOrK

The Seam CRUD application framework essentially provides
prepackaged Data Access Objects (DAOs). DAOs are highly
repetitive as the DAOs for each entity class are largely the same.
They are ideal for code reuse. Seam provides an application
framework with built-in generic DAO components. You can
develop simple CRUD web applications in Seam without writing a
single line of Java "business logic" code.

The Framework Namespace

Framework Namespace URI
http://jboss.com/products/seam/framework

Framework Namespace XSD
http://jboss.com/products/seam/framework-2.1.xsd

The framework namespace configures components found in the
org.jboss.seam.framework package.

Framework Namespace Diagram

Framework Namespace Elements

Element Description

<framework:

entity-query>

Configures an EntityQuery controller instance for
executing JPA queries.

<framework:

entity-home>

Configures an EntityHome controller instance for managing
JPA entities.

<framework:hibernate-

entity-query>

Configures a HibernateQuery controller instance for
executing Hibernate queries.

<framework:hibernate-

entity-home>

Configures a HibernateEntityHome controller instance for
managing Hibernate entities.

<framework:new-instance> Declares the new instance managed by a home controller.

<framework:ejbql> Declares the new instance managed by a home controller.

<framework:order> Defines the order-by property for a Query instance.

<framework:restrictions> Defines the where clause of a Query instance.

<framework:group-by> Defines the group-by clause for a Query instance.

<framework:

created-message>

A status message added when a Home controller creates a new
entity instance.

<framework:

updated-message>

A status message added when the Home controller updates
an entity instance.

<framework:

deleted-message>

A status message added when the Home controller deletes
an entity instance.

<framework:deleted-message>

<framework:new-instance>

<framework:created-message>

<framework:entity-home>

<framework:entity-query>

<framework:hibernate-entity-home>

<framework:hibernate-entity-query>

<framework:updated-message>

<framework:order>

<framework:group-by>

<framework:ejbql>

<framework:restrictions>

<components>

Securing your Application
Seam makes it easy to declare access constraints on web pages,
UI components, and Java methods via tags, annotations, and JSF
Expression Language (EL) expressions. Through this declarative
approach Seam provides you with the ability to easily achieve a
layered approach to security.

Security Annotations

Security Expression Language (EL) Functions
These functions provide convenience for invoking role or
permission checks through Expression Language (EL). This can
be useful in your Facelets pages, in pages.xml, or in using the
@Restrict annotation to provide security restrictions.

Seam Distribution Security Examples
The following examples are distributed with Seam and provide
great resources for configuring your application.

Seam Security, continued

Annotation Use Description

@Restrict Type,
Method

Allows a component to be secured either at the method or the
class level through evaluation of an Expression Language (EL)
expression.

@Read Method,
Parameter

Declares a type-safe permission check to determine whether the
current user has read permission for the specified class.

@Update Method,
Parameter

Declares a type-safe permission check to determine whether the
current user has update permission for the specified class.

@Insert Method,
Parameter

Declares a type-safe permission check to determine whether the
current user has insert permission for the specified class.

@Delete Method,
Parameter

Declares a type-safe permission check to determine whether the
current user has delete permission for the specified class.

@Permission

Check

Annotation Declares a custom security annotation for performing type-safe
permission checks where the required permission is the lower-
case representation of the annotation name.

@RoleCheck Annotation Declares a custom security annotation for performing type-safe
role checks where the required role is the lower-case
representation of the annotation name.

Function Description

#{s:hasRole(roleName)} Expression Language (EL) function that invokes the hasRole
method on the Identity component. Returns true if the
current user has the specified role.

#{s:hasPermission(target,

action)}

Expression Language (EL) function that invokes the
hasPermission method on the Identity component.
Delegates the call to the configured PermissionResolver.

Example Directory Description

Seam
Booking

examples/

 booking

Demonstrates the most basic authentication through use of
an authenticate-method.

Seam
Space

examples/

seamspace

Demonstrates use of rule-based-permission-resolver,
jpa-identity-store, and jpa-permission-store.

Security Namespace Example

The JpaIdentityStore component provided by Seam 2.1 makes it simple to store users
and roles inside a relational database.
<components
 xmlns="http://jboss.com/products/seam/components"
 xmlns:drools="http://jboss.com/products/seam/drools"
 xmlns:security="http://jboss.com/products/seam/security"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://jboss.com/products/seam/security
 http://jboss.com/products/seam/security-2.1.xsd
 http://jboss.com/products/seam/drools
 http://jboss.com/products/seam/drools-2.0.xsd
 http://jboss.com/products/seam/components
 http://jboss.com/products/seam/components-2.1.xsd">

<security:jpa-identity-store
user-class="org.jboss.seam.example.booking.MemberAccount"
role-class="org.jboss.seam.example.booking.MemberRole"	/>
... ...

Above we need not configure the IdentityManager as the JpaIdentityStore is assumed
by default.

http://www.dzone.com
http://www.refcardz.com
http://jboss.com/products/seam/framework
http://jboss.com/products/seam/framework-2.1.xsd

 Core Seam
8

 tech facts at your fingertips

DZone communities deliver over 4 million pages each month to

more than 1.7 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheatsheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

DZone, Inc.
1251 NW Maynard
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2008 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying,
or otherwise, without prior written permission of the publisher. Reference: Seam Framework, 2nd Edition, Michael Juntao Yuan, Jacob Orshalick, Thomas Heute, Prentice Hall PTR, February 2009.

Version 1.0

$7
.9

5

ISBN-13: 978-1-934238-31-8
ISBN-10: 1-934238-31-7

9 781934 238318

5 0 7 9 5

The Seam Framework has simplified Java enterprise
Web development for thousands of developers
and significantly influenced the broader Java
Enterprise Edition platform. Now, the authors of
the leading guide to Seam development have
systematically updated it to reflect the major
improvements and new features introduced with
Seam 2.x. The book also introduces Web Beans
(JSR-299), the future core of Seam that will transform
Java EE Web development.

rECOMMENDED bOOK

bUy NOW
books.dzone.com/books/seam-framework

AbOUT ThE AUThOr

Jacob Orshalick
Jacob Orshalick is an independent software consultant,
open source enthusiast, and the owner of Focus IT Solutions,
an independent software consulting firm. He has a Masters
degree in Software Engineering from The University of Texas
at Dallas and has eight years of development experience in
the retail, financial, and telecommunications industries. You

can also find Jacob writing about Seam in his blog.

Publications
n	 Seam Framework: Experience the Evolution of Java EE

Blog Projects
http://solutionsfit.com/blog/ Committer to Seam Framework

Get More FREE Refcardz. Visit refcardz.com now!
Upcoming Refcardz:
Core CSS: Part III

Hibernate Search

Equinox

EMF

XML

JSP Expression Language

ALM Best Practices

HTML and XHTML

Available:
Essential Ruby

Essential MySQL

JUnit and EasyMock

Getting Started with MyEclipse

Spring Annotations

Core Java

Core CSS: Part II

PHP

Getting Started with JPA

JavaServer Faces

Core CSS: Part I

Struts2

Core .NET

Very First Steps in Flex

C#

Groovy

NetBeans IDE 6.1 Java Editor

RSS and Atom

GlassFish Application Server
Silverlight 2

Visit refcardz.com for a complete listing of available Refcardz.

Design Patterns
Published June 2008

frEE

Framework Namespace Example

In the booking example we could use an EntityHome instance to manage retrieval of the
Hotel entity. The configuration below achieves this:

<?xml version="1.0" encoding="UTF-8"?>
<components xmlns=
 "http://jboss.com/products/seam/components"
 xmlns:persistence=
 "http://jboss.com/products/seam/persistence"
 xmlns:framework="http://jboss.com/products/seam/framework"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://jboss.com/product s/seam/framework
 http://jboss.com/products/seam/framework-2.1.xsd
 http://jboss.com/products/seam/components
 http://jboss.com/products/seam/components-2.1.xsd">
... ...
<persistence:managed-persistence-context name="em"
 auto-create="true"persistence-unit-jndi-name=
 "java:/EMFactories/bookingEntityManagerFactory"/>

<factory name="hotel"
 value="#{hotelHome.instance}"
 scope="stateless"
 auto-create="true"/>

Seam Distribution Framework Examples
The following examples are distributed with Seam and provide
great resources for configuring your application.

Example Directory Description

Seam Pay examples/
 seampay

Demonstrates use of entity-query and entityhome elements.

DVD Store examples/
 dvdstore

Demonstrates use of entity-query and entityhome elements.

Contact List examples/
 contactlist

Demonstrates use of entity-query and entityhome with
embedded namespace elements. Also demonstrates use
of restrictions.

Framework Namespace Example, continued

<framework:entity-home	name="hotelHome"
	 	 entity-class="com.jboss.seam.booking.Hotel"
	 	 scope="conversation"	entity-manager=”#{em}”
 auto-create="true">
	 <framework:id>#{hotelId}</framework:id>
</framework:entity-home>
... ...

When a hotel is requested for injection or through Expression Language (EL) the
hotelHome will be invoked to retrieve the hotel based on the current hotelId. This of
course requires that the requested hotelId be made available in the current context.
This can easily be achieved through use of a request parameter or outjection.

Application Framework, continued

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://books.dzone.com/books/seam-framework
http://books.dzone.com/books/seam-framework
http://books.dzone.com/books/seam-framework
http://solutionsfit.com/blog/
http://www.refcardz.com
http://refcardz.dzone.com/refcardz/essential-ruby
http://refcardz.dzone.com/refcardz/essential-mysql
http://refcardz.dzone.com/refcardz/junit-and-easymock
http://refcardz.dzone.com/refcardz/myeclipse
http://refcardz.dzone.com/refcardz/spring-annotations
http://refcardz.dzone.com/refcardz/core-java
http://refcardz.dzone.com/refcardz/corecss2
http://refcardz.dzone.com/refcardz/php
http://refcardz.dzone.com/refcardz/getting-started-with-jpa
http://refcardz.dzone.com/refcardz/javaserver-faces
http://refcardz.dzone.com/refcardz/javaserver-faces
http://refcardz.dzone.com/refcardz/struts2
http://refcardz.dzone.com/refcardz/coredotnet
http://refcardz.dzone.com/refcardz/very-first-steps-flex
http://refcardz.dzone.com/refcardz/csharp
http://refcardz.dzone.com/refcardz/groovy
http://refcardz.dzone.com/refcardz/netbeans
http://refcardz.dzone.com/refcardz/rss-and-atom
http://refcardz.dzone.com/refcardz/glassfish-application-server
http://refcardz.dzone.com/refcardz/silverlight2
http://refcardz.dzone.com
http://refcardz.dzone.com/refcardz/design-patterns
http://refcardz.dzone.com/refcardz/design-patterns
http://refcardz.dzone.com/refcardz/design-patterns

