
DZone, Inc. | www.dzone.com

CONTENTS INCLUDE:

n	 About XML
n	 XML File Sample
n	 Parsing Techniques
n	 XML Structure
n	 XPath
n	 Hot Tips and more...

XML is a general-purpose specification for creating custom
mark-up languages. It is classified as an extensible language
because it allows its users to define their own elements. Its
primary purpose is to help information systems share structured
data, particularly via the Internet, and it is used both to encode
documents and to serialize data. In the latter context, it is
comparable with other text-based serialization languages such
as JSON and YAML.

As a diverse platform, Java has several solutions for working
with XML. This refcard provides developers a concise overview
of the different xml processing technologies in Java, and a use
case of each technology.

 1 <?xml version=”1.0” encoding=”UTF-8”?>
 2 <!DOCTYPE publications SYSTEM “publications.dtd”>
 3 <publications
 4 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 5 xsi:schemaLocation=”http://xml.dzone.org/schema/publications
 6 publications.xsd”
 7 xmlns=”http://xml.dzone.org/schema/publications”
 8 xmlns:extras=”http://xml.dzone.org/schema/publications”>
 9 <book id=”_001”>
10 <title>Beginning XML, 4th Edition </title>
11 <author>David Hunter</author>
12 <copyright>2007</copyright>
13 <publisher>Wrox</publisher>
14 <isbn kind=”10”>0470114878</isbn>
15 </book>
16 <book id=”_002”>
17 <title>XML in a Nutshell, Third Edition</title>
18 <author>O’Reilly Media, Inc</author>
19 <copyright>2004</copyright>
20 <publisher>O’Reilly Media, Inc.</publisher>
21 <isbn kind=”10”>0596007647</isbn>
22 </book>
23 <extras:book id=”_003” image=”erik_xml.jpg”>
24 <title>Learning XML, Second Edition</title>
25 <author>Erik Ray</author>
26 <copyright>2003</copyright>
27 <publisher>O’Reilly Media, Inc.</publisher>
28 <isbn kind=”10”>0596004206</isbn>
29 </extras:book>
30 </publications>

XML File Sample, continued

Capabilities of Element and Attribute

XML Use Cases

AbOUT XML

XML FILE SAMpLE

U
si

n
g

 X
M

L
in

 J
av

a

 w

w
w

.d
zo

n
e.

co
m

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

n Authoritative content
n Designed for developers
n Written by top experts
n Latest tools & technologies
n Hot tips & examples
n Bonus content online
n New issue every 1-2 weeks

Subscribe Now for FREE!
Refcardz.com

Get More Refcardz
(They’re free!)

Using XML in Java
By Masoud Kalali

#35

Capability Attribute Element

Hierarchical No – flat Yes

Ordered No – undefined Yes

Complex types No – string only Yes

Verbose Less – usually More

Readability Less More – usually

Line 1: An XML document always starts with a prolog which describes the XML file. This
prolog can be minimal, e.g. <?xml version=”1.0”?> or can contain other information. For
example, the encoding:
<?xml version=”1.0” encoding=”UTF-8” standalone=”yes” ?>

Line 2: DOCTYPE : DTD definitions can either be embedded in the XML document or ref-
erenced from a DTD file. Using the System keyword means that the DTD file should be in
the same folder our XML file resides.

Line 3: ROOT ELEMENT: Every well-formed document should have one and only one root
element. All other elements reside inside the root element.

Lines 4 – 8: namespace declaration: Line 4 defines the XSI prefix, lines 5 & 6 defines the
current URL and XSD file location, line 7 defines the current document default namespace,
and line 8 defines a prefix for an XML schema.

Line 20: Element: An element is composed of its start tag, end tag and the possible con-
tent which can be text or other nested elements.

Line 23: namespace prefixed tag: a start tag prefixed by a namespace. End tag must be name-
space prefixed in order to get a document, the end tag is line 29.

Line 28: Attribute: an attribute is part of an element, consisting of an attribute name and
its value.

Requirement/
Characteristic

Suitable XML Features

Interoperability XML can be used independent of the target language or
platform or target device.

Use XML when you need to support or interact with
multiple platforms.

Multiple output format for
multiple devices

XML Transformation can help you get a required format
from plain XML files.

Use XML as the preferred output format when multiple
output formats are required.

Content size Use XML when messaging and processing efficiency is
less important than interoperability and availability of
standard tools.

Large content can create a big XML document. Use
compression for XML documents or use other industry
standards like ASN.1.

Project size For Using XML you need at least XML parsing libraries
and helper classes to measure the project size and XML
related required man/ hour before using XML.

For small projects with simple requirements, you might
not want to incur the overhead of XML.

http://www.dzone.com
http://www.refcardz.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com

Using XML In Java
 tech facts at your fingertips

DZone, Inc. | www.dzone.com

2

XML Use Cases, continued

In order to use a XML file or a XML document inside an appli-
cation, it will be required to read it and tokenize it. For the XML
files, this is called XML Parsing and the piece of software which
performs this task is called a Parser.

There are two general parsing techniques:

n In Memory Tree: The entire document is read into memory
as a tree structure which allows random access to any part
of the document by the calling application.

n Streaming (Event processing): A Parser reads the docu-
ment and fires corresponding event when it encounters
XML entities.

Two types of parsers use streaming techniques:

n Push parsers: Parsers are in control of the parsing and
the parser client has no control over the parsing flow.

n Pull parsers: The Parser client is in control of the parsing
and the parser goes forward to the next infoset element
when it is asked to.

Following are parsers generally available in the industry:

n DOM: DOM is a tree-based parsing technique that builds
up an entire parse tree in memory. It allows complete
dynamic access to a whole XML document.

n SAX: SAX is an event-driven push model for processing
XML. It is not a W3C standard, but it’s a very well-
recognized API that most SAX parsers implement in a
compliant way. Rather than building a tree representation
of an entire document as DOM does, a SAX parser fires
off a series of events as it reads through the document.

n StAX (JSR 173): StAX was designed as a median between
DOM and SAX. In StAX, the application moves the cursor
forward ‘pulling’ the information from the parser as it
needs. So there is no event firing by the parser or huge
memory consumption. You can use 3rd party libraries for
Java SE 5 and older or bundled StAX parser of Java SE 6
and above.

Parsing Techniques, continued

All of these parsers fall under JAXP implementation. The
following sample codes show how we can utilize Java SE 6 XML
processing capabilities for XML parsing.

14 DocumentBuilderFactory factory = DocumentBuilderFactory.

15 newInstance();

16 factory.setValidating(true);

17 factory.setNamespaceAware(true);

18 factory.setAttribute(“http://java.sun.com/xml/jaxp/properties

19 /schemaLanguage”, “http://www.w3.org/2001/XMLSchema”);

20 DocumentBuilder builder = factory.newDocumentBuilder();

21 builder.setErrorHandler(new SimpleErrorHandler());

22 Document doc = builder.parse(“src/books.xml”);

23 NodeList list = doc.getElementsByTagName(“*”);

24 for (int i = 0; i < list.getLength(); i++) {

25 Element element = (Element) list.item(i);

26 System.out.println(element.getNodeName() + “ “ +

27 element.getTextContent());

28 if (element.getNodeName().equalsIgnoreCase(“book”)) {

29 System.out.println(“Book ID= “ + element

30 getAttribute(“id”));

31 }

32 if (element.getNodeName().equalsIgnoreCase(“isbn”)) {

33 System.out.println(“ISBN Kind=” + element

34 getAttribute(“kind”));

35 }

Feature StAX SAX DOM

API Type Pull, streaming Push, streaming In memory tree

Ease of Use High Medium High

XPath Capability No No Yes

CPU and Memory
Efficiency

Good Good Varies

Forward Only Yes Yes No

Read XML Yes Yes Yes

Write XML Yes No Yes

Create, Read,
Update or Delete
Nodes

No No Yes

Searching There are some technologies for searching in a XML
document like XPath (www.w3schools.com/XPath/default.
asp) and Xquery (http://www.xquery.com/) but they are
relatively young and immature.

Don’t use XML documents when searching is important.
Instead, store the content in a traditional database, use
XML databases or use XML-aware databases.

Best for
Applications in
need of:

• Streaming model

• Not modifying
the document

• Memory
efficiency

• XML read and
XML write

• Parsing multiple
documents in the
same thread

• Small devices

• Looking for
certain tag

• Read only
manipulation

• Not modifying the
document

• Memory efficiency

• Small devices

• Looking for a
certain tag

• Modifying the
XML Document

• XPath, XSLT

• XML tree
traversing and
random access
to any section

• Merging
documents

Line 16: In order to validate the XML using internal DTD we need only to setValidation(true).
To validate a document using DOM, ensure that there is no schema in the document,
and no element prefix for our start and end tags.

Line 17: The created parser is namespace aware (the namespace prefix will be dealt with
as a prefix, and not a part of the element).

Lines 18 – 19: The created parser uses internal XSD to validate the document Dom
BuilderFactory instances accept several features which let developers enable or disable
a functionality, one of them is validating against the internal XSD.

Line 21: Although DOM can use some default error handler, it’s usually better to set
our own error handler to handle different levels of possible errors in the document. The
default handler has different behaviors based on the implementation that we use. A
simple error handler might be:

11 public class SimpleErrorHandler implements ErrorHandler {
12
13 public void warning(SAXParseException e) throws SAXException
{
14 System.out.println(e.getMessage());
15 }
16
17 public void error(SAXParseException e) throws SAXException {
18 System.out.println(e.getMessage());
19 }
20
21 public void fatalError(SAXParseException e) throws SAXException {
22 System.out.println(e.getMessage());
23 }
24 }
25 }

pArSINg TEChNIqUES

pArSINg XML USINg DOM

http://www.refcardz.com
http://www.dzone.com
www.w3schools.com/XPath/default.asp
www.w3schools.com/XPath/default.asp
http://www.xquery.com/

Using XML In Java
 tech facts at your fingertips

DZone, Inc. | www.dzone.com

3

XMLInputFactory inputFactory = XMLInputFactory.newInstance();
InputStream in = new FileInputStream(“src/books.xml”);
XMLEventReader eventReader = inputFactory.createXMLEventReader(in);
while (eventReader.hasNext()) {
 XMLEvent event = eventReader.nextEvent();
 if (event.isEndElement()) {
 if (event.asEndElement().getName().getLocalPart()
 equals(“book”)) {
 event = eventReader.nextEvent();
 System.out.println(“=================================”);
 continue;
 }
 }
 if (event.isStartElement()) {
 if (event.asStartElement().getName().getLocalPart()
 equals(“title”)) {
 event = eventReader.nextEvent();
 System.out.println(“title: “ + event.asCharacters()
 getData());
 continue;
 }
 if (event.asStartElement().getName().getLocalPart()
 equals(“author”)) {
 event = eventReader.nextEvent();
 System.out.println(“author: “ + event.asCharacters()
 getData());
 continue;
 }
 if (event.asStartElement().getName().getLocalPart()
 equals(“copyright”)) {
 event = eventReader.nextEvent();
 System.out.println(“copyright: “ + event
 asCharacters().getData());
 continue;
 }
 if (event.asStartElement().getName().getLocalPart()
 equals(“publisher”)) {
 event = eventReader.nextEvent();
 System.out.println(“publisher: “ + event.asCharacters()
 getData());
 continue;
 }
 if (event.asStartElement().getName().getLocalPart()
 equals(“isbn”)) {
 event = eventReader.nextEvent();
 System.out.println(“isbn: “ + event.asCharacters()
 getData());
 continue;
 }
 }
 }

There are two levels of correctness of an XML document:

1. Well-formed-ness. A well-formed document conforms to
all of XML’s syntax rules. For example, if a start-tag appears
without a corresponding end-tag, it is not well-formed. A
document that is not well-formed is not considered to be
XML.

Sample characteristics:

	 n XML documents must have a root element
	 n XML elements must have a closing tag
	 n XML tags are case sensitive
	 n XML elements must be properly nested
	 n XML attribute values must always be quoted

2. Validity. A valid document conforms to semantic rules.
The rules are included as XML schema, especially DTD.
Examples of invalid documents include: if a required
attribute or element is not present in the document; if the
document contains an undefined element; if an element is
meant to be repeated once, and appears more than once;
or if the value of an attribute does not conform to the
defined pattern or data type.

For using SAX, we need the parser and an event handler that
should respond to the parsing events. Events can be a start
element event, end element event, and so forth.

A simple event handler might be:
public class SimpleHandler extends DefaultHandler {

 public void startElement(String namespaceURI, String localName,
 String qName, Attributes atts)
 throws SAXException {
 if (“book”.equals(localName)) {
 System.out.print(“Book details: Book ID: “ + atts
 getValue(“id”));
 } else {
 System.out.print(localName + “: “);
 }
 }

 public void characters(char[] ch, int start, int length)
 throws SAXException {
 System.out.print(new String(ch, start, length));
 }

 public void endElement(String namespaceURI, String localName,
 String qName)
 throws SAXException {
 if (“book”.equals(localName)) {
 System.out.println(“=================================”);
 }
 }
 }

The parser code that uses the event handler to parse the book.
xml document might be:
SAXParser saxParser;
SAXParserFactory factory = SAXParserFactory.newInstance();
factory.setNamespaceAware(true);
factory.setValidating(true);
saxParser = factory.newSAXParser();
saxParser.setProperty(
 “http://java.sun.com/xml/jaxp/properties/schemaLanguage”,
 “http://www.w3.org/2001/XMLSchema”);
XMLReader reader = saxParser.getXMLReader();
reader.setErrorHandler(new SimpleErrorHandler());
reader.setContentHandler(new SimpleHandler());
reader.parse(“src/books.xml”);

StAX is a streaming pull parser. It means that the parser client
can ask the parser to go forward in the document when it needs.
StAX provides two sets of APIs:

n The cursor API methods return XML information as strings,
which minimizes object allocation requirements.

n Iterator-based API which represents the current state of
the parser as an Object. The parser client can get all the
required information about the element underlying the
event from the object.

Differences and features of StAX APIs

Cursor API: Best in frameworks and

libraries

Iterator API: Best in applications

More memory efficient XMLEvent subclasses are immutable(Direct

use in other part of the application)

Better overall performance New subclass of XMLEvent can be

developed and used when required

Forward only Applying event filters to reduce event

processing costs

XML STrUCTUrEpArSINg XML USINg StAX

A SAMpLE USINg StAX pArSErpArSINg XML USINg SAX

http://www.refcardz.com
http://www.dzone.com

Using XML In Java
 tech facts at your fingertips

DZone, Inc. | www.dzone.com

4

XML Structure, continued

XML validation mechanisms include using DTD and XML schema
like XML Schema and RelaxNG.

Document Type Definition (DTD)
A DTD defines the tags and attributes used in a XML or HTML
document. Elements defined in a DTD can be used, along with
the predefined tags and attributes of each markup language.
DTD support is ubiquitous due to its inclusion in the XML 1.0
standard.

A sample DTD document
 1 <?xml version=”1.0” encoding=”UTF-8”?>

 2 <!ELEMENT publications (book*)>

 3 <!ELEMENT book (title, author+, copyright, publisher, isbn,

 4 description?)>

 5 <!ELEMENT title (#PCDATA)>

 6 <!ELEMENT author (#PCDATA)>

 7 <!ELEMENT copyright (#PCDATA)>

 8 <!ELEMENT publisher (#PCDATA)>

 9 <!ELEMENT isbn (#PCDATA)>

10 <!ELEMENT description (#PCDATA)>

11 <!ATTLIST book id ID #REQUIRED image CDATA #IMPLIED>

12 <!ATTLIST isbn kind (10|13) #REQUIRED >

DTD Attribute Types

XML Schema Definition (XSD)
XSD provides the syntax and defines a way in which elements
and attributes can be represented in a XML document. It also
advocates the XML document should be of a specific format

XML Schema Definition (XSD), continued

and specific data type. XSD is fully recommended by the W3C
consortium as a standard for defining a XML Document. XSD
documents are written in XML format.

A sample XSD document
 1 <?xml version=”1.0” encoding=”UTF-8”?>
 2 <xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”
 3 xmlns:extras=”http://xml.dzone.org/schema/publications”
 4 attributeFormDefault=”unqualified” elementFormDefault=”unqualified”
 5 xmlns=”http://xml.dzone.org/schema/publications”
 6 targetNamespace=”http://xml.dzone.org/schema/publications”
 7 version=”4”>
 8 <xs:element name=”publications”>
 9 <xs:complexType>
10 <xs:sequence>
11 <xs:element minOccurs=”0” maxOccurs=”unbounded”
12 ref=”book”/>
13 </xs:sequence>
14 </xs:complexType>
15 </xs:element>
16 <xs:element name=”book”>
17 <xs:complexType>
18 <xs:sequence>
19 <xs:element ref=”title”/>
20 <xs:element minOccurs=”1” maxOccurs=”unbounded”
21 ref=”author”/>
22 <xs:element ref=”copyright”/>
23 <xs:element ref=”publisher”/>
24 <xs:element ref=”isbn”/>
25 <xs:element minOccurs=”0” ref=”description”/>
26 </xs:sequence>
27 <xs:attributeGroup ref=”attlist.book”/>
28 </xs:complexType>
29 </xs:element>
30 <xs:element name=”title” type=”xs:string”/>
31 <xs:element name=”author” type=”xs:string”/>
32 <xs:element name=”copyright” type=”xs:string”/>
33 <xs:element name=”publisher” type=”xs:string”/>
34 <xs:element name=”isbn”>
35 <xs:complexType mixed=”true”>
36 <xs:attributeGroup ref=”attlist.isbn”/>
37 </xs:complexType>
38 </xs:element>
39 <xs:element name=”description” type=”xs:string”/>
40 <xs:attributeGroup name=”attlist.book”>
41 <xs:attribute name=”id” use=”required” type=”xs:ID”/>
42 <xs:attribute name=”image”/>
43 </xs:attributeGroup>
44 <xs:attributeGroup name=”attlist.isbn”>
45 <xs:attribute name=”kind” use=”required”>
46 <xs:simpleType>
47 <xs:restriction base=”xs:token”>
48 <xs:enumeration value=”10”/>
49 <xs:enumeration value=”13”/>
50 </xs:restriction>
51 </xs:simpleType>
52 </xs:attribute>
53 </xs:attributeGroup>
54 </xs:schema>

DTD Attribute Type Description

CDATA Any character string acceptable in XML

NMTOKEN Close to being a XML name; first character is looser

NMTOKENS One or more NMTOKEN tokens separated by white space

Enumeration List of the only allowed values for an attribute

ENTITY Associates a name with a macro-like replacement

ENTITIES White-space-separated list of ENTITY names

ID XML name unique within the entire document

IDREF Reference to an ID attribute within the document

IDREFS White-space-separated list of IDREF tokens

NOTATION Associates a name with information used by the client

What a DTD can validate

Element nesting

Element occurrence

Permitted attributes of an element

Attribute types and default values

Line 2: publications element has 0...unbounded number of book elements inside it.

Line 3: book element has one or more author elements, 0 or 1 description elements and
exactly one title, copyright, publisher and isbn elements inside it.

Line 11: book element has two attributes, one named id of type ID which is mandatory,
and an image attribute from type CDATA which is optional.

Line 12: isbn element has an attribute named kind which can have 10 or 13 as its value.

DTD Advantages: DTD Disadvantages:

Easy to read and write (plain text file with a simple
semixml format).

No type definition system.

Can be used as an in-line definition inside the
XML documents.

No means of element and attribute
content definition and validation.

Includes #define, #include, and #ifdef; the ability
to define shorthand abbreviations, external
content, and some conditional parsing.

XSD Advantages: XSD Disadvantages:

XSD has a much richer language for describing
what element or attribute content “looks like.”
This is related to the type system.

Verbose language, hard to read
and write

XSD Schema supports Inheritance, where one
schema can inherit from another schema. This is a
great feature because it provides the opportunity
for re-usability.

Provides no mechanism for the user
to add more data types.

It is namespace aware and provides the ability to
define its own data type from the existing data
type.

Lines 2 – 7: Line 2 defines XML Schema namespace. Line 3 defines available schemas
where it can use its vocabulary. Line 4 specifies whether locally declared elements and
attributes are namespace qualified or not. A locally declared element is an element
declared directly inside a complexType (not by reference), Line 5 declares the default
namespace for this schema document. Lines 6 and 7 define the namespace that a XML
document can use in order to make it possible to validate it with this schema.

http://www.refcardz.com
http://www.dzone.com

Using XML In Java
 tech facts at your fingertips

DZone, Inc. | www.dzone.com

5

XML Schema Definition (XSD), continued

To validate XML files using external XSD, replace line 17 – 20 of
the DOM sample with:
1 factory.setValidating(false);

2 factory.setNamespaceAware(true);

3 SchemaFactory schemaFactory = SchemaFactory.newInstance(“http:/

4 www.w3.org/2001/XMLSchema”);

5 factory.setSchema(schemaFactory.newSchema(new Source[]{new

6 StreamSource(“src/publication.xsd”))});

XML Schema validation factors

XML Schema built-in types

Hot
Tip

The separation of an element type definition
and its use. We declared our types separately
from where we referenced them (use them). ref
attributes point to a declaration with the same

name. Using this technique we can have separate XSD files
and each of them contains definition and declarations related
to one specific package. We can also import or include them
in other XSD documents, if needed.

XML Schema built-in types, continued

DTD and XSD validation capabilities

XPath is a declarative language used for referring to sections of
XML documents. XPath expressions are used for locating a set
of nodes in a given XML document. Many XML technologies,
like XSLT and XQuery, use XPath extensively. To use these
technologies, you’ll need to understand the basics of XPpath.
All samples in this section assume we are working on a XML
document similar to the XML document on page 1.

Sample XPath Expressions and Output

As you can see, contains and positions functions are two widely
used XPath functions.

Important XPath Functions

Validation factor Description

Length, minLength, maxLength,
maxExclusive, maxInclusive,
minExclusive, minInclusive

Enforces a length for the string derived value,
either its maximum, minimum, maximum or
minimum, inclusive and exclusive.

enumeration Restricts values to a member of a defined list

TotalDigits, fractionDigits Enforces total digits in a number; signs and
decimal points skipped. Enforces total fractional
digits in a fractional number

whiteSpace Used to preserve, replace, or collapse document
white space

Type Description

anyURI Uniform Resource Identifier

base64Binary base64 encoded binary value

Boolean; byte; dateTime; integer;
string

True, false or 0, 1; Signed quantity >= 128 and <
127; An absolute date and time; Signed integer;
Unicode string

ID, IDREF, IDREFS,ENTITY, ENTITIES, Used to preserve, replace, or collapse
document white space

W3C XML Schema Features DTD Features

Namespace-qualified element and
attribute declarations

Element nesting

Simple and complex data types Element occurrence

Type derivation and inheritance Permitted attributes of an element

Element occurrence constraints Attribute types and default values

Hot
Tip

Import and include. The import and include
elements help to construct a schema from mul-
tiple documents and namespaces. The import
element brings in a schema from a different

namespace, while the include element brings in a schema
from the same namespace. When include is used, the target
namespace of the included schema must be the same as the
target namespace of the including schema. In the case of
import, the target namespace of the included schema must
be different.

XPath Expression Output

/publications/book[publisher="Wrox"]/copyright 2007

/publications//book[contains(title,"XML")]/author David Hunter
O’Reilly Media, Inc
Erik Ray

/publications//book[contains(title,"XML") and
position()=3]/@id

_003

/publications//book[contains(title,"XML") and position()=3
]/copyright mod 7

1

Operate On Function Description

Node set count(node-set) Returns the number of nodes that are in
the node set.

Node set last() Returns the position of the last node in the
node set.

Numbers ceiling(number) Returns an integer value equal to or greater
than the specified number.

Numbers sum(node-set) Returns the sum of the numerical values in
the specified node set.

Boolean lang(language) Checks to see if the given language
matches the language specified by the
xsl:lang element.

Boolean boolean(argument) Converts the argument to Boolean.

String substring-
after(string1,
string2)

Returns the portion of string1 that comes
after the occurrence of string2 (which is a
subset of string1).

String normalize-
space(string)

Returns the given string with no leading
or trailing whitespaces, and removes
sequences of whitespaces by replacing
them with a single whitespace.

String concat(string1,
string2, stringN)

Returns a string containing the
concatenation of the specified string
arguments.

XpATh

Lines 9 – 14: An element named publications has a sequence of an unbounded number
of books inside it.

Line 20: the element named book has a sequence of multiple elements inside it includ-
ing author which at least should appear as 1, and also an element named description
with a minimum occurrence of 0. Its maximum occurrence is the default value which is 1.

Lines 34 – 38: the isbn element has a group of attributes referenced by a attlist.isbn.
This attribute group includes one attribute named kind (Lines 46 – 51) with a simple
value. The value has a restriction which requires it to be one of the enumerated values
included in the definition.

NOTATION, NMTOKEN,NMTOKENS Same definitions as those in DTD

language "xml:lang" values from XML 1.0
Recommendation.

name An XML name

http://www.refcardz.com
http://www.dzone.com

Using XML In Java
 tech facts at your fingertips

6

DZone communities deliver over 4 million pages each month to

more than 1.7 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheatsheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

DZone, Inc.
1251 NW Maynard
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2008 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher.

Version 1.0

$7
.9

5

ISBN-13: 978-1-934238-35-6
ISBN-10: 1-934238-35-X

9 781934 238356

5 0 7 9 5

AbOUT ThE AUThOr

Pro XML Development with

Java Technology covers all the

essential XML topics, including

XML Schemas, addressing of

XML documents through

XPath, transformation of XML

documents using XSLT style-

sheets, storage and retrieval of

XML content in native XML and

relational databases, web applications based on Ajax,

and SOAP/HTTP and WSDL based Web Services.

rECOMMENDED bOOK

bUY NOW
books.dzone.com/books/pro-xml

Masoud Kalali
Masoud Kalali holds a software engineering degree and has been working
on software development projects since 1999. He is experienced with .Net
but his platform of choice is Java. His experience is in software architecture,
design and server side development. Masoud’s main area of research and
interest is XML Web Services and Service Oriented Architecture. He has
several published articles and on-going book.

Publications
n		GlassFish in Action, Manning Publications

Projects
Netbeans contributor
GlassFish contributor

Blog
http://weblogs.java.net/blog/kalali

Get More FREE Refcardz. Visit refcardz.com now!
Upcoming Refcardz:
Core Mule

Getting Started with
Equinox and OSGi

SOA Patterns

Getting Started with EMF

Available:
Core CSS: Part III

Getting Started with

Hibernate Search

Core Seam

Essential Ruby

Essential MySQL

JUnit and EasyMock

Getting Started with MyEclipse

Spring Annotations

Core Java

Core CSS: Part II

PHP

Getting Started with JPA

JavaServer Faces

Core CSS: Part I

Struts2

Core .NET

Very First Steps in Flex

Visit refcardz.com for a complete listing of available Refcardz.
Design Patterns

Published June 2008

FrEE

Using XPath in a Java Application
17 Document xmlDocument;

18 DocumentBuilderFactory dbFactory = DocumentBuilderFactory.

19 newInstance();

20 DocumentBuilder builder = dbFactory.newDocumentBuilder();

21 xmlDocument = builder.parse(“src/books.xml”);

22 XPathFactory factory = XPathFactory.newInstance();

23 XPath xPath = factory.newXPath();

24 String copyright = xPath.evaluate

25 (“/publications/book[publisher= ‘Wrox’]/copyright”, xmlDocument);

26 System.out.println(“Copyright: “ + copyright);

27 NodeList nodes = (NodeList) xPath.evaluate(“//book”, xmlDocument,

28 XPathConstants.NODESET);

29 String bookid = xPath.evaluate

30 (“/publications//book[contains(title,’XML’) and position()=3]/@id”,

Using XPath in a Java Application, continued
31 xmlDocument);

32 System.out.println(“Book ID: “ + bookid);

Line 21: Prepares the XML document object to feed the XPath parser. We can use other
types of InputSources.

Lines 22 – 23: Creates a XPath factory. The factory is a heavyweight object that needs to
be re-used often.

Line 24: Evaluates a simple expression which returns a primary type (String).

Lines 25: The double quotation is replaced with a single quotation to make the string
easy to create and read.

Line 27: An expression which returns multiple nodes. The QName is determined for the
return type, and later cast to NodeList.

Lines 28: Using XPathConstants, we can determine the evaluation result type for being
either a NodeList or a String.

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
books.dzone.com/books/pro-xml
books.dzone.com/books/pro-xml
books.dzone.com/books/pro-xml
books.dzone.com/books/pro-xml
books.dzone.com/books/glassfish-in-action
http://weblogs.java.net/blog/kalali
http://www.refcardz.com
http://refcardz.dzone.com/refcardz/getting-started-with-hibernate
http://refcardz.dzone.com/refcardz/getting-started-with-hibernate
http://refcardz.dzone.com/refcardz/core-seam
http://refcardz.dzone.com/refcardz/essential-ruby
http://refcardz.dzone.com/refcardz/essential-mysql
http://refcardz.dzone.com/refcardz/junit-and-easymock
http://refcardz.dzone.com/refcardz/myeclipse
http://refcardz.dzone.com/refcardz/spring-annotations
http://refcardz.dzone.com/refcardz/core-java
http://refcardz.dzone.com/refcardz/corecss2
http://refcardz.dzone.com/refcardz/php
http://refcardz.dzone.com/refcardz/getting-started-with-jpa
http://refcardz.dzone.com/refcardz/javaserver-faces
http://refcardz.dzone.com/refcardz/javaserver-faces
http://refcardz.dzone.com/refcardz/struts2
http://refcardz.dzone.com/refcardz/coredotnet
http://refcardz.dzone.com/refcardz/very-first-steps-flex
http://refcardz.dzone.com
http://refcardz.dzone.com/refcardz/design-patterns

