

DZone, Inc. | www.dzone.com

Brought to you by...

CONTENTS INCLUDE:

n	 About the Eclipse Modeling Framework
n	 Generating a Model – Quick Start
n	 Regeneration and Merging
n	 The Ecore Model
n	 Structural Feature Control Flags
n	 Hot Tips and more...

The Eclipse Modeling Framework (EMF) is a powerful framework
and code generation facility for building Java applications
based on simple model definitions. Designed to make modeling
practical and useful to the mainstream Java programmer, EMF
unifies three important technologies: Java, XML, and UML.
Software is focused on manipulating data that can be modeled,
hence, models drive software development. This refcard will get
you started with the Eclipse Modeling Framework.

Here is a step-by-step overview for creating an EMF model
quickly in Eclipse.

Step Instructions

Create an empty
EMF project

Click on New/Project.../Eclipse Modeling Framework/Empty EMF
Project.

Create your initial
model

Using either annotated Java, XML Schema, or UML, define an initial
model of your application. This is an optional step. You can create
a new Ecore model directly using New/Other.../Eclipse Modeling
Framework/Ecore Model.

Create EMF
model

Click on New/Other.../Eclipse Modeling Framework/EMF Model
and choose your model importer, e.g., annotated Java, Ecore, Rose,
UML, or XML Schema.

Generate model
code

From the Generator editor opened on the *.genmodel created in
the previous step, use the context menu to invoke Generate Model
Code. From here you can also generate your test, edit and editor
code. Note that the test project includes a simple stand-alone
example application for reading and writing instances of your model.

Manipulating the
Ecore model

The Ecore model can be changed at any time. The *.genmodel can
be reloaded, or resynchronized with changes to the Ecore model,
by right-clicking on it in the explorer or navigator and choosing the
Reload… menu option.

Editing the Ecore
model graphically

The Ecore Tools project provides a graphical editor for manipulating
Ecore models just like a UML class diagram. From the context menu
on the *.ecore invoke Initialize Ecore Diagram File.

About the Eclipse Modeling Framework

By Ed Merks and James Sugrue

Essential EMF

Generating a Model – Quick Start

Es
se

nt
ia

l
E

M
F

w

w
w

.d
zo

n
e.

co
m

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#39

Hot
Tip

Get the latest release of EMF for Eclipse 3.4 by
pointing your Install Manager to http://download.
eclipse.org/modeling/emf/updates/releases/

Regeneration and Merging

The EMF generator produces files that are intended to be a
combination of generated pieces and handwritten pieces. You
are expected to edit the generated classes to add methods and
instance variables. You can regenerate your model as required,
and you can preserve the changes that you have made by
modifying the @generated marker.

Regeneration and Merging, continued

Only declarations with the @generated marker will be regenerated.
If you leave out the @generated annotation, or specify @generated
NOT, a pattern that is encouraged when modifying generated
methods directly, then your changes will not be overwritten.

A useful alternative is to redirect a generated method by adding
a Gen suffix to the method name, leaving the @generated
annotation intact. You can then implement your own version of
the method with the original signature and can call the “Gen”
version, which will continue to be regenerated in the future.

You can use @generated NOT on a class or interface to disable
merging for the entire class.

Within a Javadoc comment, you can include handwritten content
between the <!--begin-user-doc--> and <!--end-user-doc-->
tags, i.e., within the user documentation section. This content will
be merged into the user documentation section of the generated
comment during merging.

The Ecore Model

During development, the Ecore model is the primary source of
information for the EMF generator, which produces the code that
we use to manipulate instances of the model. It’s even possible
to create instances of an Ecore model, before generating code:
from the context menu of any class, invoke Create Dynamic
Instance. Think of an Ecore model as the intersection where Java,
XML Schema, and UML overlap augmented with some of the
most powerful features specific to each. Ecore is closely aligned

http://www.dzone.com
http://eclipse.org/go/EC_SITE@DZEMF
http://eclipse.org/go/EC_SITE@DZEMF
http://www.refcardz.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com
http://download.eclipse.org/modeling/emf/updates/releases/
http://download.eclipse.org/modeling/emf/updates/releases/

Essential EMF

2

DZone, Inc. | www.dzone.com

 tech facts at your fingertips

with the Object Modeling Group’s Essential Meta Object Facility
(EMOF), so EMF is able to read and write Ecore instances in a
format that conforms to the standard XML Metadata Interchange
(XMI) serialization of EMOF.

As a metamodel, Ecore is of course a simple model for
describing models and includes support for:
n	 Classification of objects
n	 Attributes of those objects

Class Description

EClass Models classes, which are the nodes of an object graph. Classes
are identified by name and can contain a number of features, i.e.
attributes and references. To support inheritance, a class can refer
to a number of other classes as its super-types. A class can be
abstract, in which case an instance can’t be created, and can even
be just an interface, in which case an implementation class is not
generated.

EAttribute Models attributes, which are the leaf components of an object’s
data. They are identified by name and they have a type. Lower and
upper bounds are specified in the attribute for multiplicity.

EDataType Models simple types whose structure is not modeled. Instead
they act as a wrapper that denotes a primitive or object type
fully defined in Java. They are identified by name and are most
commonly used as attribute types.

EReference Models one end of an association between two classes. They are
identified by name and type, where that type represents the class
at the other end of the association. Bidirectionality is supported by
pairing a reference with its opposite, i.e., a reference in the class
representing the other end of the association. Lower and upper
bounds are specified in the reference for multiplicity. A reference
can support a stronger type of association called containment. For
a multi-valued reference, a subset of attributes of the referenced
class can be identified as the key, i.e., as uniquely identifying an
instance among the references.

The Ecore Model, continued The Ecore Model, continued

n	 Relationships or associations between those objects
n	 Operations on those objects
n	� Simple constraints on those objects, and their attributes and

relationships

As a graphic demonstration of its simplicity, the bulk of the
Ecore model can be represented as a UML-like diagram that fits
a single page. The Ecore Tools project was used to render this
diagram!

Figure 1: Putting it all together – a definitive view of the relations, attributes and operations of Ecore model elements

EModelElement Models the elements of an Ecore model. It’s simply the abstract
root of Ecore’s hierarchy and supports annotations.

EPackage Models packages, containers for classifiers, i.e. classes and data
types. A package’s name need not be unique; its namespace URI
is used to uniquely identify it. This URI is used in the serialization of
instance documents, along with the namespace prefix, to identify
the package for the instance.

EFactory Models factories for creating instance objects. The factory
provides creation operations to instantiate classes and to
convert data values to and from strings. Specialized mappings
between data type values and their serialized form are specified
by changing the implementation of the correspondingly named
createFromString() and convertToString() methods in the
generated factory implementation class.

EAnnotation Models annotations for associating additional information with any
model element. The source of the annotation is generally a URI to
identify the intended meaning of the additional information, and
there is support for details, i.e., a mapping of string key/value pairs.

EClassifier Models the types of values in the object graph. It’s the common
base class of data type and class that serves as the type of
any typed element, which in turn is the common base type for
attributes, references, operations and parameters.

ENamedElement Models elements that are named. Most elements in the Ecore
model are identified by name and hence extend this class.

http://www.dzone.com
http://www.refcardz.com
http://eclipse.org/go/EC_SITE@DZEMF

Essential EMF

3

DZone, Inc. | www.dzone.com

 tech facts at your fingertips

To support the style of generics introduced by Java 5.0, Ecore
was augmented in an analogous way. Parameterized types and
operations can be specified, and types with arguments can be
used in places where previously only regular types could be
used. The same notion of Java 5.0 erasures applies, i.e., the
older Ecore API can be regarded as what’s left over when all use
of generics has been erased. The changes are described by a
single simple diagram to augment the basic API.

Generics in Ecore

Hot
Tip

Ensure that ‘Sample Ecore Editor/Show Generics’
is enabled

The Ecore Model, continued Generics in Ecore, continued

ETypedElement Models elements that are typed, e.g., attributes, references,
parameters, and operations. All typed elements have an
associated multiplicity specified by their lowerBound and
upperBound. The unbounded upperBound is specified by -1, or the
symbolic constant ETypedElement.UNBOUNDED_MULTIPLICITY.

EStructural-
Feature

Models the value-carrying features of a class. It is the common
base class for attribute and reference. The following Boolean
attributes are used here to characterize attributes and references.
n �Changed whether the value of the feature can be modified.
n �Derived whether the value of the feature is to be computed

from those of other related features.
n �Transient whether the value of the feature is omitted from the

object’s persistent serialization.
n �Unsettable whether the value of the feature has an unset state

distinguishable from the state of being set to any specific value.
n �Volatile whether the feature has no storage field generated in

the implementation class.

EOperation Models the operations that can be invoked in a given class. An
operation is identified by a name and a list of zero or more typed
parameters representing the overall signature. Like all typed
elements, an operation specifies a type, which represents the return
type; it may be null to represent no return type. An operation may
also specify zero or more exceptions specified as classifiers which
represent the types of exceptions that may be thrown.

EParameter Models an operation’s input parameters. A parameter is identified
by name, and like all typed elements, specifies a type representing
the type of a value that may be passed as an argument
corresponding to that parameter.

EEnumLiteral Models the members of enumeration type's set of literal values.
An enumeration literal is identified by name and has an associated
integer value as well as literal value used during serialization, which
if null, defaults to the name.

EEnum Models enumeration types, which specify enumerated sets of
literal values.

When a generic type references a classifier with type parameters,
it’s generally expected to specify type arguments in one-to-
one correspondence to those type parameters. These type
arguments recursively are also generic types. In this context, the
generic type can have all its references unspecified to represent
a wildcard, i.e., '?', and an upper or lower bound (but not both)
can be specified to represent ‘? extends Type’ or ‘? super Type’,
respectively. In this way, anything expressible in Java, can be
directly expressed in Ecore.

Figure 2: Extending Ecore to support generics

EClassifiers can specify an instance type name,
where the classic instance class name is the Java
erasure.

Example: ‘java.util.
List<java.lang.Integer>’
versus ‘java.util.List’

EClassifiers and EOperations can specify
ETypeParameters, where each type parameter is an
ENamedElement that can optionally specify a sequence
of EGenericTypes representing the bounds.

Example: the T in ‘interface
X<T extends Type> {}’.

Each reference to EClassifier in the classic API
is augmented by a corresponding containment
reference to EGenericType.

Example: ETypedElement.eType,
EOperation.eExceptions,
EClass.eSuperTypes, and
EClass.eAllSuperTypes.

An EGenericType represents an explicit reference to
either an EClassifier or an ETypeParameter (but not
both) where the raw type, or erasure, of the generic
type is a derived reference corresponding to the
specified classifier in classic API.

Example: it’s either the classifier
itself, or the first bound of the
type parameter.

There are a number of flags that can be set on a model feature
to control the generated code pattern for that feature as well
as to direct its dynamic behavior. Typically, the default settings
of these flags (shown in bold below) will be appropriate, so you
shouldn't need to change them very often.

Structural Feature Control Flags

Flag Value Use

Unsettable true | false A feature that is declared to be unsettable has a notion
of an explicit unset or no-value state. For example, a
boolean attribute that is not unsettable can take on one
of two values: true or false. If, instead, the attribute is
declared to be unsettable, it can then have any of three
values: true, false, or unset.
The get accessor for a feature that is not set will return
its default value, but for an unsettable feature, there is a
distinction between this state and when the feature has
been explicitly set to the default value. Since the unset
state is outside of the set of allowed values, we need
to generate additional methods to change a feature to
the unset state and to determine if it is in that state. For
example, if the label attribute in class Node is declared
to be unsettable, then we'll get two more generated
accessor methods, e.g.,
 boolean isSetLabel();
 void unsetLabel();
in addition to the original two, e.g.,
 String getLabel();
 void setLabel(String value);
The isSet method returns true if the feature has been
explicitly set. The unset method changes an attribute that
has been set back to its unset state.
When unsettable is false, we don't get the generated
isSet or unset methods, but we still get implementations
of the reflective versions: eIsSet() and eUnset() which
every EObject must implement. For non-unsettable
attributes, eIsSet() returns true if the current value is
different from the default value, and eUnset() sets the
feature to the default value, more like a reset.

http://www.dzone.com
http://www.refcardz.com
http://eclipse.org/go/EC_SITE@DZEMF

Essential EMF

4

DZone, Inc. | www.dzone.com

 tech facts at your fingertips

All EMF modeled objects, i.e., instances of EClasses are
EObjects and support reflection, i.e., you can ask an object for
its class, from that class determine all the features, and then
use eGet, eSet, eIsSet, and eUnset to introspect their values.
An object knows its container and even the containment
reference of that container which holds it. You can easily walk
the contents, the children referenced by containment, and the
cross references, the objects referenced by non-containment
references. It’s even possible to visit all the contents, i.e., the
entire containment tree, via a tree iterator.

Containment true| false Containment applies only for references. A containment
reference always has an implicit opposite, even if there
is no explicit opposite and that opposite is effectively a
view on EObject.eContainer(). Whenever an object
is added to a containment reference, it will be removed
from any other containment reference currently holding
it. That’s because an object can only have one container,
so adding it to a new container must remove it from the
old container.

ResolveProxies true | false ResolveProxies only applies to both containment or
non-containment references, but the generator respects
them in the latter case only if ‘Containment Proxies’ are
set to true in the generator. ResolveProxies implies that
the reference may span documents, and therefore needs
proxy checking and resolution in the get accessor. You
can optimize the generated get pattern for references
that you know will never be used in a cross document
scenario by setting resolveProxies to false. In that case,
the generated get method will be optimally efficient.

Unique true | false Unique only applies to multiplicity-many attributes,
indicating that such an attribute may not contain multiple
equal objects. References are always treated as unique.

Changeable true | false A feature that is not changeable will not include a
generated set method, and the reflective eSet()
method will throw an exception if you try to set it.
Declaring one end of a bi-directional relationship to
be not changeable is a good way to force clients to
always set the reference from the other end, but still
provide convenient navigation methods from either end.
Declaring one-way references or attributes to be not
changeable usually implies that the feature will be set or
changed by some other (user-written) code.

Volatile true | false A feature that is declared volatile is generated without
storage fields and with empty implementation method
bodies, which you are required to complete. Volatile
is commonly used for a feature whose value is derived
from some other feature, or for a feature that is to be
implemented by hand using a different storage and
implementation pattern.

Derived true | false The value of a derived feature is computed from other
features, so it doesn't represent any additional object
state. Framework classes, such as EcoreUtil.Copier,
that copy model objects will not attempt to copy such
features. The generated code is unaffected by the value
of the derived flag. Derived features are typically also
marked volatile and transient.

Transient true | false Transient features are used to declare (modeled) data
whose lifetime never spans application invocations and
therefore doesn't need to be persisted. The (default XMI)
serializer will not save features that are declared to be
transient.

ID true | false ID applies only for attributes. The value of the ID must
uniquely identify the object in its containing document
and hence the ID will be used to reference the object in
the (default XMI) serializer.

EObject Reflection, Introspection,
and Notification

Structural Feature Control Flags, continued EObject Reflection, Introspection, and Notification,
continued

Figure 3: Reflective operations supported by all EObjects

An EObject is a Notifier, so you can listen to any changes made
to an object as follows:

eContainmentFeature():EReference

eContents():EEList

eAllContents():ETreeIterator

eCrossReference():EEList

eGet(EStructuralFeature):EJavaObject

eGet(EStructuralFeature,EBoolean): EJavaObject

eSet(EStructuralFeature,EJavaObject)

eIsSet(EStructuralFeature):EBoolean

eUnset(EStructuralFeature)

EMF’s persistence framework is based on the principles of
Representation State Transfer (REST). Objects are stored in
resources that are identified by Uniform Resource Identifiers
(URIs). A URI typically consists of /-separated components of the
form `[scheme:][//authority][/path][?query][#fragment]’, e.g.,

http://www.eclipse.org/modeling/emf/?project=emf#related

file://c:/workspace/project/file.extension#id

platform:/resource/project/file.extension#id

An absolute URI starts with a scheme; it’s recommended to
always use absolute URIs to identify resources. Relative URIs are
useful within resources for referring to other resources collocated
in the same authority; this supports easier relocation of groups of
related resources. For example:

#id

../directory/file.extension

file.extension

Deresolving is the process of converting an absolute URI against
a base absolute URI to yield the equivalent absolute URI e.g.,
deresolving platform:/resource/a/foo.html against
platform:/resource/b/bar.html yields../a/foo.html. This
is used when serializing a resource to produce relative URIs in
the serialized result. When a resource is deserialized, resolving
a relative URI against a base absolute URI of the referencing
document yields the absolute URI relative to that base, e.g.,
resolving ../a/foo.html against platform:/resource/b/bar.
html yields platform:/resource/a/foo.html. By consistently
assigning absolute URIs to resources, you’ll ensure that relative
URIs will be used in their serialization whenever possible, and that
will help make related collections of resources more portable.

Here is the prototypical pattern for creating a model instance
and serializing it.

EObject

eClass():EClass

elsProxy():EBoolean

eResource():EResource

eContainer():EObject

Manipulating/Persisting EMF Instances

// Create a resource set to hold the resources.

ResourceSet resourceSet = new ResourceSetImpl();

eObject.eAdapters().add(

 new AdapterImpl() {

 @Override

 public void notifyChanged(Notification notification) {

 // Listen for changes to features.

 }});

http://www.dzone.com
http://www.refcardz.com
http://eclipse.org/go/EC_SITE@DZEMF

Essential EMF

5

DZone, Inc. | www.dzone.com

 tech facts at your fingertips

Once the resource is loaded, the
instance can be processed using
the generated API. Note that a
ready-to-run example just like
the above is generated when you
invoke Generate Test Code. It’s a
good place to write code to start
exploring your generated API and
the capabilities of EMF.

@model Properties for Classes
The Java specification for an EClass is a Java interface preceded
by an @model tag.

Property Value Usage

abstract true | false The abstract attribute of the EClass is set to the specified
value.

interface true | false The interface attribute of the EClass is set to the specified
value.

@model Properties for Typed Elements
An ETypedElement is specified as a method in the interface
corresponding to the EClass that contains the typed element.

Property Value Usage

lower or
lowerBound

Integer-value The lowerBound attribute of the ETypedElement is set
to the Integer-value, which must be 0 or greater.

many true | false If true, the upperBound attribute of the ETypedElement
is set to -1 (unbounded). Otherwise, it is set to 1.

ordered true | false The ordered attribute of the ETypedElement is set to
the specified value.

required true | false If true, the lowerBound attribute of the ETypedElement
is set to 1. Otherwise, it is set to 0.

type Type-name The eType reference of the ETypedElement is set to an
EClassifier corresponding to the Java type-name.

unique true | false The unique attribute of the ETypedElement is set to the
specified value.

upper or
upperBound

Integer-value The upperBound attribute of the ETypedElement is set
to Integer-value. The specified value must be greater
than 0, or -1 (unbounded).

@model Properties for Structural Features
An EStructuralFeature is specified as an accessor method in the
interface corresponding to the EClass that contains the feature.
The properties for ETypedElement also apply.

Property Value Usage

changeable true | false The changeable attribute of the EStructuralFeature is
set to the specified value.

derived true | false The derived attribute of the EStructuralFeature is set
to the specified value.

suppressed
GetVisibility

true | false If true, the EStructuralFeature is annotated with a
GenModel-sourced EAnnotation that suppresses the
get() accessor for the feature in the interface.

suppressed
IsSetVisibility

true | false If true, the EStructuralFeature is annotated with a
GenModel-sourced EAnnotation that suppresses the
isSet() accessor for the feature in the interface.

suppressed
SetVisibility

true | false If true, the EStructuralFeature is annotated with a
GenModel-sourced EAnnotation that suppresses the
set() accessor for the feature in the interface.

suppressed
UnsetVisibility

true | false If true, the EStructuralFeature is annotated with a
GenModel-sourced EAnnotation that suppresses the
unset() accessor for the feature in the interface.

transient true | false The transient attribute of the EStructuralFeature is set
to the specified value.

unsettable true | false The unsettable attribute of the EStructuralFeature is
set to the specified value.

volatile true | false The volatile attribute of the EStructuralFeature is set
to the specified value.

@model Properties for Attributes
An EAttribute is specified as an accessor method in the
interface corresponding to the EClass that contains the
attribute. The properties for EStructuralFeature, and hence,
ETypedElement also apply.

Property Value Usage

dataType Data-type The specific EDataType named data-type is used as the
eType for the EAttribute. If not already modeled, an
EDataType is created with the given name.

default or
defaultValue

Default-value The defaultValueLiteral attribute of the EAttribute
is set to the string value identified by default-value.

id true | false The id attribute of the EAttribute is set to the
specified value.

EMF Model Using Annotated Java, continuedManipulating/Persisting EMF Instances, continued

Hot
Tip

A wealth of
utilities are
available in
EcoreUtil,

so be sure to investigate
that.

// Create a new empty resource.
Resource resource =
 resourceSet.createResource
 (URI.createFileURI("c:/My.tree"));

// Create and populate instances.
Node rootNode = TreeFactory.eINSTANCE.createNode();
rootNode.setLabel("root");
Node childNode = TreeFactory.eINSTANCE.createNode();
childNode.setLabel("child");
rootNode.getChildren().add(childNode);

// Add the root object to a resource and save it.
resource.getContents().add(rootNode);
resource.save(null);

// Register the appropriate resource factory

// to handle all file extensions.

resourceSet.getResourceFactoryRegistry().getExtensionToFactoryMap().

 put

 (Resource.Factory.Registry.DEFAULT_EXTENSION,

 new XMIResourceFactoryImpl());

// Register the package to make it available during loading.

resourceSet.getPackageRegistry().put

 (TreePackage.eNS_URI,

 TreePackage.eINSTANCE);

// Demand load the resource into the resource set.

Resource resource =

 resourceSet.getResource

 (URI.createFileURI("c:/My.tree"), true);

// Extract the root object from the resource.

Node rootNode = (Node)resource.getContents().get(0);

/**
 * @model
 */
public interface Node {
 /**
 * @model opposite="parent" containment="true"
 */
 List<Node> getChildren();

 /**
 * @model opposite="children"
 */
 Node getParent();
}

Note that when running stand-alone, rather than when running
as an Eclipse application, it’s important to keep in mind that
Eclipse’s convenient plugin extension registrations will not be
available and hence explicit registrations will be required, e.g.,
registration of the package and the resource factory will be
needed, if it’s not handled elsewhere already.

Here’s the prototypical pattern to load an instance.

EMF Model Using Annotated Java

Many Java developers prefer to define their initial model
through Java interfaces. Leveraging the power of Javadoc
annotations, you can switch between your Ecore model and your
Java code seamlessly. Your code should be annotated with the
@model annotation as follows:

http://www.dzone.com
http://www.refcardz.com
http://eclipse.org/go/EC_SITE@DZEMF

Essential EMF

6

DZone, Inc. | www.dzone.com

 tech facts at your fingertips

EMF Model Using XML Schema, continuedEMF Model Using Annotated Java, continued

@model Properties for References
An EReference is specified as a method in the interface
corresponding to the EClass that contains the reference. The
properties for EStructuralFeature, and hence, ETypedElement
also apply.

Property Value Usage

containment true | false The containment attribute of the EReference is set
to the specified value.

opposite Reference name The opposite reference of the EReference is set
to the EReference corresponding to the specified
reference-name. The opposite EReference must
belong to the EClass that is identified by the eType
of this EReference.

resolveProxies true | false The resolveProxies attribute of the EReference is
set to the specified value. The default value is false
when containment is true, and true otherwise.

type Type-name The eType reference of the EReference is set to an
EClass corresponding to the Java type-name.

@model Properties for Operations
An EOperation is specified as a method in the Java interface
corresponding to the EClass that contains the operation. The
properties for ETypedElement also apply.

Property Value Usage

dataType Data-type The specific EDataType named data-type is used as the
eType for the EOperation. If not already modeled, an
EDataType is created with the given name.

exceptions List-of-types The list-of-types is a space-separated list of names,
each specifying the EDataType to be used for the
corresponding eException. If not already modeled each
EDataType is created with the given name. To avoid
specifying a particular EDataType for the corresponding
exception, a “-” character can appear as an item in the list.

type Type-name The eType reference of the EOperation is set to an
EClassifier corresponding to the Java type-name.

EMF Model Using XML Schema

An advantage to using XML schema to define your model is that,
when serialized, instances of the model will conform to your XML
schema. At a high level, the mapping to Ecore is quite simple:

A schema maps to an EPackage

A complex type definition maps to an EClass

A simple type definition maps to an EDataType

An attribute declaration or element declaration maps to an EAttribute if its type maps
to an EDataType, or to an EReference if its type maps to an EClass. There is is a special
EClass called the DocumentRoot, to hold global elements and attributes, i.e., those not
nested in a complex type.

EMF Extensions to XML Schema
Ecore namespace attributes can be used to tailor the default
mapping onto Ecore as follows:

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore"
 xmlns:tree="http://www.example.com/tree"
 ecore:nsPrefix="tree"
 ecore:package="com.example.tree"
 targetNamespace="http://www.example.com/tree">
 <xsd:element name="tree" type="tree:Node"/>
 <xsd:complexType name="Node">
 <xsd:sequence>
 <xsd:element ecore:opposite="parent"
 �maxOccurs="unbounded" minOccurs="0" name="children"

type="tree:Node"/>
 </xsd:sequence>
 <xsd:attribute name="label" type="xsd:string"/>
 </xsd:complexType>
</xsd:schema>

Property Applicability Value Usage

ecore:
changable

<xsd:element>

<xsd:attribute>

true | false The changeable attribute of the
EStructuralFeature is set to the
specified value.

ecore:
constraints

<xsd:complexType>

<xsd:simpleType>

List-of-
Names

The EStructuralFeature is
annotated with an Ecore-sourced
EAnnotation that contains a key
with the value ‘constraint’ whose
value is the space-separated list of
named constraints.

ecore:
default

<xsd:element>

<xsd:attribute>

Literal-
value

The derived value literal attribute
of the EAttribute is set to the
specified value.

ecore:
derived

<xsd:element>

<xsd:attribute>

true | false The derived attribute of the
EStructuralFeature is set to the
specified value.

ecore:
documentRoot

<xsd:schema> Name The document root EClass’s name
is set to the specified value.

ecore:
enum

<xsd:simpleType> true | false If false, rather than mapping the
simple type with enumeration
facets to an EEnum, it maps to
a EDataType with enumeration
extended meta data annotations.

ecore:
featureMap

<xsd:element>

<xsd:sequence>

<xsd:schoice>

<xsd:all>

Name If the empty string is specified, it
disables the mapping to a feature
map. Otherwise, it specifies
the name of the feature map
EStructuralFeature.

ecore:
ignore

<xsd:attribute>

<xsd:element>

<xsd:annotation>

XSD facets

false | true When true is used on gobal
elements or attributes, annotations
or their documentation or appinfo
contents, or on simple type facets,
it specifies that the corresponding
Ecore construct should not be
produced as normal.

ecore:
implements

<xsd:complexType> List-of-
QName

Specifies additional super types,
as denoted by the QNames, for the
EClass.

ecore:
instance
Class

<xsd:complexType>

<xsd:simpleType>

Java-Class Specifies the instance type name of
the EClassifier; ‘{}’ can be used in
place of ‘<>’.

ecore:
interface

<xsd:complexType> true | false The interface attribute of the
EClass is set to the specified value.

ecore:
key

<xsd:appinfo> String-
value

Specifies the key of the details
entry in the EAnnotation where the
appinfo’s contents are the value.

ecore:
lowerBound

<xsd:attribute>

<xsd:element>

Integer-
value

Specifies the value of the
lowerBound attribute of the
EStructuralFeature.

ecore:
many

<xsd:attribute> true | false When true is used on an attribute
with a list-type value, it will instead
map to a multiplicity many feature
of the corresponding item type.

ecore:
mixed

<xsd:complexType> true | false The complex type is mapped
exactly as if it had a real mixed
attribute with the specified value.

ecore:
name

XSD named
components

Name Specifies the name of the
ENamedElement.

ecore:
nsPrefix

<xsd:schema> NCName Specifies the nsPrefix of the
EPackage.

ecore:
opposite

<xsd:attribute>

<xsd:element>

Name Specifies by name an element or
attribute in the EReference’s type
that will pair with the reference
as its opposite. When used on a
containment reference, a container
reference will be created.

ecore:
ordered

<xsd:attribute>

<xsd:element>

true | false Sets the value of the
ordered attribute on the
EStructuralFeature.

ecore:
package

<xsd:schema> Name Specifies the fully qualified Java
package name, the last segment of
which will be used as the name of
the EPackage.

ecore:
reference

<xsd:attribute>

<xsd:element>

QName When used on an attribute or
element of type IDREF, IDREFS,
or anyURI, the QName specifies a
complex type corresponding to the
EClass that that is the type of the
EReference.

ecore:
resolve
Proxies

<xsd:attribute>

<xsd:element>

true | false Specifies the resolveProxies
attribute of the EReference.

http://www.dzone.com
http://www.refcardz.com
http://eclipse.org/go/EC_SITE@DZEMF

Essential EMF
 tech facts at your fingertips

7

DZone communities deliver over 4 million pages each month to

more than 1.7 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheatsheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

DZone, Inc.
1251 NW Maynard
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2008 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher. Reference: EMF: Eclipse Modeling Framework, 2nd Edition, Dave Steinberg, Frank Budinsky, Marcelo Paternostro,
and Ed Merks, Addison Wesley Publications, December 2008.

Version 1.0

$7
.9

5

ISBN-13: 978-1-934238-39-4
ISBN-10: 1-934238-39-2

9 781934 238394

5 0 7 9 5

ABOUT THE AUTHOR

The second edition contains
more than 40% new material.
The authors illuminate the key
concepts and techniques of
EMF modeling, analyze EMF’s
most important framework
classes and generator
patterns, guide you through
choosing optimal designs,

and introduce powerful framework customizations
and programming techniques.

RECOMMENDED BOOK

Ed Merks
Ed Merks leads the top-level Eclipse
Modeling Project along with Rich
Gronback (Borland), and the Eclipse
Modeling Framework subproject. He
holds a Ph.D. in Computing Science

from Simon Fraser University. Ed has his own small
company, Macro Modeling, and his work at Eclipse
is funded by itemis AG. Ed is well recognized for his
dedication to the Eclipse community, posting literally
thousands of newsgroup answers each year.

Publication
EMF: Eclipse Modeling Framework, 2nd Edition, co-
author with Dave Steinberg, Frank Budinsky, and Marcelo
Paternostro, Addison Wesley Publications

BUY NOW
books.dzone.com/books/emf

Get More FREE Refcardz. Visit refcardz.com now!
Upcoming Refcardz:
SOA Patterns

Windows Presentation
Foundation

HTML and XHTML

SOA Governance

Agile Methodologies

Available:
Essential EMF

Getting Started with Equinox
& OSGi

Core Mule

Core CSS: Part III

Using XML in Java

Essential JSP Expression Language

Getting Started with
Hibernate Search

Core Seam

Essential Ruby

Essential MySQL

JUnit and EasyMock

Spring Annotations

Getting Started with MyEclipse

Core Java

Core CSS: Part II

PHP

Getting Started with JPA

JavaServer Faces

Core CSS: Part I

Struts2

Visit refcardz.com for a complete listing of available Refcardz.

Design Patterns
Published June 2008

FREE

James Sugrue
James Sugrue is a
software architect at
Pilz Ireland, a compa-
ny using many Eclipse
technologies. James

also works as editor on EclipseZone
and JavaLobby. He follows the Eclipse
projects closely and is interested in
their application in many industries.

EMF Model Using XML Schema, continued

ecore:
serializable

<xsd:simpleType> true | false Specifies the serializable attribute
of the EDataType.

ecore:
suppressed
Get
Visibility

<xsd:attribute>

<xsd:element>

true : false If true, the EStructuralFeature
is annotated with a GenModel-
sourced EAnnotation that
suppresses the get() accessor for
the feature in the interface.

ecore:
suppressed
IsSet
Visibility

<xsd:attribute>

<xsd:element>

true : false If true, the EStructuralFeature
is annotated with a GenModel-
sourced EAnnotation that
suppresses the isSet() accessor for
the feature in the interface.

ecore:
suppressed
Set
Visibility

<xsd:attribute>

<xsd:element>

true : false If true, the EStructuralFeature
is annotated with a GenModel-
sourced EAnnotation that
suppresses the set() accessor for
the feature in the interface.

ecore:
suppressed
Unset
Visibility

<xsd:attribute>

<xsd:element>

true : false If true, the EStructuralFeature
is annotated with a GenModel-
sourced EAnnotation that
suppresses the unset() accessor for
the feature in the interface.

ecore:
transient

<xsd:attribute>

<xsd:element>

true : false Specifies the transient attribute of
the EStructuralFeature.

ecore:
unique

<xsd:attribute>

<xsd:element>

true : false Specifies the unique attribute of
the EStructuralFeature.

ecore:
unsettable

<xsd:attribute>

<xsd:element>

true : false Specifies the unsettable attribute
of the EStructuralFeature.

ecore:
upperBound

<xsd:attribute>

<xsd:element>

Integer Specifies the upperBound attribute
of the EStructuralFeature.

ecore:
value

<xsd:enumeration> Integer Specifies the value of the
EEnumLiteral.

ecore:
volatile

<xsd:attribute>

<xsd:element>

true : false Specifies the volatile attribute of
the EStructuralFeature.

EMF Model Using XML Schema, continued

http://www.refcardz.com
http://eclipse.org/go/EC_SITE@DZEMF
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://books.dzone.com/books/essential-emf
http://books.dzone.com/books/essential-emf
http://books.dzone.com/books/essential-emf
http://www.refcardz.com
http://books.dzone.com/books/essential-emf
http://refcardz.dzone.com/refcardz/equinox
http://refcardz.dzone.com/refcardz/equinox
http://refcardz.dzone.com/refcardz/core-mule
http://refcardz.dzone.com/refcardz/corecss3
http://refcardz.dzone.com/refcardz/using-xml-java
http://refcardz.dzone.com/refcardz/essential-jsp-expression
http://refcardz.dzone.com/refcardz/getting-started-with-hibernate
http://refcardz.dzone.com/refcardz/getting-started-with-hibernate
http://refcardz.dzone.com/refcardz/core-seam
http://refcardz.dzone.com/refcardz/essential-ruby
http://refcardz.dzone.com/refcardz/essential-mysql
http://refcardz.dzone.com/refcardz/junit-and-easymock
http://refcardz.dzone.com/refcardz/spring-annotations
http://refcardz.dzone.com/refcardz/myeclipse
http://refcardz.dzone.com/refcardz/core-java
http://refcardz.dzone.com/refcardz/corecss2
http://refcardz.dzone.com/refcardz/php
http://refcardz.dzone.com/refcardz/getting-started-with-jpa
http://refcardz.dzone.com/refcardz/javaserver-faces
http://refcardz.dzone.com/refcardz/corecss-part1
http://refcardz.dzone.com/refcardz/struts2
http://refcardz.dzone.com
http://refcardz.dzone.com/refcardz/design-patterns

