

DZone, Inc. | www.dzone.com

CONTENTS INCLUDE:

n	 About SOA Patterns
n	 SOA Fundamentals
n	 Pattern Language
n	 Basic Service Patterns
n	 Architectural Patterns
n	 Compound Patterns

SOA patterns describe common architectures, implementations, and
their areas of application to help in the planning, implementation,
deployment, operation, and ongoing management and maintenance
of complex systems.

About SOA Patterns

GET THERE FASTER.™
WE’LL SHOW YOU HOW.

TO LEARN MORE, VISIT US ONLINE AT WWW.SOFTWAREAG.COM

PROCESS ORDERS FASTER WITH SOFTWARE AG
Move out the right products to the right customers at the right time. With
Software AG Business Infrastructure Software, you can satisfy customers with
accurate, on-time deliveries. By gaining real-time visibility into where your
orders are at any time, you’ll see new ways to streamline your supply chain.

By Eugene Ciurana

Pattern Language

SOA Fundamentals

Each pattern includes a Pattern name, Icon, Summary, Problem,
Solution, Application, Diagram, Results, and Examples.

The icon and diagram symbols were selected for their ease of
whiteboard use and availability in most diagramming tools.

The patterns in this guide are classified into four major groups,
and listed in alphabetical order within each group. A complete
example appears at the end of this guide showing how to
combine various patterns to describe a system.

SO
A

 P
at

te
rn

s

w

w
w

.d
zo

n
e.

co
m

G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#38

SOA differs from client/server architecture in that services are
universally available and stateless, while client/server requires
tight coupling among the implementation participants.

SOA implementation must provide consistent designs that
leverage the target environment; design consistency is attained
through the application of the eight SOA principles. Service must
provide:

1. Normalized service contract.

2. �Loose coupling between consumers and services, and between the services
themselves.

3. �Abstraction from implementation details; the consumers only know the contract
without worrying about implementation details.

4. �Ability to compose other services regardless of the complexity of the composition.

5. �Run-time environment autonomy.

6. Statelessness.

7. Reusability.

8. �Discoverability through meta data or public contract definitions.

These principles guide the SOA patterns described in the rest of
this refcard.

Transformer Aggregator Router Async proc

Publish
Subscribe
Channel

ReplicatorEvent-Driven
Consumer

Bridge

SOA Patterns

Systems are described as services independent of the underlying technology.

Services are implemented through messaging.

A SOA involves service providers and service consumers.

�Any participating system may act as either a provider or a consumer depending on the
application’s workflow.

Services and messages are stateless.

Services and consumers are often implemented in different programming languages,
execute in different run-time environments, or both.

SOA involves the services themselves, a directory of available services in some form
(service discovery), and public contracts for consumers to connect and use each service
(service negotiation).

Brought to you by...

http://www.dzone.com
http://www.softwareag.com/us/products/bis/default.asp
http://www.softwareag.com/us/products/bis/default.asp
http://www.refcardz.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com

SOA Patterns

2

DZone, Inc. | www.dzone.com

 tech facts at your fingertips

Dynamic Routing, continued

These are the building blocks of more complex patterns.

Aggregator
Combines individual messages to be handled as a single unit.

Basic Service Patterns

Problem Stateless messages will not arrive at the service endpoint in a
predetermined sequence. Messages may be processed by different
services at different speeds and messages will arrive at an endpoint out
of order. SOA systems guarantee message delivery but not delivery order.

Solution Define an aggregator that receives a stream of data and groups related
messages as a single entity for delivery to an endpoint for further
processing. Aggregators are stateful intermediate processing units but
deliver atomic payloads in a stateless manner.

Application Group messages flowing through a service bus based on payload type or
common attributes for further routing and processing.

Results Flexibility in implementation because individual service providers can
process data asynchronously without concern about state or sequence,
delegating this to a workflow engine or to aggregators running in the
SOA infrastructure.

Problem Applications must communicate among them, some times using different
protocols and technologies. Naïve implementations rely on point-to-
point or hub-and-spoke, dedicated conduits that increase complexity,
implementation time, and integration difficulty due to tight coupling
between components.

Solution Provide a data- or protocol-neutral conduit with abstract entry and exit
points for interconnecting applications independently of their underlying
technology.

Application Heterogeneous system integration, legacy and new system
interoperability, protocol abstraction.

Results Message-Oriented Middleware (MOM): publish/subscribe queuing and
enterprise service buses.

Problem Routing messages through a distributed system based on filtering rules
is inefficient because messages are sent to every destination’s filter and
router for inspection and rules resolution, whether the message could be
processed or not.

Solution Define a message router that includes both filtering rules and knowledge
about the processing destination paths so that messages are delivered
only to the processing endpoints that can act upon them. Unlike filters,
message routers do not modify the message content and are only
concerned with message destination.

Application Message dispatching based on application-specific data elements such
as customer attributes, message type, etc.

Results Better overall message delivery and processing performance at the cost
of increased delivery system complexity since the router must implement
both knowledge of the destinations and heuristic, arbitrary rules.
Excellent for decoupling applications by removing routing information
from discrete systems.

Problem Messaging systems based on blocking listeners or polling use
unnecessary resources or idle for no good reason if the channel is
starved. The message target blocks threads that the service could
otherwise use for other tasks.

Solution Implementation of a bus-based or application-specific callback
mechanism that’s invoked only if a message appears in its inbound
channel. The messaging system may invoke the callback asynchronously
or synchronously.

Application Distributed systems with a varying set of consumers and service providers
with varying degrees of CPU usage based on message payload; atomic
transaction processing systems that require large scalability independent
of the number of service consumers.

Results Message processing is single-threaded scaling linearly with the number
of dispatched messages. Threads consume messages as they become
available and free up resources when done, to be reactivated when
another message becomes available. Better run-time resource utilization.

Problem A need to implement flexible message processing between systems
in a platform-independent manner and without introducing system
dependencies or unnecessary coupling.

Solution Implement conduits with a simple inbound/processing/outbound
interface modeled after a function or pipe that facilitates composition
of daisy-chained filters by allowing data transfers from the output of
one filter to the input of the next. All filters, regardless of their internal
structure, must share the same external interface to facilitate integration
and recombination.

Application Use of discrete functions on messages like encryption, data
consolidation, redundancy elimination, data validation, etc. Filters split
larger processing tasks into discrete, easy to manage units that can be
recombined for use by multiple service providers.

Results Filters eliminate data and dependencies by uniform defining a contract
(inbound/outbound interface) that encourages reusability through
composition. Filters are also interchangeable components that enable
different workflow functionality without changing the filter itself.

Event-Driven Consumer
A setup that delivers messages to a services provider as soon as
they appear on the channel.

Dynamic Routing
An efficient mechanism for dispatching messages to one or more
destinations based on configurable, non-filtering rules applied to
the message payload.

Filter
A conduit that extracts data from a message or applies a function
to it as it flows between consumers and services through a mes-
saging channel.

Service Bus
A communications channel for message delivery from a single
inbound endpoint to one or more outbound endpoints and
optional “on the fly” message processing as data flows through
the bus.

http://www.dzone.com
http://www.refcardz.com
http://www.softwareag.com/us/products/bis/default.asp

SOA Patterns

3

DZone, Inc. | www.dzone.com

 tech facts at your fingertips

Basic Service Patterns, continued Architectural Patterns, continued

Problem An application must connect with one or more application endpoints
without coupling itself with any of them.

Solution Use a conduit that allows configurable delivery rules based on the
message payload, data filters, or content type. Routing may be sequential
(endpoints receive the payload one after another) or in parallel (all
endpoints receive the payload at virtually the same time).

Application Content delivery in service buses, message dispatching, message proxies,
enterprise integration applications, and other systems where messages
must be delivered to endpoints following a sequence of applying a rule
set.

Results The router abstraction is in use in all modern SOA systems in some forms,
whether available in queuing or bus-based systems out of the box, or
implemented in custom-made applications and message delivery systems
because they provide an elegant and simple mechanism for system-
independent message delivery.

Solution Consumers exchange messages with the services through a processing
queue that decouples front-end (message capture) from the back-end
(processing); messages arrive into the queue at a rate different from that
of processing.

Application Any application that requires independent scalability of the front- and
back-end functionality such as mainframe data consolidation (back-end)
of e-commerce order fulfillment (front-end, middleware).

Results Processing queues are well-understood and scale horizontally or
vertically, depending on the application requirements. Plenty of
open-source and commercial implementations, and several reference
implementations and APIs are available.

Problem Application endpoints may reside in different parts of the enterprise
network, use different protoocls, or may require processing based on
specific message attributes.

Solution Define a bridge between applications that provides a mechanism for
routing messages, filtering them, and transform them.

Application SOA proxies between application endpoints on the cloud and application
endpoints in the middleware or back-end; ESB processing.

Results Good for extending applications by focusing development only on
intermediate processing between system and using existing systems as-
they-are. Bridging allows easy integration of legacy and SOA systems.

Problem Heterogeneous systems integration (legacy, in-house, and vendor-
provided) may use different message representation for input or output.

Solution Provide a system-independent mechanism for altering the message
payload and metadata (envelope) prior to delivery to an application
endpoint.

Application Message translation at the application endpoint because these
translations are system- or protocol-dependent, unlike filters which are
generic.

Results Translators are one of the most effective message transformation
mechanisms because they allow application developers and integrators to
insulate, implement, test, and maintain these system components without
modifying existing application workflow or business logic.

Problem Two or more services, possibly running across multiple systems, must
complete successfully; if one or more fail all the services associated with
it and the application response must roll-back to their previous state for
maximum application integrity.

Solution Granular services may be wrapped in another service that provides
integrity checks and ensures successful completion or graceful
degradation, if any, if the granular services fails.

Application Transactional systems.

Results May require a transaction processor (commercial, potential vendor
lock-in) wrapper to collaborate with the rest of the SOA infrastructure;
consumes more resources to preserve original state for each granular
service in case roll-back is necessary.

Architectural Patterns

Architectural patterns reflect solutions specific to common design
issues in the definition of service-oriented system implementations.

Asynchronous Processing
A mechanism for queuing messages between one or
more endpoints to decouple processing time and re-
sources for each stage.

Router
A general mechanism for dispatching messages to one
or more destinations based on configurable rules or
filters applied to message payloads.

Translator or Transformer
A mechanism for converting a message payload from one repre-
sentation to another as it flows through the messaging system. Cross-Service Operation

A mechanism for coordinating multiple run-time activi-
ties which together comprise a service with guaranteed
completion or roll-back capabilities.

Bridge
A mechanism for connecting two or more applications
over a common data path, each using a different
protocol and in which messages may require processing
or analysis as they flow between endpoints for routing.

Problem Synchronous processing may result in poor server performance and
reduced reliability.

Event-Driven Dispatching
A mechanism for routing messages to consumers in
response to specific events in the SOA or triggered by
specific applications running in the SOA.

http://www.dzone.com
http://www.refcardz.com
http://www.softwareag.com/us/products/bis/default.asp

SOA Patterns

4

DZone, Inc. | www.dzone.com

 tech facts at your fingertips

Architectural Patterns, continued

Problem Consumers must process messages as they become available in a system
but polling for such messages is inefficient.

Solution The consumers are implemented as reentrant, blocking applications that
subscribe to a coummuniations channel. The consumers remain dormant
until an event or message awakens them; the SOA dispatches the
message or event in response to system or application states.

Application Publish/subscribe systems to support asynchronous processing
applications.

Results Event-driven dispatching is hard to implement in cross-service operations.
This pattern is better applied to granular services, or to treat a cross-
service operation as a black box by ignoring the intermediate steps
involved in the operation.

Problem Multiple services may be required to complete an operation but not all
are known at design time, the sequence may vary depending on changing
business rules, and it’s not necessary to successfully complete all granular
processing successfully (i.e. it requires no transactional capability).

Solution A processing service executes the granular service calls, maintains
internal state, determines processing steps, and provides synchronous or
asynchronous service responses to the consumers.

Application Systems that require multiple processes running in parallel but are
not transactional, or have a mix of transactional and non-transactional
components.

Results Process aggregation provides integration flexibility but it’s hard to
manage. Break it down into smaller application clusters (cross-service
operations or aggregations) down functional lines, synchronicity
requirements, or any other criteria.

Architectural Patterns, continued

Solution Provide a formal mechanism for routing messages by recursive definition
of filter, one or more routers, filters, routers, and so on.

Application Rules-based processing, workflow, event-driven dispatchers.

Results The recursive nature of the definitions simplifies management. Naïve
implementaters some times define filters or routers without formalizing
their order, resulting in unintentional application coupling or resource
exhaustion due to excessive use of filters or routers, respectively.

Problem Decoupled, horizontally scalable services get stuck in a bottleneck
caused by shared access to a common message pool or data source.

Solution Message or data replication features are implemented as part of the
SOA message flow so that independent applications or endpoints may
consume them in parallel.

Application Read-only data resources or messages flowing through the SOA to
increase throughput.

Results Additional cost, complexity management if replicators are allowed to
proliferate unchecked. Excellent way of providing scalability when the
replicators are confined to specific problem domain service paths.

Routing and Filtering
A formal mechanism for routing messages to ap-
plication endpoints between endpoints.

Compound Patterns

Compound patterns aggregate the basic patterns to define a
cohesive representation of a system. Patterns are never used in
isolation, nor are they a goal by themselves. A subsystem may be
built around two or more patterns. This section shows how the
basic patterns defined earlier in this refcard can be combined
into more sophisticated system descriptions.

Centralized Schema
Defines a method of sharing schemas across application boundaries to avoid
redundant data representation and service definition.

Process Aggregation
A method of combining two or more non-sequential, inter-depen-
dent processing steps.

Replicator
Messages or payloads must be replicated across multiple endpoints
with identical configurations.

Problem Messages must be dispatched to various applications based on their
payload, attributes, protocol, or all of these.

http://www.dzone.com
http://www.refcardz.com
http://www.softwareag.com/us/products/bis/default.asp

SOA Patterns

5

DZone, Inc. | www.dzone.com

 tech facts at your fingertips

Problem Similar data sets must be processed by services or applications with
different capabilities, resulting in unwieldy service contracts or data
schemas.

Solution Define rich data schemas as entities that are separate from the service
contracts and from the physical manifestation of the data as it flows
through the system.

Application Any contract-first web services, regardless of implementation technology
(JMS, SOAP, other) in which more than one system will transmit, transform,
process, or store data.

Results Easy to implement if the developers make a conscious decision
to separate the schema from the services where it’s used. A good
centralized schema implementation can generate different format
definitions that, although incompatible with one another all have a 1:1
mapping to the data model.

Problem The service contract may not be suitable for all the services potential
consumers.

Solution Multiple contracts may exist for the same service, each with a different
level of abstraction than the others in the same group, to fit corresponding
service level agreements or to accommodate legacy systems.

Application Problem domains where various consumers need must process different
subsets of the same data, like a customer master or a stock tracking
system.

Results Easy to implement if it’s based on a centralized schema and it uses
automated transformers or rule-based systems for generating each
application contract; it may become unwieldy if the application contracts
are manually generated or managed instead of handled by the centralized
schema or an automated catalogue.

Compound Patterns, continuedCompound Patterns, continued

Application Evolution of large, mission-critical systems which provide additional
functionality as business requirements are implemented. Any application
where incremental features built into a service result in bloat or
performance bottlenecks.

Results Capability decomposition almost always results in the definition of a new
service topology that supports the original functionality for legacy or
older consumers while providing new functionality or additional features
as needed. Decomposition should be transparent to the consumers but
lead to modular service design and implementation.

Problem Applications must communicate among them, some times using
different protocols and technologies. Naïve and legacy implementations
rely on point-to-point, dedicated conduits that increase complexity,
implementation time, and integration difficulty due to tight coupling
between components.

Solution Provide a data- or protocol-neutral conduit with abstract entry and exit
points for interconnecting applications independently of their underlying
technology.

Application Enterprise integration, heterogeneous system integration, legacy and
new system interoperability, protocol abstraction.

Results The emergence of a family of products that implement this concept
under the guise of Message-Oriented Middleware (MOM): publish/
subscribe queuing and enterprise service buses.

Problem A service may need decomposition without altering its core functionality,
including the service’s contract itself.

Solution Maintain physical separation of the data schemas from the services definition,
combining them only for generating specific service implementations, so
that data and services may change independently of one another. Define
evolutionary service changes in terms of the existing services and basic
patterns like filtering, routing, and transformations.

Problem Mission-critical applications are the main candidates for SOA
implementations and must provide appropriate fault-tolerance and
recovery in case of catastrophic failure.

Solution Provide redundant service containers and message brokers
complemented by network-level load balancing and routing; ensure that
application services are stateless and re-entrant when possible.

Application Services in fast growing, high-availability environments with near-zero
downtime service level agreements.

Results Easy to implement for stateless services. This pattern may be used for
providing both scalability and fault-tolerance.

Concurrent Contracts
Method for allowing multiple consumers with different abstractions or imple-
mentations to simultaneously consume the same service.

Decomponse Capability
A way of designing services to reduce the impact of functional deconstruction
if it becomes necessary due to bloat or evolution of business processes and
workflow.

Enterprise Service Bus
A communications channel for message delivery from a single inbound end-
point to one or more outbound endpoints and provides protocol handling,
message filtering, transformation, and routing, and optional “on the fly” mes-
sage processing.

Fault-Tolerant Service Provider
Mechanism for deploying a service platform to achieve near-zero downtime
in case one of the services providers or the platform itself have a catastrophic
failure.

http://www.dzone.com
http://www.refcardz.com
http://www.softwareag.com/us/products/bis/default.asp

6
SOA Patterns

 tech facts at your fingertips

DZone communities deliver over 4 million pages each month to

more than 1.7 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheatsheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

DZone, Inc.
1251 NW Maynard
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2008 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher.

Version 1.0

$7
.9

5

ISBN-13: 978-1-934238-33-2
ISBN-10: 1-934238-33-3

9 781934 238332

5 0 7 9 5

ABOUT THE AUTHOR

SOA Design Patterns is the de

facto catalog of design patterns

for SOA and service-orientation.

The 85 patterns in this full-color

book provide the most success-

ful and proven design tech-

niques to overcoming the most

common and critical problems to

achieving modern-day SOA.

RECOMMENDED BOOK

Eugene Ciurana
Eugene Ciurana is an open-source evangelist who specializes in the design

and implementation of mission-critical, high-availability large scale systems.

As Director of Systems Infrastructure for LeapFrog Enterprises, he and his

team designed and built a 100% SOA-based system that enables millions of

Internet-ready educational hand held products and services. As chief liaison

between Walmart.com Global and the ISD Technology Council, he led the official adoption of

Linux and other open-source technologies at Walmart Stores Information Systems Division.

BUY NOW
books.dzone.com/books/soa-patterns

Publications
n	 Developing with the Google App Engine
n	 Best Of Breed: Building High Quality Systems,

Within Budget, On Time, and Without Nonsense
n	 The Tesla Testament: A Thriller

Web site
http://eugeneciurana.com

Get More FREE Refcardz. Visit refcardz.com now!
Upcoming Refcardz:
Windows Presentation
Foundation

HTML and XHTML

SOA Governance

Agile Methodologies

Available:
SOA Patterns

Essential EMF

Getting Started with Equinox
& OSGi

Core Mule

Core CSS: Part III

Using XML in Java

Essential JSP Expression Language

Getting Started with
Hibernate Search

Core Seam

Essential Ruby

Essential MySQL

JUnit and EasyMock

Spring Annotations

Getting Started with MyEclipse

Core Java

Core CSS: Part II

PHP

Getting Started with JPA

JavaServer Faces

Core CSS: Part I

Visit refcardz.com for a complete listing of available Refcardz.

Design Patterns
Published June 2008

FREE

Problem Legacy systems may offer limited service capabilities, or their only
interface with other applications may be through file data exchanges or
legacy APIs.

Solution Wrap the interoperation mechanisms within a service façade that
operates with the legacy system as if it were a legacy consumer, and
exposes a normalized SOA interface to new consumers.

Application Integration with legacy mainframe or client/server systems to expose
their capability to new services and consumers.

Results Many legacy client/server applications are tightly coupled and even a
wrapper may not be enough to expose their capabilities as a service.
Extensive rewrites may be required or a service may offer only read-
only capabilities. If reimplementation is necessary, then implement as
a stateless service and draw a migration plan to phase out the existing
legacy service or system.

Wrapper
Encapsulate a legacy service API
inside a generic, stateless service.

Compound Patterns, continuedCompound Patterns, continued

http://www.refcardz.com
http://www.softwareag.com/us/products/bis/default.asp
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://books.dzone.com/books/soa-patterns
http://books.dzone.com/books/soa-patterns
http://books.dzone.com/books/soa-patterns
http://eugeneciurana.com
http://www.refcardz.com
http://books.dzone.com/books/soa-patterns
http://refcardz.dzone.com/refcardz/essential-emf
http://refcardz.dzone.com/refcardz/equinox
http://refcardz.dzone.com/refcardz/equinox
http://refcardz.dzone.com/refcardz/core-mule
http://refcardz.dzone.com/refcardz/corecss3
http://refcardz.dzone.com/refcardz/using-xml-java
http://refcardz.dzone.com/refcardz/essential-jsp-expression
http://refcardz.dzone.com/refcardz/getting-started-with-hibernate
http://refcardz.dzone.com/refcardz/getting-started-with-hibernate
http://refcardz.dzone.com/refcardz/core-seam
http://refcardz.dzone.com/refcardz/essential-ruby
http://refcardz.dzone.com/refcardz/essential-mysql
http://refcardz.dzone.com/refcardz/junit-and-easymock
http://refcardz.dzone.com/refcardz/spring-annotations
http://refcardz.dzone.com/refcardz/myeclipse
http://refcardz.dzone.com/refcardz/core-java
http://refcardz.dzone.com/refcardz/corecss2
http://refcardz.dzone.com/refcardz/php
http://refcardz.dzone.com/refcardz/getting-started-with-jpa
http://refcardz.dzone.com/refcardz/javaserver-faces
http://refcardz.dzone.com/refcardz/corecss-part1
http://refcardz.dzone.com
http://refcardz.dzone.com/refcardz/design-patterns

