
DZone, Inc. | www.dzone.com

CONTENTS INCLUDE:
n	 Google Your Database!
n	 Mapping Entities
n	 Bridges
n	 Initial Indexing of Entities
n	 Querying Indexes
n	 Hot Tips and more...

Hibernate Search complements Hibernate Core by enabling full-
text search queries on persistent domain models, and brings
Lucene search features to the Hibernate world. Hibernate Search
depends on Apache Lucene, a powerful full-text search engine
library (and a de facto standard solution in Java) hosted at the
Apache Software Foundation (http://www.apache.org/). This
refcard explains installation and configuration, and covers
Mapping entities, bridges, building indexes, querying them and
examining their contents. Table 1 shows links to documentation.

Table 1 Documentation Links

GETTING STARTED

In order to use Hibernate Search you should understand the basics
of Hibernate, and be familiar with the object manipulation APIs
from the Hibernate Session or the Java Persistence EntityManager
as well as the query APIs. You should also be familiar with associ-
ation mappings and the concept of bidirectional relationships.

Download Hibernate Search at http://www.hibernate.org or use
the JBoss Maven repository (http://repository.jboss.org/maven2/
org/hibernate/hibernate-search). It is interesting to download
the Apache Lucene distribution as well, available at http://lucene.
apache.org/java/. It contains both documentation and a contri-
bution section containing various add-ons not included in
Hibernate Search. Make sure to use the same Lucene version
Hibernate Search is based on. You can find the correct version
in the Hibernate Search distribution in lib/readme.txt.

Hibernate Search requires three JARs – all available in the
Hibernate Search distribution:

n hibernate-search.jar: the core API and engine of
Hibernate Search

n lucene-core.jar: Apache Lucene engine
n hibernate-commons-annotations.jar: some common utilities

for the Hibernate project

You can also add the optional support for modular analyzers
by adding: apache-solr-analyzer.jar. This JAR (available in the
Hibernate Search distribution), is a subset of the SOLR distribution
that contains various analyzers. While optional, it is recommended
to add this JAR to your classpath as it greatly simplifies the use of
analyzers.

Hibernate Search is not compatible with all versions of Hibernate
Core and Hibernate Annotations. Refer to Table 2 for compati-
bility requirements. The latest version is available on the
Hibernate download page at http://www.hibernate.org/6.html.

Table 2: Compatibility Matrix.

G
e

tt
in

g
 S

ta
rt

e
d

 w
ti

h
 H

ib
e

rn
at

e
 S

e
ar

ch

 w
w

w
.d

zo
n

e.
co

m

G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

Getting Started with
Hibernate Search

By John Griffin

Topic URL

Lucene http://lucene.apache.org/java/docs/

Hibernate Search http://www.hibernate.org/410.html

Mailing lists http://www.hibernate.org/20.html

JIRA http://opensource.atlassian.com/projects/hibernate/secure/
Dashboard.jspa

#32

GOOGLE YOUR DATABASE!
Hot
Tip

The apache-solr-analyzer.jar capabilities are
only available in Hibernate Search 3.1+.

Package Version Core Annotations Entity
Manager

Search

Hibernate Core 3.2.6 GA 3.2.x, 3.3.x 3.2.x, 3.3.x 3.0.x

3.3.0 SP1 3.4.x 3.4.x 3.1.x

Hibernate
Annotations

3.3.1 GA 3.2.x 3.3.x 3.0.x

3.4.0 GA 3.3.x 3.4.x 3.1.x

Hibernate
EntityManager

3.3.2 GA 3.2.x 3.3.x 3.0.x

3.4.0 GA 3.3.x 3.4.x 3.1.x

Hibernate
Validator

3.0.0 GA 3.2.x 3.3.x 3.3.x 3.0.x

3.1.0 GA 3.3.x 3.4.x 3.4.x 3.1.x

Hibernate
Search

3.0.1 GA >= 3.2.2
(better if
>= 3.2.6)

3.3.x (better
if >= 3.3.1)

3.3.x

3.1.0
Beta1

3.3 3.4 3.4 -

Hibernate
Shards

3.0.0
Beta2

3.2.x 3.3.x Not
compatible

3.0.x

Hibernate
Tools

3.2.2 3.2.x 3.2.x and
3.3.x

3.2.x and
3.3.x

(3.2.0)

JBoss Enterprise Application Platform
includes Hibernate
• JBoss Enterprise Application Platform pre-integrates
 JBoss Application Server, Seam, and Hibernate

• Includes caching, clustering, messaging, transactions, and
 integrated web services stack

• Support for industry-leading Java and technologies like
 JAX-WS, EJB 3.0, JPA 1.0, JSF 1.2, and JTA 1.1

• Use JBoss Operations Network to monitor and tune
 Hibernate queries

Download today: jboss.com/download

© 2008 Red Hat Middleware, LLC. All Rights Reserved. Red Hat, Red Hat Enterprise Linux, the
Shadowman logo and JBoss are registered trademarks of Red Hat, Inc. in the U.S. and other
countries. Linux is a registered trademark of Linus Torvalds.

Brought to you by…

http://www.dzone.com
http://www.refcardz.com
http://www.hibernate.org
http://repository.jboss.org/maven2/org/hibernate/hibernate-search
http://repository.jboss.org/maven2/org/hibernate/hibernate-search
http://lucene.apache.org/java/
http://lucene.apache.org/java/
http://www.hibernate.org/6.html.
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com
http://lucene.apache.org/java/docs/
http://www.hibernate.org/410.html
http://www.hibernate.org/20.html
http://opensource.atlassian.com/projects/hibernate/secure/Dashboard.jspa
http://opensource.atlassian.com/projects/hibernate/secure/Dashboard.jspa
http://www.jboss.com/downloads/index
http://www.jboss.com/downloads/index

Getting Started with Hibernate Search
 tech facts at your fingertips

DZone, Inc. | www.dzone.com

2

Configuration Parameters
Configuration parameters can be provided in three ways:

n In a hibernate.cfg.xml file
n In a /hibernate.properties file
n Through the configuration API and specifically

configuration.setProperty(String, String)

Table 3: Hibernate Search configuration parameters.

Table 3, continued

Table 3: Hibernate Search configuration parameters, continued

Figure 1: Basic entity mapping.

Bridges fulfill several needs in the Hibernate Search architecture.
n Converts an object instance into a Lucene consumable

representation (commonly a String) and adds it to a Lucene
document.

n Reads information from the Lucene document and builds
back the object representation.

Bridges that support both the conversion object to Lucene and
Lucene to object are called two-way bridges. Table 4 lists all out-
of-the-box Hibernate Search bridges.

Table 4: List of standard Hibernate Search bridges.

Hot
Tip

Dependencies needed to build and initially test
Hibernate Search are included in the Hibernate
Search distribution or can be found in the
Maven dependency file (POM) which is
included with the Hibernate Search download.

Parameter Description

hibernate.search.autoregister_
listeners

Enable listeners auto registration in
Hibernate Annotations and Entity-
Manager. Default to true.

hibernate.search.indexing_strategy Defines the indexing strategy, default to
event. Other option is manual.

hibernate.search.analyzer The default Lucene analyzer class.

hibernate.search.similarity The default Lucene similarity class.

hibernate.search.worker.batch_size Has been deprecated in favor of this
explicit API

hibernate.search.worker.backend Out of the box support for the Apache
Lucene backend and the JMS back end.
Defaults to lucene. Other option is jms.

hibernate.search.worker.execution Supports synchronous and asynchronous
execution. Defaults to sync. Other option
is async.

hibernate.search.worker.thread_
pool.size

Defines the number of threads in the
pool. Useful only for asynchronous
execution. Default to 1.

hibernate.search.worker.buffer_
queue.max

Defines the maximal number of work
queue if the thread poll is starved. Useful
only for asynchronous execution. Default
to infinite. If the limit is reached, the work
is done by the main thread.

hibernate.search.worker.jndi.* Defines the JNDI properties to initiate
the InitialContext (if needed). JNDI is
only used by the JMS back end.

hibernate.search.worker.jms.
connection_factory

Mandatory for the JMS back end. Defines
the JNDI name to lookup the JMS con-
nection factory from. (java:/Connect
ionFactory by default in JBoss AS)

hibernate.search.worker.jms.queue Mandatory for the JMS back end.
Defines the JNDI name to lookup the
JMS queue from. The queue will be used
to post work messages.

hibernate.search.reader.strategy Defines the reader strategy used. Defaults
to shared. Other option is not-shared.

Listing 1: An example hibernate.cfg.xml file.

<?xml version=”1.0” encoding=”UTF-8”?> hibernate.cfg.xml file
<!DOCTYPE hibernate-configuration PUBLIC
 “-//Hibernate/Hibernate Configuration DTD 3.0//EN”
 “http://hibernate.sourceforge.net/
hibernate-configuration-3.0.dtd”>
<!-- hibernate.cfg.xml -->
<hibernate-configuration>
 <session-factory name=”dvdstore-catalog”>

 <!-- regular Hibernate Core configuration -->
 <property name=”hibernate.dialect”>
 org.hibernate.dialect.PostgreSQLDialect”
 </property>
 <property name=”hibernate.connection.datasource”>
 jdbc/test
 </property>

 <!-- Hibernate Search configuration -->
 <property name=”hibernate.search.default.indexBase”>
 /users/application/indexes
 </property>

 <!-- mapping classes -->
 <mapping class=”com.manning.dvdstore.model.Item”/>
 list additional entities
 </session-factory>
</hibernate-configuration>

MAPPING ENTITIES

hibernate.search.filter.cache_
strategy

The filter caching strategy class (must
have a no-arg constructor and
implement FilterCachingStrategy).

hibernate.search.filter.cache_bit_
results.size

The hard ref count of our Caching
WrapperFilter. Defaults to 5.

BRIDGES

Java Type Build-in Bridge Description

String StringBridge no-op

short / Short ShortBridge Use toString(), not comparable

int / Integer IntegerBridge Use toString(), not comparable

long / Long LongBridge Use toString(), not comparable

float / Float FloatBridge Use toString(), not comparable

double /
Double

DoubleBridge Use toString(), not comparable

BigDecimal BigDecimalBridge Use toString(), not comparable

BigInteger BigIntegerBridge Use toString(), not comparable

boolean /
Boolean

BooleanBridge String value: “true” / “false”

Class ClassBridge Allows manipulation of any combination
of different fields.

Enum EnumBridge Use enum.name()

URL UrlBridge Converts to the String representation

URI UriBridge Converts to the String representation

http://www.refcardz.com
http://www.dzone.com
http://www.jboss.com/downloads/index

Getting Started with Hibernate Search
 tech facts at your fingertips

DZone, Inc. | www.dzone.com

3

Associations, continued

Listing 4 shows that @ContainedIn is paired to an @IndexedEmbedded
annotation on the other side of the bi-directional relationship.

Analyzers are responsible for taking text as input, chunking it
into individual words (tokens) and optionally applying some
operations (filters) on the tokens. A filter can alter the stream
of tokens as it pleases. It can remove, change, and add words.

In addition to the SOLR analyzers mentioned previously, Lucene’s
org.apache.lucene.analysis package contains additional
analyzers and many filters. Listing 5 is an example of defining
an analyzer on an entity.

Bridges, continued

Table 4: List of standard Hibernate Search bridges, continued.

Custom bridges allow for converting unexpected data types. The
@FieldBridge annotation is placed on a property (field or getter)
that needs to be processed by a custom bridge. An example,
including parameter passing, is given in Listing 2.

Embeddable Objects

Embedded objects in Java Persistence (they are called comp-
onents in Hibernate) are objects whose life cycle entirely depends
on the owning entity. When the owning entity is deleted, the
embedded object is deleted as well.

@IndexedEmbedded marks the association as embedded: the
Lucene document contains rating.overall, rating, scenario,
rating.soundtrack, rating.picture. When Item is deleted
the embedded Rating object is also deleted.

Associations

Associations between objects are similar to embeddable objects
except that an associated object’s life time is not dependent on
the owning entity. Below is an example association mapping.

Figure 2: An example association.

Listing 2: A custom bridge example with parameters.

@Entity
@Indexed
public class Item {
 @Field
 // property marked to use a custom bridge
 @FieldBridge(
 // declare the custom bridge implementation
 impl=PaddedRoundedPriceBridge.class,
 // optionally provide parameters
 params= {
 @Parameter(name=”pad”, value=”3”),
 @Parameter(name=”round”, value=”5”) }
)
private double price;
...
}

Listing 3: Embeddable Object example.

@Embeddable
public class Rating {
 // mark properties for indexing
 @Field(index=Index.UN_TOKENIZED) private Integer overall;
 @Field(index=Index.UN_TOKENIZED) private Integer scenario;
 @Field(index=Index.UN_TOKENIZED) private Integer soundtrack;
 @Field(index=Index.UN_TOKENIZED) private Integer picture;
...
}

@Entity
@Indexed
public class Item {
 // mark the association for indexing
 @IndexedEmbedded private Rating rating;
...
}

Listing 4: Figure 2 in code.

@Entity @Indexed
public class Item {
 @ManyToMany
 @IndexedEmbedded
 private Set<Actor> actors; // embed actors when indexing

 @ManyToOne
 @IndexedEmbedded
 private Director director; // embed director when indexing
...
}

@Entity @Indexed
public class Actor {
 @Field private String name;
 @ManyToMany(mappedBy=”actors”)
 @ContainedIn actor is contained in item index (1)
 private Set<Item> items;
...
}

@Entity @Indexed
public class Director {
 @Id @GeneratedValue @DocumentId private Integer id;
 @Field private String name;
 @OneToMany(mappedBy=”director”)
 @ContainedIn director is contained in item index
 private Set<Item> items;
...
}

Hot
Tip

The @IndexEmbedded depth setting (e.g.
@IndexEmbedded(depth=3)) controls the
maximum number of embeddings allowed
per association.

ANALYZERS

Listing 5

@Entity @Indexed
@AnalyzerDef(
 name=”applicationanalyzer”, // analyzer definition name
 tokenizer =
 // tokenizer factory
 @TokenizerDef(factory = StandardTokenizerFactory.
 class),
 filters = {
 // list of filters to apply
 @TokenFilterDef(factory=LowerCaseFilterFactory.
 class),
 @TokenFilterDef(factory = StopFilterFactory.
 class,
 // parameters passed to the filter factory
 params = {
 @Parameter(name=”words”,
 value=”com/manning/hsia/dvdstore/
 stopwords.txt”),
 @Parameter(name=”ignoreCase”, value=”true”)
 })
})
// Use the pre defined analyzer
@Analyzer(definition=”applicationanalyzer”)
public class Item {
...
}

Date DateBridge The string representation depends on
@DateBridge. Converting Date into
string and back is not guaranteed to be
idempotent

http://www.refcardz.com
http://www.dzone.com
http://www.jboss.com/downloads/index

Getting Started with Hibernate Search
 tech facts at your fingertips

DZone, Inc. | www.dzone.com

4

Manually
First you need an instance of either a FullTextEntityManager
or a FullTextSession depending on whether or not you are
using an EntityManager.

From a dataset

Updates, additions and deletions to indexes are handled auto-
matically by Hibernate Search via entity listeners. If you are using
Hibernate Annotations these listeners are automatically wired for
you. If you are not using the annotations then you have to wire
the listeners manually as shown in Listing 8.

From a dataset, continued

For versions of Hibernate Search prior to 3.1.x the configuration
is slightly different as shown in Listing 9.

Table 5 shows the three ways to obtain results.

Table 5: Querying indexes

INITIAL INDEXING OF ENTITIES

Hot
Tip

getFullTextSession
and getFullTextEntityManager
were named createFullTextSession and
createFullTextEntityManager in
Hibernate Search 3.0.

Listing 6: Manually indexing data.

SessionFactory factory =
 new AnnotationConfiguration().buildSessionFactory();
Session session = factory.openSession();

FullTextSession fts =
 org.hibernate.search.Search.getFullTextSession(session);

fts.getTransaction.begin()
for (Item item : items) {
 fts.index(item); //manually index an item instance
}
fts.getTransaction().commit(); //index is written at commit time
session.close();

or

EntityManagerFactory factory =
 Persistence.createEntityManagerFactory(“…”);
EntityManager em = factory.createEntityManager();
FullTextEntityManager ftem =
 org.hibernate.search.jpa.Search.getFullTextEntityManager(em);

ftem.getTransaction().begin();
for (Item item : items) {
 ftem.index(item); //manually index an item instance
}
//index is written at commit time
ftem.getTransaction().commit();

Listing 8: Wiring listeners when not using annotations.

<hibernate-configuration>
 <session-factory>
 ...
 <event type=”post-update”>
 <listener class= “org.hibernate.search.event
 FullTextIndexEventListener”/>
 </event>
 <event type=”post-insert”>
 <listener class= “org.hibernate.search.event
 FullTextIndexEventListener”/>
 </event>
 <event type=”post-delete”>
 <listener class= “org.hibernate.search.event
 FullTextIndexEventListener”/>
 </event>
 <event type=”post-collection-recreate”>
 <listener class= “org.hibernate.search.event
 FullTextIndexEventListener”/>
 </event>
 <event type=”post-collection-remove”>
 <listener class= “org.hibernate.search.event
 FullTextIndexEventListener”/>
 </event>
 <event type=”post-collection-update”>
 <listener class= “org.hibernate.search.event
 FullTextIndexEventListener”/>
 </event>
 </session-factory>
</hibernate-configuration>

Listing 9: Wiring listeners prior to Hibernate Search version 3.1.x.

<hibernate-configuration>
 <session-factory>
 ...
 <event type=”post-update”>
 <listener class=”org.hibernate.search.event
 .FullTextIndexEventListener”/>
 </event>
 <event type=”post-insert”>
 <listener class=”org.hibernate.search.event
 .FullTextIndexEventListener”/>
 </event>
 <event type=”post-delete”>
 <listener class=”org.hibernate.search.event
 .FullTextIndexEventListener”/>
 </event>
 <!-- collection listener is different -->
 <event type=”post-collection-recreate”>
 <listener class=”org.hibernate.search.event
 .FullTextIndexCollectionEventListener”/>
 </event>
 <event type=”post-collection-remove”>
 <listener class= org.hibernate.search.event
 .FullTextIndexCollectionEventListener”/>
 </event>
 <event type=”post-collection-update”>
 <listener class=”org.hibernate.search.event
 .FullTextIndexCollectionEventListener”/>
 </event>
 </session-factory>
</hibernate-configuration>

Listing 7: Initial indexing of a dataset.

// disable flush operations
session.setFlushMode(FlushMode.MANUAL);
// disable 2nd level cache operations
session.setCacheMode(CacheMode.IGNORE);

Transaction tx = session.beginTransaction();
// read the data from the database
// scrollable results will avoid loading too many objects
// in memory
// ensure forward only result set
ScrollableResults results = session.createCriteria(Item.class)
 .scroll(ScrollMode.FORWARD_ONLY);

int index = 0;
while(results.next()) {
 index++;
 session.index(results.get(0)); index entities (4)
 if (index % BATCH_SIZE == 0) {
 session.flushToIndexes(); apply changes to the index (5)
 session.clear(); clear the session releasing memory
 }
}
tx.commit(); apply the remaining index changes

QUERYING INDEXES

Method Call Description

query.list() List<Item> items = query.list();

All matching objects are loaded eagerly as opposed to lazily.

http://www.refcardz.com
http://www.dzone.com
http://www.jboss.com/downloads/index

Getting Started with Hibernate Search
 tech facts at your fingertips

DZone, Inc. | www.dzone.com

5

Querying indexes, continued

Table 5: Querying indexes, continued.

Basic Query Types

Table 6 presents the basic query types. Consult the Lucene API
documentation at http://lucene.apache.org/java/2_4_0/api/
index.html for a complete listing, specifically the org.apache.
lucene.search package.

Table 6: Basic query types.

Table 7 is a complete listing of all Hibernate Search annotations.

Query Description

TermQuery This is the basic building block of queries. It searches for
a single term in a single field. Many other query types are
reduced to one or more of these.

WildcardQuery Queries with the help of two wildcard symbols '*' (multiple
characters) and '?' (single character). These wildcard symbols
allow queries to match any combination of characters.

PrefixQuery A WildcardQuery that starts with characters and ends with
the '*' symbol.

PhraseQuery Also known as a proximity search, this queries for multiple terms
enclosed by quotes.

FuzzyQuery Queries using the Levenshtein distance between terms.
Requires a minimum similarity float value that expands or
contracts the distance.

RangeQuery Allows you to search for results between two values. Values can
be inclusive or exclusive but not mixed.

BooleanQuery Holds every possible combination of any of the other query types
including other BooleanQuerys. Boolean queries combine
individual queries as SHOULD, MUST or MUST_NOT.

MatchAllDocsQuery Returns all documents contained in a specified index.

Listing 10: A FullTextQuery example.

SessionFactory factory =
 new AnnotationConfiguration().buildSessionFactory();
Session session = factory.openSession();

FullTextSession fts =
 org.hibernate.search.Search.getFullTextSession(session);

fts.getTransaction.begin()

// create a Term for the description field
Term term = new Term(“description”, “salesman”);
TermQuery query = new TermQuery(term);

// generate a FullTextQuery and obtain a result list
org.hibernate.search.FullTextQuery hibQuery =
 s.createFullTextQuery(query, Dvd.class);
List<Dvd> results = hibQuery.list();

Annotation Description

@Analyzer Define an Analyzer for a given entity, method, attribute
or Field. The order of precedence is: @Field,
attribute/ method, entity, default. Able to reference an
implementation or an @AnalyzerDef definition.

@AnalyzerDef Reusable analyzer definition. An analyzer definition
defines: one tokenizer and, optionally, some filters.
Filters are applied in the order they are defined.

Table 7: Hibernate Search Annotations.

@AnalyzerDefs Reusable analyzer definitions. Allows multiple
@AnalyzerDef declarations per element.

@Boost Apply a boost factor to a field or an entire entity.

@ClassBridge Allows a user to manipulate a Lucene document based
on an entity change in any manner the user wishes.

@ClassBridges Allows multiple @ClassBridge declarations per
document.

@ContainedIn Marks the owning entity as being part of the associ-
ated entity’s index (to be more accurate, being part
of the indexed object graph). This is only necessary
when an entity is used as a @IndexedEmbedded target
class. @ContainedIn must mark the property pointing
back to the @IndexedEmbedded owning Entity. Not
necessary if the class is an embeddable class.

@DateBridge Defines the temporal resolution of a given property.
Dates are stored as a String in GMT.

@DocumentId Declare a property as the document id.

@Factory Marks a method of a filter factory class as a Filter
implementation provider. A factory method is called
whenever a new instance of a filter is requested.

@Field Marks a property as indexed. Contains field options
for storage, tokenization, whether or not to store
TermVector information, a specific analyzer and a
Field-Bridge.

@FieldBridge Specifies a field bridge implementation class. A field
bridge converts (sometimes back and forth) a property
value into a string representation or a representation
stored in the Lucene Document.

@Fields Marks a property as indexed into different fields.
Useful if the field is used for sorting and searching or if
different analyzers are used.

@FullTextFilterDef Defines a full-text filter that can be optionally applied
to full-text queries. While not related to a specific
indexed entity, the annotation must be set on one of
them.

@FullTextFilterDefs Allows multiple @FullTextFilterDef per FullTextQuery.

@Indexed Specifies that an entity is to be indexed. The index
name defaulted to the fully qualified class name can
be overridden using the name attribute.

@IndexedEmbedded Specifies that an association (@*To*, @Embedded,
@CollectionOfEmbedded) is to be indexed in the
root entity index. It allows queries involving associated
objects restrictions.

@Key Marks a method of a filter factory class as a Filter key
provider. A key is an object that uniquely identifies
a filter instance associated with a given set of
parameters.

The key object must implement equals and hashcode
so that 2 keys are equals if and only if the given target
object types are the same and the set of parameters
are the same. The key object is used in the filter cache
implementation.

@Parameter Basically a key/value descriptor. Used in @ClassBridge,
@FieldBridge, TokenFilterDef and @TokenizerDef.

@ProvidedId Objects whose identifier is provided externally, as
opposed to being a part of the object state, should be
marked with this annotation. This annotation should
not be used in conjunction with @DocumentId. This
annotation is primarily used in the JBoss Cache
Searchable project. http://www.jboss.org/jbosscache
and http://wiki.jboss.org/wiki/JBossCacheSearchable

@Similarity Specifies a similarity implementation to use in scoring
calculations.

Ex. @Entity
 @Indexed
 @Similarity(impl =
BookSpecificSimilarity.public class Book {
 ...
 }

@TokenFilterDef Specifies a TokenFilterFactory and its parameters
inside a @AnalyzerDef.

@TokenizerDef Defines a TokenizerFactory and its parameters
inside a @AnalyzerDef

Table 7: Hibernate Search Annotations, continued

hIBERNATE SEARCh ANNOTATIONS

Hibernate Search Annotations, continued

query.
iterate()

Iterator<Item> items = query.iterate();

while (items.hasNext()) {

 Item item = items.next();

}

All object identifiers are extracted from the Lucene index but objects
are not loaded until iterator.next() is called

query.
scroll()

ScrollableResults items = query.scroll();

// process results

Items.close();

ScrollableResults must be closed when processing is finished
to free resources.

http://www.refcardz.com
http://www.dzone.com
http://www.jboss.com/downloads/index
http://lucene.apache.org/java/2_4_0/api/index.htm
http://lucene.apache.org/java/2_4_0/api/index.htm
http://www.jboss.org/jbosscache
http://wiki.jboss.org/wiki/JBossCacheSearchable

 tech facts at your fingertips

6
Getting Started with Hibernate Search

The most indispensable utility you can have in your arsenal
of index troubleshooting tools (in fact it may be the only one
you really need) is Luke, shown in Figure 3. With Luke you can
examine any facet of an index you can imagine. Some of its
capabilities are:

n view individual documents
n execute a search, and browse the results
n selectively delete documents from the index
n examine term frequency, and many more...

The Luke author, Andrzej Bialecki, actively maintains Luke to keep
up with the latest Lucene version. Luke is available for download,
in several different formats, at http://www.getopt.org/luke/. The
most current version of the Java WebStart JNLP direct download
is the easiest to retrieve.

DZone communities deliver over 4 million pages each month to

more than 1.7 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheatsheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

DZone, Inc.
1251 NW Maynard
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2008 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher. Reference: Hibernate Search in Action, Emmanuel Bernard and John Griffin, Manning Publications, December 2008.

Version 1.0

$7
.9

5

ISBN-13: 978-1-934238-34-9
ISBN-10: 1-934238-34-1

9 781934 238349

5 0 7 9 5

ABOUT ThE AUThOR

Hibernate Search In Action

guides you through every

step to set up full text search

functionality in your Java

applications, and provides a

pragmatic, how-to exploration

of more advanced topics such

as Search clustering.

RECOMMENDED BOOK

BUY NOW
books.dzone.com/books/hibernate-search

John Griffin
John Griffin has been in the software and computer industry in one form
or another since 1969. He remembers writing his first FORTRAN IV program
on his way back from Woodstock. Currently, he is the software engineer/
architect for SOS Staffing Services, Inc. He was formerly the lead e-commerce
architect for Iomega Corporation and an independent consultant for the
Dept. of the Interior, among many other callings. John is a member of the

ACM. Currently, he resides in Layton, Utah with wife Judy and Australian Shepards Clancy
and Molly.

Publications Blog
n		XML and SQL Server 2000, New Riders Press http://thediningphilosopher.blogspot.com
n		Hibernate Search in Action, Manning
 Publications, co-authored with Emmanuel Bernard

Get More FREE Refcardz. Visit refcardz.com now!
Upcoming Refcardz:
Core Mule 2

Getting Started with Equinox OSGi

SOA Patterns

Getting Started with EMF

Using XML in Java

Essential JSP Expression Language

Available:
Core Seam

Essential Ruby

Spring Annotations

Core Java

Core CSS: Part II

PHP

Getting Started with JPA

JavaServer Faces

Core CSS: Part I

Struts2

Core .NET

Very First Steps in Flex

C#

Groovy

NetBeans IDE 6.1 Java Editor

RSS and Atom

Visit refcardz.com for a complete listing of available Refcardz.

LUKE

Design Patterns Published June 2008

FREE

Figure 3: The search window of the Luke utility for Lucene indexes.

http://www.jboss.com/downloads/index
http://www.refcardz.com
http://www.jboss.com/downloads/index
http://www.getopt.org/luke/
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
books.dzone.com/books/hibernate-search
http://www.jboss.com/downloads/index
books.dzone.com/books/hibernate-search
http://thediningphilosopher.blogspot.com
books.dzone.com/books/hibernate-search
http://www.refcardz.com
http://refcardz.dzone.com/refcardz/spring-annotations
http://refcardz.dzone.com/refcardz/core-java
http://refcardz.dzone.com/refcardz/corecss2
http://refcardz.dzone.com/refcardz/php
http://refcardz.dzone.com/refcardz/getting-started-with-jpa
http://refcardz.dzone.com/refcardz/corecss-part1
http://refcardz.dzone.com/refcardz/corecss-part1
http://refcardz.dzone.com/refcardz/struts2
http://refcardz.dzone.com/refcardz/coredotnet
http://refcardz.dzone.com/refcardz/very-first-steps-flex
http://refcardz.dzone.com/refcardz/csharp
http://refcardz.dzone.com/refcardz/groovy
http://refcardz.dzone.com/refcardz/netbeans
http://refcardz.dzone.com/refcardz/rss-and-atom
http://refcardz.dzone.com
http://refcardz.dzone.com/refcardz/design-patterns
http://refcardz.dzone.com/refcardz/design-patterns

