

DZone, Inc. | www.dzone.com

Brought to you by...

CONTENTS INCLUDE:

n	 What is Equinox
n	 Developing Your First Bundle
n	 Launching an Equinox System
n	 Programming Model
n	 Key Equinox Execution Options
n	 Hot Tips and more...

Equinox is a highly modular, dynamic Java runtime environment
based on the OSGi framework specifications. It is small,
performant and highly customizable. Equinox forms the basis
of all Eclipse systems from embedded airline check-in kiosks
and ski lift gates to rich client applications to IDEs to high-
performance application servers such as WebSphere and the
Spring dm server.

This reference card gives you a quick tour of the technology, how
it works and how to use it. We touch on modularity basics, key
metadata markup and some best-practices for creating modules.
We then look at runtime elements of Equinox and OSGi –
lifecycle, classloading, key APIs and strategies for inter-bundle
collaboration (e.g., services and extensions).

As part of the Eclipse ecosystem, the Equinox project also
produces a number of downloads. Of course, much of Equinox
is included in the regular Eclipse SDK and RCP downloads, so if
you have Eclipse, you can start right away. That is what we will do
here.

Ok, fire up Eclipse and choose a new, empty workspace location
and let’s create your first bundle.

What is Equinox

By Jeff McAffer

Getting Started with Equinox & OSGi

Developing your first bundle

Getting started

Developing your first bundle, continued

OSGi defines modules as bundles. We’ll go into details in a
minute but first, let’s create and run one. Start by creating a new
plug-in project for the bundle. Select File > New > Project…
From the resulting dialog, select Plug-in Project and click

Hot
Tip

To get all the Equinox bundles, go to the Equinox
download site – http://download.eclipse.org/
equinox and choose a build. Choose a "Release" or
"Stable" build for best results.

Hot
Tip

Equinox is 99% pure Java and runs on JREs as
low as J2ME Foundation 1.1. So it runs on just
about anything you have that runs Java. The

Equinox launchers (e.g., eclipse.exe) depend on OS and chip
architecture so look for platform-specific downloads.

Note
Bundle vs Plug-in. Bundles and plug-ins are the
same thing. Bundle is the traditional OSGi term
whereas plug-in is the original Eclipse term. In

Eclipse 3.0 when the Equinox project started and OSGi was
adopted, these terms became synonyms.

G
et

tin
g

 S
ta

rt
ed

 w
ith

 E
q

ui
no

x
&

 O
SG

i

w
w

w
.d

zo
n

e.
co

m

G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#37

Next. For the project name, choose one you like (see the tip
on naming). For the remainder of the settings, match them to
the wizard shown in Figure 1 and click Next. On the next page
ensure that the Generate an activator option in the Plug-in
options section is checked.

Figure 1

http://www.dzone.com
http://eclipse.org/go/EC_SITE@DZEQ
http://eclipse.org/go/EC_SITE@DZEQ
http://download.eclipse.org/equinox
http://download.eclipse.org/equinox
http://www.refcardz.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com

Getting Started with Equinox & OSGi

2

DZone, Inc. | www.dzone.com

 tech facts at your fingertips

Bundles

Developing your first bundle, continued Launching an Equinox system, continued

Now that you have a bundle, lets run it. Open the launch
configuration dialog using Run > Run Configurations… menu
entry. Double click on OSGi Framework. On the Bundles tab,
uncheck the Target Platform box in the list of bundles and then
click Add Required Bundles. You should now have two bundles
selected, yours and org.eclipse.osgi. Click Run. The OSGi
console will appear and your println message should appear.

osgi> Hello, World

To get a sense of what’s happening and the kind of dynamic
behavior that is inherent in Equinox, type ss in the console. This
shows a “short status” of the system. Each bundle is listed along
with its numeric id and current state. Notice that your bundle is
ACTIVE. That means its start() method has been called.

osgi> ss

Framework is launched.

id State Bundle
0 ACTIVE org.eclipse.osgi_3.5.0.v20081027-1700

1 ACTIVE org.equinoxosgi.helloworld_1.0.0

Stop your bundle by typing stop 1. The bundle stopped and the
message from stop() is printed. You can restart the bundle using
start 1. A bundle can be started and stopped as many times as

Now that your bundle project is created the bundle’s manifest
editor will be opened. On the Overview tab, click the Activator
link and check out the Activator class that was created. It should
look like this.

public class Activator implements BundleActivator {
	� public void start(BundleContext context) throws

 Exception {
	 }
	� public void stop(BundleContext context) throws

 Exception {
	 }

The Activator is the entry point for your bundle’s code—sort
of like the standard main() method but specific to a bundle.
Change the start() and stop() methods to print a message (e.g.,
System.out.println(“Hello/Goodbye World”);)

Hot
Tip

With Equinox it is most common to use the
reverse domain name convention (i.e., Java
package naming) for bundle names. Bundles are
likely to end up grouped together so they need

to have unique names. Since every bundle is developed in a
separate project, it is convenient to match a project’s name
with that of the bundle it contains. In the wizard screenshot
we used org.equinoxosgi.helloworld. Of course, you should
ensure that you own the rights to the related domain (e.g.,
equinoxosgi.org in this case).

Hot
Tip

To add these lines select in the body of a method
and type ‘sysout’ then Ctrl-Space. The Java editor
will auto-complete that to System.out.println();
and position the cursor inside the parentheses.

Hot
Tip

The console is started by adding the -console
command line argument when starting Equinox.
The console has many useful commands. For ex-
ample, you can use the "diag" command to show

the missing prerequisites for bundles that are not resolved.

you like. Each time it gets the proper lifecycle events.

osgi> stop 1
Goodbye, World

Launching an Equinox system

Having created and run a bundle, let’s take a look inside and see
what’s going on. A bundle is basically a JAR file or directory with
some extra headers in the MANIFEST.MF. Looking at a typical
bundle from an Eclipse install (Figure 2) you can see that there is
a description of the bundle in the manifest, various class files in a
standard configuration and additional support files such as legal
information, translations and extension contributions.

The manifest for a bundle specifies identity, lifecycle and
dependency information.

Bundle-RequiredExecutionEnvironment: J2SE-1.5
Bundle-SymbolicName: org.equinoxosgi.helloworld
Bundle-Version: 1.0.0
Bundle-Name: Hello World
Bundle-ManifestVersion: 2
Bundle-ClassPath: .
Bundle-Activator: org.equinoxosgi.helloworld.Activator
Export-Package: org.equinoxosgi.helloworld
Import-Package: org.osgi.framework; version="1.3.0"

Bundle
JAR

Code

Extension

specification

Execution

specification

Figure 2

Important headers

Header Description/Use

Bundle-SymbolicName ([a..zA..Z] | [0..9] | ’_’ | ’-’ | ’.’)* sequence that
distinguishes this bundle from other bundles. Typically
Java package naming conventions are used.

Bundle-Version Four part numeric version number where the fourth
segment is alphanumeric. The combination of Bundle-
SymbolicName and Bundle-Version uniquely identify a
set of bundle content.

Bundle-Name Human-readable name for this bundle.

Bundle-ManifestVersion What version of OSGi markup is being used. Typical
value is 2.

http://www.dzone.com
http://www.refcardz.com
http://eclipse.org/go/EC_SITE@DZEQ

Getting Started with Equinox & OSGi

3

DZone, Inc. | www.dzone.com

 tech facts at your fingertips

In OSGi, all bundles explicitly declare the packages they expose
to others and the packages they require from others – their
dependencies. This yields two main benefits:

n	� Creating valid configurations is easier. For example, there
must be an export for every import or the importing bundle
does not resolve.

n	� A resolved bundle dependency graph tells the system exactly
where to look for any given package and greatly improves
classloading performance.

Export-Package

A bundle must export every package that it wants other bundles
to be able to use. If a package is not exported, the types simply
cannot be referenced from outside. This is a key benefit as it
forces bundle developers to define their API. Exported packages
can, and should, be qualified with a version number that
changes whenever the relevant aspects of its API change. Again,
this allows others to specify their dependencies accurately and
makes the API contract clear.

Dependencies

There are two mechanisms for specifying dependencies in
OSGi—Import-Package and Require-Bundle. As the names
imply one specifies a dependency on a particular package, the
other on a whole bundle. Both can be qualified with a version
range and an optional flag indicating that the prerequisite is not
absolutely required.

Import-Package

Advantages Disadvantages

• �Loose coupling – implementation
independence

• �Arbitrary attributes allow
sophisticated export matching

• �No issues with package splitting or
shadowing – whole package

• �More metadata to be created and maintained
– each imported package must be declared

• �Only useful for code (and resource)
dependencies

• �Cannot be used for packages split over
bundles

The OSGi specification identifies a number of roles and objects
that help define and manage bundles at runtime.

Bundle = Identity to others
Other bundles can ask the system for a Bundle object,
query its state (e.g., started or stopped), look up files using
getEntries(), and control it using start() and stop(). Developers
do not implement Bundles—the OSGi framework supplies and
manages Bundle objects for you.

Do not confuse Bundle with the old Plugin class. Plugin was an
amalgam of several OSGi concepts and is largely obsolete.

You can access the complete set of installed Bundles using
various methods on BundleContext.

BundleContext = Identity to the system
At various points in time, bundles need to ask the system to
do something for them, for example, install another bundle
or register a service. Typically, the system needs to know the
identity of the requesting bundle, for example, to confirm
permissions or attribute services. The BundleContext fills this
role.

BundleContexts are created and managed by the system as an
opaque token. You simply pass it back or ask it questions when
needed. This is much like ServletContext and other container
architectures.

BundleContexts are given to bundles when they are started,
that is, when the BundleActivator method start(BundleContext)
is called. This is the sole means of discovering the context. If
the bundle code needs the context, its activator must cache the
value.

Programming model

Hot
Tip

Historically, Eclipse has used Require-Bundle to
specify prerequisites, as that was the mechanism
first put into place. Since the introduction of Equi-

nox, however, Import-Package has been the recommended way
of specifying dependencies.

Hot
Tip

Eclipse includes comprehensive tooling for Equi-
nox and OSGi. The Plug-in Development Environ-
ment (PDE) includes tools for defining, navigating

and launching bundles. For example, the manifest editor we
saw earlier is part of PDE. It includes a Dependencies tab that
supports the analysis of the code in a bundle and the auto-
matic addition of dependencies found.

Dependencies

Bundles, continued Dependencies, continued

Important headers

Header Description/Use

Bundle-ClassPath Comma-separated list of JAR entries (directories or
JAR files) in the bundle in which to find classes and
resources. ’.’ (dot) is the default and signifies the
bundle’s root directory (i.e., the bundle itself.)

Bundle-
RequiredExecutionEnvironment

Comma-separated list of execution environments in
which this bundle can run. For example, CDC-1.0/
Foundation-1.0,J2SE-1.3.

Bundle-Activator The class used to manage the lifecycle (e.g., start and
stop) of this bundle.

Export-Package Comma-separated list of Java packages made
available to others by this bundle. Each package may
be individually version numbered.

Import-Package Comma-separated list of Java packages this bundle
requires. Each package can be qualified with a
version range.

Require-Bundle Comma-separated list of bundles that this bundle
requires. Each bundle can be qualified with a version
range.

Bundle-NativeCode Description of the native code libraries contained in
this bundle.

Bundle-ActivationPolicy “lazy” to indicate that this bundle should be activated
when its code is first referenced.

Require-Bundle

Advantages Disadvantages

• �Can be used for non-code
dependencies: e.g. Help doc
contributions

• �Convenient for depending on all
exports from a bundle

• Joins packages split over bundles
• �Useful when refactoring bundle code

or introducing OSGi

• �Tight coupling – can be brittle since it
requires the presence of a specific bundle

• �Split packages – Completeness, ordering,
performance

• �Allows one bundle to shadow/override
packages from another

• �Can result in unexpected signature
changes

http://www.dzone.com
http://www.refcardz.com
http://eclipse.org/go/EC_SITE@DZEQ

Getting Started with Equinox & OSGi

4

DZone, Inc. | www.dzone.com

 tech facts at your fingertips

The goal of modular systems is loose coupling. However, even
in the most loosely coupled systems, modules need to interact
and collaborate. In Equinox you have two major mechanisms to
support this collaboration: services and extensions.

Services

Services are the traditional OSGi collaboration mechanism.
When active, bundles can add services to the service registry.
Other active bundles can then discover those services and
invoke them. Service providers don’t know about their users and
the users don’t know about the providers – the coupling is done
dynamically.

Services are knit together using one of two patterns: Registration
and the Whiteboard. In the Registration pattern some
component provides a service, for example, the UI Shell in
Figure 3. Other components discover the shell and register with
the service to participate. In this example, the screens discover
the shell and explicitly add themselves to the UI.

Regardless of which pattern you use, it is best to use the
Declarative Services mechanism. This infrastructure allows you
to declare in a file, typically component.xml, which services you
need and which you provide. The runtime then coordinates
services and manages the service lifecycle. This takes the place
of complicated and error-prone coding patterns.

For example, the markup for a screen in the registration pattern
example is very straight forward. Here the Emergency screen
bundle declares that it references an ICrustShell service and
that the Component class should receive the service when
discovered.

org.equinoxosgi.toast.swt.emergency/component.xml
<component name="org.equinoxosgi.toast.swt.emergency">

	 <implementation class="org.equinoxosgi.toast.swt.

emergency.internal.bundle.Component"/>

	 <reference

		 name="shell"

		 interface="org.equinoxosgi.crust.shell.ICrustShell"/>

</component>

Correspondingly, the shell declares that it provides the
ICrustShell service using its Component class.

org.equinoxosgi.crust.shell/component.xml
<component
	 name="org.equinoxosgi.crust.shell"
	 immediate="true">
	 <implementation
		 class="org.equinoxosgi.crust.Component"/>
	 <service>
		� <provide interface="org.equinoxosgi.crust.

 ICrustShell"/>
	 </service>

</component>

Services are used modestly in the Eclipse community but should
likely be used more. As of the Galileo release (June 2009) PDE
includes tooling for the declarative services markup files.

Extensions

Extensions and extension points are the traditional Eclipse
collaboration mechanism. The extension registry is a declarative
means for one bundle to hook into another in a well-defined way.
For example, the UI bundle might expose a menu extension point
to allow the addition of menu entries. Bundles then contribute
extensions detailing their menu entries. The UI bundle then
presents the menus using the information given declaratively.
When the menu is selected, the class contributed in the extension
is instantiated and run. Figure 5 captures this example behavior
between the UI and some bundle called Hyperbola.

Pro Con

Registration simple, pure POJOs, same
programming model everywhere

requires code to run to register

Whiteboard can be declarative, enables lazy
class loading

very difficult to do with pure
POJOs

In the Whiteboard approach, the roles are reversed – the various
participants register as services and one or more coordinators
discover all services and call them. A sort of “don’t call us, we’ll
call you” approach. In Figure 4 we see the screens registering
services and the shell consuming these services to render the UI.

BundleActivator = Lifecycle handler
Some bundles need to initialize data structures or register
listeners when they are started. Similarly, they need to clean up
when they are stopped. Implementing a BundleActivator allows
you to hook these start and stop events and do the required
work.

Programming model, continued Services, continued

Collaboration

!

!

Figure 3

Figure 4

Extension Registry Manages the declarative relationships between bundles

Extension Point Bundles open themselves for configuration/extension

Extension Bundle extends another by contributing an extension

Figure 5

http://www.dzone.com
http://www.refcardz.com
http://eclipse.org/go/EC_SITE@DZEQ

Getting Started with Equinox & OSGi

5

DZone, Inc. | www.dzone.com

 tech facts at your fingertips

Hot
Tip

Services and extensions are complementary tech-
nologies. The key differences are in the lifecycle
and the scope of the collaboration. Extensions
come and go as bundles are RESOLVED. Generally

that is once when a bundle is installed. Services on the other
hand come and go during each run of the system.

The service registry is a single global table where any bundle
can discover and use any service. The extension registry uses
a more tightly coupled model where extensions are contributed
directly to those who will consume them. Both characteristics
are useful or problematic in different scenarios.

Key Equinox execution options

Extensions and extension points are defined declaratively in the
plugin.xml file in a bundle. An extension point is simply an id,
a human readable name and a schema that defines the form of
any contributed extensions.

org.eclipse.equionx.http.registry/plugin.xml
<plugin>
	� <extension-point

 id="servlets"
 name="%servletsName"
 schema="schema/servlets.exsd"/>

</plugin>

An extension identifies the extension point it is contributing
to and all the information mandated by the schema. In the
example here the servlet extension point requires an alias and
the name of a class that implements HttpServlet.

org.equinoxosgi.helloworld/plugin.xml
<plugin>
	 <extension
	 point="org.eclipse.equinox.http.registry.servlets">
		 <servlet
		 alias="/hello"
		 class="org.equinoxosgi.helloworld.Servlet">
		 </servlet>
	 </extension>
</plugin>

Eclipse contains literally hundreds of extension points and
thousands of extensions and PDE include sophisticated tooling
for defining and maintaining extensions and extension points.

Equinox can be configured to run in many different ways. This is
done using command line arguments and/or System property
settings. Many of the command line arguments can be specified
using System properties either on the command line using
-D VM arguments, by specifying their values in a config.ini file
or a <launcher>.ini file. Using the two latter techniques it is
possible to customize your Eclipse without using command line
arguments at all.

-application <application id>
{eclipse.application}

Gives the identifier of the application to run.

-clean {osgi.clean} Any cached data used Equinox is flushed.
This includes the caches used to store bundle
dependency resolution and extension registry
data.

-configuration <configuration area
path> {osgi.configuration.area}

Sets the configuration location for this session.
The configuration determines what plug-ins are
run as well as various other system settings.

-console [port] {osgi.console} Causes the Equinox console to be started. If the
given value is a suitable integer, it is interpreted
as the port on which the console listens and
directs its output to the given port. The console
is extremely handy for investigating the state of
the system.

-consoleLog {eclipse.consoleLog} Echoes any log output to Java's System.out
(typically back to the command shell if any). Handy
when combined with –debug.

-data < data area path>
{osgi.instance.area}

Sets the instance data location for this session.
Plug-ins use this location to store their data. For
example, the Resources plug-in uses this as the
default location for projects (aka the workspace).

-debug [options file path]
{osgi.debug}

Puts Equinox into debug mode. If the value is
a string it is interpreted as the location of the
.options file. This file indicates what debug points
are available for a plug-in and whether or not
they are enabled. If a location is not specified, the
platform searches for the .options file under the
install directory.

-noExit {osgi.noShutdown} Causes the Java VM to continue running after
Equinox has finished execution. This is useful for
examining the framework when the application
exits unexpectedly.

-vm <path to java vm> This option is used by the Equinox executable
(e.g., eclipse.exe) to locate the Java VM to use
to run Equinox. It should be the full file system
path to an appropriate: Java jre/bin directory,
Java Executable, Java shared library (jvm.dll or
libjvm.so), or a Java VM Execution Environment
description file. If not specified, the executable
uses a search algorithm to locate a suitable VM.
In any event, the executable then passes the path
to the actual VM used to Java Main using the
-vm argument. Java Main then stores this value in
eclipse.vm.

-vmargs [vmargs*] This option is used to customize the operation of
the Java VM to use to run Equinox. If specified,
this option must come at the end of the command
line. Even if not specified on the executable
command line, the executable will automatically
add the relevant arguments (including the class
being launched) to the command line passed into
Java using the -vmargs argument. Java Main then
stores this value in eclipse.vmargs.

eclipse.ignoreApp Setting this property to "true" causes Equinox to
simply startup and then exit rather than trying to
start an application. This is useful in conjunction
with –noExit to start a framework and leave it
running.

osgi.bundles The comma-separated list of bundles which are
automatically installed and optionally started
once the system is up and running. Each entry is
of the form:

<URL | simple bundle location>[@ [<start-
level>] [":start"]]

If the start-level (>0 integer) is omitted then the
framework will use the default start level for the
bundle. If the "start" tag is added then the bundle
will be marked as started after being installed.
Simple bundle locations are interpreted as relative
to the framework's parent directory. The start-level
indicates the OSGi start level at which the bundle
should run. If this value is not set, the system
computes an appropriate default.

Key Equinox Execution Options, continuedExtensions, continued

Extensions • �Tightly coupled model – extensions bound to specific extension points
• Contribute code and/or structured data
• Lazy loading of extension class
• Highly scalable
• Life cycle scoped to RESOLVED state of bundle

Services • Global public context
• Loosely coupled model – Any bundle can bind to a service
• Services are code-based
• Service class eagerly loaded
• Life cycle scoped to started ACTIVE of bundle

Below are the key command line arguments and corresponding
properties in {}. For more options and information, see the Eclipse
Help page Platform Plug-in Developer Guide > Reference >
Other reference information > Runtime Options.

http://www.dzone.com
http://www.refcardz.com
http://eclipse.org/go/EC_SITE@DZEQ

Getting Started with Equinox & OSGi
 tech facts at your fingertips

6

DZone communities deliver over 4 million pages each month to

more than 1.7 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheatsheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

DZone, Inc.
1251 NW Maynard
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2008 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechani-
cal, photocopying, or otherwise, without prior written permission of the publisher. Reference: Equinox and OSGi: The Power Behind Eclipse, Jeff McAffer, Paul VanderLei and Simon Archer,
Addison-Wesley Professional, Last Updated on Safari: 2008/11/18, Publication Date: May 01, 2009 (estimated)

Version 1.0

$7
.9

5

ISBN-13: 978-1-934238-38-7
ISBN-10: 1-934238-38-4

9 781934 238387

5 0 7 9 5

ABOUT THE AUTHOR

Equinox and OSGi incrementally
guides you through building an
application. It focuses on OSGi
and its application to building
highly modular and dynamic
systems. Equinox and Eclipse are
used throughout, but the lessons
and code should be applicable to
anyone writing OSGi systems.

RECOMMENDED BOOK

Jeff McAffer
Jeff McAffer leads the Eclipse Equinox OSGi, RCP and Orbit teams
and is co-founder and CTO of EclipseSource. He is one of the archi-
tects of the Eclipse Platform and a co-author of The Eclipse Rich Client
Platform and the upcoming book Equinox and OSGi. He co-leads the
RT PMC and is a member of the Eclipse Project PMC, the Tools Project
PMC and the Eclipse Foundation Board of Directors and the Eclipse

Architecture Council. Jeff is currently interested in all aspects of Eclipse components from
developing and building bundles to deploying, installing and ultimately running them.

Publications
n	 The Eclipse Rich Client Platform (Addison Wesley)
n	 Equinox and OSGi - The power behind Eclipse (Addison Wesley)

BUY NOW
books.dzone.com/books/equinox-osgi

Design Patterns
Published June 2008

FREE

The eclipse.exe can read parameters from an associated ini file
by the same name but with the .ini extension (e.g., eclipse.ini).
You can specify any parameters in this file but it is recommend
to only specify the vm location and the vm arguments in this file
and use the config.ini file for others.

The <launcher>.ini must be named after the executable name
(e.g., eclipse.exe reads eclipse.ini, whereas launcher.exe reads
launcher.ini) and every parameter must be specified on a new
line in the file. Here is an example of such a file specifying the
vm location and some parameters:

-vm
c:/myVm/java.exe
-vmargs
-Dms40M

Equinox website and wiki
• http://eclipse.org/equinox
• http://wiki.eclipse.org/equinox

The home of the Equinox project.
Find downloads, tutorials and
getting started guides, project plans,
contribute patches and bug reports.

OSGi Alliance
• http://osgi.org

The home of OSGi. Get copies of
the spec and find more information
on the technology.

Equinox OSGi book
• http://equinoxosgi.org

The definitive guide to Equinox. Get
comprehensive code samples and
connect to the book on Safari.

Apache Felix
• http://felix.apache.org

The home of the Felix OSGi
implementation. Get more bundles
and find other OSGi-minded people

Launcher ini file Get more information

Upcoming Refcardz:
SOA Patterns

Essential EMF

Windows Presentation Foundation

HTML and XHTML

SOA Governance

Agile Methodologies

Available:
Getting Started with Equinox
& OSGi

Core Mule

Core CSS: Part III

Using XML in Java

Essential JSP Expression Language

Getting Started with
Hibernate Search

Core Seam

Essential Ruby

Essential MySQL

JUnit and EasyMock

Spring Annotations

Getting Started with MyEclipse

Core Java

Core CSS: Part II

PHP

Getting Started with JPA

JavaServer Faces

Core CSS: Part I

Struts2

Core .NET

Visit refcardz.com for a complete listing of available Refcardz.

Get More FREE Refcardz. Visit refcardz.com now!

http://www.refcardz.com
http://eclipse.org/go/EC_SITE@DZEQ
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://books.dzone.com/books/equinox-osgi
http://eclipsesource.com
http://books.dzone.com/books/eclipse-richclient
http://books.dzone.com/books/equinox-osgi
http://books.dzone.com/books/equinox-osgi
http://books.dzone.com/books/equinox-osgi
http://refcardz.dzone.com/refcardz/design-patterns
http://eclipse.org/equinox
http://wiki.eclipse.org/Equinox
http://osgi.org
http://equinoxosgi.org
http://felix.apache.org
http://books.dzone.com/books/equinox-osgi
http://books.dzone.com/books/equinox-osgi
http://books.dzone.com/books/opensource-esb
http://refcardz.dzone.com/refcardz/corecss3
http://refcardz.dzone.com/refcardz/essential-jsp-expression
http://refcardz.dzone.com/refcardz/getting-started-with-hibernate
http://refcardz.dzone.com/refcardz/getting-started-with-hibernate
http://refcardz.dzone.com/refcardz/core-seam
http://refcardz.dzone.com/refcardz/essential-ruby
http://refcardz.dzone.com/refcardz/essential-mysql
http://refcardz.dzone.com/refcardz/junit-and-easymock
http://refcardz.dzone.com/refcardz/spring-annotations
http://refcardz.dzone.com/refcardz/myeclipse
http://refcardz.dzone.com/refcardz/core-java
http://refcardz.dzone.com/refcardz/corecss2
http://refcardz.dzone.com/refcardz/php
http://refcardz.dzone.com/refcardz/getting-started-with-jpa
http://refcardz.dzone.com/refcardz/javaserver-faces
http://refcardz.dzone.com/refcardz/corecss-part1
http://refcardz.dzone.com/refcardz/struts2
http://refcardz.dzone.com/refcardz/coredotnet
http://refcardz.dzone.com
http://www.refcardz.com

