

DZone, Inc. | www.dzone.com

CONTENTS INCLUDE:

n	 About Mule Configuration
n	 Mule Architecture in a Nutshell
n	 Configuring Mule
n	 Mule Transformers, Filters, Routers and Components
n	 Mule Entry Point Resolving
n	 Hot Tips and more...

Mule is one of the most mature open source enterprise service
busses (ESBs) out there. It provides an easy to use, lightweight ESB
that can easily be integrated with a large amount of technologies.
Mule also provides a rich set of routers, transformers, and filters
which you can use in your own integration flows. This reference
card will provide an overview of the architecture of Mule and show
the different routers, transformers, and filters that are available, and
will show how to use them by using example configurations.

ABOUT MULE CONFIGURATION

n Authoritative content
n Designed for developers
n Written by top experts
n Latest tools & technologies
n Hot tips & examples
n Bonus content online
n New issue every 1-2 weeks

Subscribe Now for FREE!
Refcardz.com

Get More Refcardz
(They’re free!)

By Jos Dirksen

Core Mule
CONFIGURING MULE

MULE ARCHITECTURE IN A NUTSHELL

As you can see, the basic concepts of Mule are pretty straight
forward. In Mule's architecture we have the following main parts:

Component Contains the business logic. For instance this could be a spring
bean, a REST service, a POJO, etc.

Transport Handles connectivity with a specific technology or application
(e.g. JMS, SAP, FTP, etc.).

Transformers Transforms the data to the format the next component expects
and can work with.

Inbound Routers Determines what to do with the received message before it's sent
to the service.

Outbound Routers Determines where a message needs to be sent to after it's been
processed by the service.

Basically what happens is:

1. A transport receives a message. For instance a message has
been put on a JMS queue the transport is listening on.

2. Before the message is sent to the inbound router, it's first
transformed (if needed) to the required format.

3. Then the message is processed by the inbound router. For
instance we could have a "selective consumer" which only
accepts messages that are sent by applications we trust.

4. After the inbound router, the message is sent to the
component, which applies its business logic to it.

5. After the service is done processing, the message is sent to the
outbound router. This router determines where to next send
the message. We could for instance split this message into
multiple parts and send those to different targets.

6. And finally we can transform the message once again, and let
the transport handle all the connectivity details. C

or
e

M
ul

e

 w

w
w

.d
zo

n
e.

co
m

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#40

To make it easier to understand Mule, let’s first have a quick look
at Mule's architecture.

Transport Component

Tr
an

sf
o

rm
er

Transport

Transfo
rm

erIn
b

o
un

d
ro

ut
er

O
utb

o
und

ro
uter

Mule's configuration is based on Spring and uses XML schemas
to provide code completion. This makes it very easy to write your
integration flows. Let's start with a very basic Mule configuration:

<mule xmlns="http://www.mulesource.org/
schema/mule/core/2.1" xmlns:xsi="http://www.
w3.org/2001/XMLSchema-instance" xmlns:vm="http://
www.mulesource.org/schema/mule/vm/2.1"
xmlns:file="http://www.mulesource.org/schema/mule/
file/2.1" xsi:schemaLocation="
 http://www.mulesource.org/schema/mule/

core/2.1
 http://www.mulesource.org/schema/mule/

core/2.1/mule.xsd
 http://www.mulesource.org/schema/mule/vm/2.1
 http://www.mulesource.org/schema/mule/

vm/2.1/mule-vm.xsd
 http://www.mulesource.org/schema/mule/

file/2.1
 http://www.mulesource.org/schema/mule/

file/2.1/mule-file.xsd">

<model name="refcheat-model">
 <service name="basic-service">
 <inbound>
 <file:inbound-endpoint name="example-in"
 path="work/example/in" />
 </inbound>
 <component>
 <singleton-object class="dzone.Reverser" />
 </component>
 <outbound>
 <pass-through-router>
 <file:outbound-endpoint name="example-out"

Core Mule

2

DZone, Inc. | www.dzone.com

 tech facts at your fingertips

Configuring Mule, continued Mule Expressions, continued

 path="work/example/out" />
 </pass-through-router>
 </outbound>
 </service>
 </model>
</mule>

You can see that at the top of the file we've declared a number
of Mule specific namespaces. Mule provides XML schemas for
all its features. We'll focus on Mule core sheets, but also show
you a couple of features from the vm and file schemas. After the
namespaces declaration we define a <model> element. A model
in Mule is a container element for a number of services. In the
model element you can see that we've defined a single service
where the parts we've discussed in the introduction appear
again. In this case we've configured a file transport which will
read messages from the file system, pass it on to a component
which will reverse the content of the input file, and finally use
an outbound router, with a single transport to write the now
reversed string back to the file system. We didn't specify an
inbound-router. If we don't specify one, all the messages are
simply processed by the specified component.

In this example the inbound endpoint uses the File transport.
Mule provides several standard transports you can use,
as described in the next section. For details on a specific
transport, see http://www.mulesource.org/display/MULE2USER/
Available+Transports

We won't go into the details of all the endpoints. We'll just
provide an overview of the transports available.

Mule Transports

Here is an overview of the transports Mule provides.

Namespace Description

file Provides endpoints which allow you to read and write to the file system

axis Allows you to consume and provide webservices using axis

jbpm Adds functionality to interact with jBPM

cxf Allows you to consume and provide webservices using CXF

ejb Using the endpoints from this transport you can connect to EJBs

email The email namespace provides functionality to connect to POP3, SMTP
and IMAP servers

ftp Provides endpoints to read and write to ftp servers

http Allows you to receive and send information using HTTP

jdbc With the JDBC endpoints you can interact with databases using SQL

jms Provides endpoints to connect to JMS queues and topics

multicast Provides an UDP multicast endpoint

quartz Allows you to control the quartz job manager from Mule

rmi Provides inbound and outbound endpoints for RMI

stdio Allows you to send messages to mule using stdio

tcp Provides endpoints for tcp connectivity

udp Provides endpoints for udp connectivity

vm The vm endpoint can be used for internal communication

xmpp The XMPP endpoint can be used to connect to XMPP compliant instant
messaging servers

Mule Expressions

With expressions Mule allows you to access certain properties
from the message or from the payload, and based on these

Hot
Tip

Most elements allow you to configure the expres-
sion using the evaluator and expression attributes.
For properties, you can specify multiple expres-
sions using #[<evaluator>:<expression>]

in Mule 2.1 or ${<evaluator>:<expression>} in
Mule 2.0. For example:
<message-properties-transformer>

 <add-property name="GUID" value="#[xpath:/
msg/header/ID]-#[xpath:/msg/body/@ref]"/>

</message-properties-transformer>

For more information on expressions you can look at http://
www.mulesource.org/display/MULE2USER/Expressions+Confi
guration+Reference.

properties, execute certain actions. There are, for instance,
routers, filters, and transformers that work based on these
expressions. Below are a couple of examples of how these
expressions can be configured. The first one shows how to use
an expression on a filter.

<expression-filter evaluator="header"
expression="priority=1"/>

This one shows how you can use expressions for routing.

 <expression-recipient-list-router
evaluator="xpath"
 expression="/header/routing/recipient" />

Available Evaluators

To use an expression, you specify an evaluator (the expression
type) and the expression itself.

Evaluator Description

attachment Allows you to access an attachment of a message

attachments Returns a java.util.Map of attachments

attachments-list Returns a java.util.List of attachments objects

bean With this property you can access the message using a javabean
style

endpoint Allows you to access endpoint information

exception-type Allows you to match the type of an exception

function Performs a function: now, date, datestamp, systime, uuid,
hostname, ip, or count. Not supported by expression filters.

groovy Evaluates the expression using the Groovy language

header Evaluates the specified part of the message header

headers Returns all the headers as a java.util.Map

headers-list Returns all the headers as a java.util.List of header values

jxpath Allows you to specify an XPath expression that works on XML and
javabeans

map-payload Returns a single value from a Map

message Gives you access to various message properties: id, correlationId,
correlationSequence, correlationGroupSize, replyTo, payload,
encoding, exception

mule Allows access to certain Mule properties: serviceName,
modelName, inboundEndpoint, serverId, clusterId, domainId,
workingDir and homeDir

ognl Allows you to use OGNL to access the message

payload If expression is provided, it will be a class to be class loaded. The
class will be the desired return type of the payload.

payload-type Allows you to check the payload-type of the message

regex Allows you to use a regular expression to access data

wildcard You can use a wildcard expression to determine whether a filter
matches

xpath Allows you to use an XPath expression

Core Mule

3

DZone, Inc. | www.dzone.com

 tech facts at your fingertips

Mule provides a number of transformers which you can use in
your own integration flows. Before we look at the transformers
provided by Mule, let's first look at how you configure
transformers. In the following listings you can see the different
ways we can configure and reference a transformer:

<custom-transformer class="dzone.CustomTransformer"
 name="myCustomTransformer"/>
<xml:xslt-transformer name="xsltTransformer"
 xsl-file="resources/xslt/transform.xslt"/>
<file:file-to-string-transformer name="fileToString"/>
...
<file:inbound-endpoint name="example-in"
 path="work/example/in"
 transformer-refs="fileToString
 myCustomTransformer xsltTransformer"/>

You can add transformers as a transformers-refs attribute to
any endpoint. If you want to do this you first have to make sure
you've already defined them. The transformers will be executed
in the same sequence as they are listed in the attribute. Note
that most of the transports have their own default transformer
which is executed if you don't specify transformers yourself. If
you do specify transformers yourself you have to make sure you
also add the default one, which in this case is the fileToString
transformer.

<file:inbound-endpoint name="example-in" path="work/
 example/in">
 <transformer ref="fileToString"/>
 <custom-transformer class="dzone.

 CustomTransformer"/>
 <transformer ref="xsltTransformer"/>
</file:inbound-endpoint>

In the previous listing we added the transformers as child
elements of the endpoint. This has the same effect as the
previous configuration, but now we don't have to define all the
transformers before hand, but can define them inline.

<file:inbound-endpoint name="example-in" path="work/
 example/in">
 <transformers>
 <transformer ref="fileToString"/>
 <transformer ref="myCustomTransformer"/>
 <custom-transformer class="dzone.

 CustomTransformer"/>
 </transformers>
 <response-transformers>
 <base64-encoder-transformer/>
 <transformer ref="stringToFile"/>
 </response-transformers>
</file:inbound-endpoint>

This last configuration is the same as the previous one, but the
transformers are now wrapped in a <transformers> element.
What you also see is that we've added a response-transformers
element (which is also available as an attribute <response-
transformers-refs>). A response-transformer does the
same as a normal transformer, but is applied specifically on the
response to a synchronous call.

Hot
Tip

Synchronous or asynchronous
Starting from Mule 2.1 you need to explicitly define
whether a message is processed synchronously or

asynchronously on both the inbound and outbound endpoints.
You can do this by using the synchronous attribute on an
endpoint. If you specify synchronous="true" Mule will return
a result from the call. If you specify synchronous="false" no
result will be returned. This value defaults to false. So by default
Mule operates asynchronously. You can, however, override this
by adding <configuration defaultSynchronousEndpoint
s="true"/> to your configuration file.

Name Description

<append-string-
transformer/>

A transformer that appends a string to a string payload

<auto-transformer> A transformer that uses the transform discovery mechanism
to convert the message payload

<custom-transformer> Allows you to create a custom transformer

<message-properties-
transformer>

A transformer that can add or delete message properties

<no-action-
transformer>

A transformer that does nothing

<base64-encoder-
transformer>

Transforms a string or byte array to base64

<base64-decoder-
transformer>

Transforms a base64 message to an array of bytes

<xml-entity-encoder-
transformer>

A transformer that encodes a string using XML entities

<xml-entity-decoder-
transformer>

A transformer that decodes a string containing XML entities

<gzip-compress-
transformer>

A transformer that compresses a byte array using gzip

<gzip-uncompress-
transformer>

A transformer that uncompresses a byte array using gzip

<byte-array-to-hex-
string-transformer>

A transformer that converts a byte array to a string of
hexadecimal digits

<hex-string-to-byte-
array-transformer>

A transformer that converts a string of hexadecimal digits
to a byte array

<byte-array-to-object-
transformer>

A transformer that converts a byte array to an object

<object-to-byte-array-
transformer>

A transformer that serializes all objects

<object-to-string-
transformer>

A transformer that gives a human-readable description of
various types

<byte-array-to-
serializable-
transformer>

A transformer that converts a byte array to an object
(deserializing the object)

<serializable-to-byte-
array-transformer>

A transformer that converts an object to a byte array
(serializing the object)

<byte-array-to-string-
transformer>

A transformer that converts a byte array to a string

<string-to-byte-array-
transformer>

A transformer that converts a string to a byte array

<encrypt-transformer> A transformer that encrypts a message

<decrypt-transformer> A transformer that decrypts a message

<expression-
transformer>

A transformer that evaluates one or more expressions on
the current event

<xml:xml-to-dom-
transformer>

Transforms an XML message payload to an org.w3c.dom.
Document

<xml:xml-to-object-
transformer>

Converts XML to Java bean graphs using Xstream

<xml:xslt-transformer> Transformer that uses XSLT to transform the message
payload

Available Transformers

The following table lists all the transformers from the Mule core
and the Mule XML namespace. They can be used in the manner
explained earlier.

TRANSFORMERS

Core Mule

4

DZone, Inc. | www.dzone.com

 tech facts at your fingertips

MULE FILTERS

Mule provides a set of default filters you can use to determine
whether a message should be sent to a destination or whether
it's read from a destination. Defining a filter works in the same
manner as defining a transformer. You can define them globally
and reference them from an endpoint.

 <regex-filter name="regex" pattern="(^my)(.*)(txt$
)"/>

 <custom-filter name="custom" class="dzone.
 CustomFilter"/>

 <file:inbound-endpoint name="example-in"

 path="work/example/in-1">
 <filter ref="regex"/>
 </file:inbound-endpoint>
 <file:inbound-endpoint name="example-in-2"

 path="work/example/in-2">
 <payload-type-filter expectedType="java.

 lang.String"/>
 </file:inbound-endpoint>

In the previous example the message will only be received if
it passes the filter. Mule also provides a set of logical filters
which you can use to combine filters using NOT, AND and OR
semantics.

<not-filter>
 <filter ref=”custom”/>
</not-filter>

<and-filter>
 <payload-type-filter expectedType="java.lang.

 String"/>
 <filter ref="regex"/>
</and-filter>

<or-filter>
 <payload-type-filter expectedType="java.lang.

 String"/>
 <payload-type-filter expectedType="java.lang.

 StringBuffer"/>
</or-filter>

Available Filters

The following table shows an overview of all the filters from the
core and the XML schema. Note that certain transports have
their own custom filters you can use.

Name Description

<not-filter> Invert the enclosed filter

<and-filter> Return true only if all the enclosed filters return true

<or-filter> Return true if any of the enclosed filters returns true

<wildcard-filter> Matches String messages against a number of wildcards. For
example order.* would match order.line, order.total etc.

<expression-filter> A filter that evaluates whether a specific expression is valid

<regex-filter> A filter that matches the message against a regular
expression

<exception-type-
filter>

A filter that matches the type of an exception

<payload-type-filter> A filter that matches whether the payload is of the correct
class

<custom-filter> Allows you to implement your own custom filter

<xml:is-xml-filter> Checks whether the message is an XML message

<xml:jxpath-filter> Checks the message against an XPath expression using
JXPath

<xml:jaxen-filter> Checks the message against an XPath expression using Jaxen

 MULE ROUTERS

Routers are used in Mule to determine how messages are
received by a component and to where they are sent after the
component has processed them. Mule implements most of the
patterns from the Enterprise Integration Patterns book (Addison-
Wesley), and for most uses the same names. We have inbound
routers and outbound routers. In this section, we'll first look at
the inbound routers, how to configure them, and which ones are
available. After that, we'll look at the outbound routers and do the
same thing. First let’s look at how to configure an inbound router.

 <inbound>
 <file:inbound-endpoint path="work/test/in"/>
 <idempotent-secure-hash-receiver-router/>
 </inbound>

You define the inbound router on the inbound element in the
Mule service configuration. This means that every message
that is received on any of the inbound endpoints is processed
by the inbound router, before it's processed by the configured
component.

Available Inbound Routers

Name Description

<collection-aggregator-
router>

Configures a Collection Response Router. This will return
a MuleMessageCollection message type that will contain
all messages received for each correlation group.

<custom-correlation-
aggregator-router>

Allows you to create a custom correlation
implementation.

<custom-inbound-router> With this element you can configure your own custom
router.

<forwarding-router> Forwards a message directly to the outbound router
without invoking the component.

<idempotent-receiver-
router>

This router makes sure that only unique messages are
received. This is done by checking the unique message
ID of the message.

<idempotent-secure-hash-
receiver-router>

This router generates a hash of the message and uses
that to determine whether a message has already been
received.

<message-chunking-
aggregator-router>

Combines two or more messages into a single message
by matching messages with a given Correlation ID

<selective-consumer-
router>

Applies one or more filters to the incoming message.
If the filters match, the message is forwarded to the
component.

<wire-tap-router> This router allows you to send a copy of a specific
message to a certain destination.

Outbound routers are configured on the outbound element:

 <outbound>
 <static-recipient-list-router>
 <file:outbound-endpoint path="work/example/

 out" />
 <vm:outbound-endpoint path="example.out" />
 </static-recipient-list-router>
 </outbound>

In this example we define an outbound router on the outbound
element, and defined a static-recipient-list-router which sends
the message that is received from the component to all the
specified endpoints.

Available Outbound Routers

Name Description

pass-through-router This router always matches and simply sends or dispatches the
message via the endpoint that is configured.

Core Mule

5

DZone, Inc. | www.dzone.com

 tech facts at your fingertips

Name Description

filtering-router Uses filters to determine whether the message matches a
particular criteria, and if so, will route the message to the
endpoint configured on the router.

template-endpoint-
router

Allows endpoints to be altered at runtime based on properties
set on the current message, or fallback values, set on the
endpoint properties.

chaining-router Sends the message through multiple endpoints using the
result of the first invocation as the input for the next.

exception-based-
router

Sends a message over an endpoint by selecting the first
endpoint that can connect to the transport.

multicasting-router Sends the same message over multiple endpoints.

endpoint-selector-
router

Selects the outgoing endpoint based on the evaluation of an
expression.

list-message-splitter-
router

Accepts a list of objects that will be routed to different
endpoints. The actual endpoint used for each object in the list
is determined by a filter configured on the endpoint itself.

expression-splitter-
router

Splits the message based on an expression. The expression
must return one or more message parts in order to be effective.

message-chunking-
router

Allows you to split a single message into a number of fixed-
length messages that will all be routed to the same endpoint.

static-recipient-list-
router

Sends the same message to multiple endpoints.

expression-recipient-
list-router

Sends the same message to multiple endpoints. The destination
is determined based on the evaluation of an expression.

custom-outbound-
router

This router allows you to define your own custom outbound
router.

Mule Components, continuedAvailable Outbound Routers, continued

So far we've seen all the various parts that make up a Mule
service except the component which contains the business logic.
For this, Mule provides a number of options.

Hot
Tip

Reuse existing spring configurations
Since Mule is based on Spring it’s very easy to reuse
your existing spring beans. If you’ve already got an

applicationcontext, and want to reuse those beans from Mule,
you can very easily import them. All you have to do is declare the
spring namespace, and add the following to your configuration:
<spring:import resource="applicationContext.

xml"/>. Now you can use all the beans defined in that file
directly in Mule.

There are a number of different ways to configure Mule
components. Here, we'll show you, and also explain how Mule
determines which method to call on your component. Mule
provides two types of elements to use in your configuration
to specify the component you want to use. The first one is the
<component> element:
<component class="dzone.Reverser"/>

If you use this configuration, Mule will create a new instance
of this class for each request which is received. You can also
configure Mule to create objects that can be pooled. For this,
don't use the <component> element, but use the <pooled-
component> element:
<pooled-component class="dzone.Reverser"/>

In the previous examples we directly specified the class as an
attribute on the elements. We can also use a different way to
specify the implementation of the component. You can do this
by using any of the following elements inside the <component>
or the <pooled-component> element:

MULE COMPONENTS

<component class>

 <prototype-object class="dzone.Reverser"/>
</component>
<component class>

 <singleton-object class="dzone.Reverser"/>
</component>
<component class>

 <spring-object name="springBean"/>
</component>

The first two of these elements allow you to specify whether you
want a new object for each message (the <propotype-object>
element), or whether you want to create an object to be a singleton
(<singleton-object> element), and reused for all the messages.
The final option you can use to specify the implementation of
the component is the <spring-object> element. Here you can
directly reference a spring-bean from the application context.

MULE ENTRY POINT RESOLVING

One thing we haven't discussed yet is how Mule can determine
which method to call on your component. Your component
often is just a simple spring bean or POJO, which has multiple
methods. The default configuration for Mule is to use a set of
entry point resolvers to determine which method to call on your
bean. Mule uses the following steps to determine which method
to invoke on your POJO.

1. If a property with the name “method” is specified, the value of that property is
used to determine the method to invoke on your component. So if you set this
(message) property to helloWorld, Mule will look for a method with that name on
your bean. This makes use of the MethodHeaderPropertyEntryPointResolver.

2. Mule provides an interface, org.mule.api.lifecycle.Callable, you can
implement. If Mule finds this interface on your POJO it will invoke the onCall()
method of this interface, when a message is received for this component. This
uses the CallableEntryPointResolver.

3. If there is a transformer configured, Mule will use the return type of this
transformer to try and determine if there is a method which accepts
this type. If this is found Mule will invoke that method. This uses the
ReflectionEntryPointResolver.

4. If there is still no unique match Mule will check the type of the payload
to see if that matches any of the methods in the bean. This also uses the
ReflectionEntryPointResolver.

If the previous steps don't result in a single method, Mule will
throw an exception. Beside the ones already mentioned, you can
configure your own set of entry point resolvers, should the default
configuration be insufficient. The following example shows a
custom configuration, which you can configure on the model or
on a component.

<entry-point-resolver-set>
 <array-entry-point-resolver
 acceptVoidMethods="true"
transformFirst="true"/>
 <callable-entry-point-resolver/>
 <method-entry-point-resolver
 acceptVoidMethods="true"/>
</entry-point-resolver-set>

If you create a custom entry-point resolver, you can easily add to
this entry point resolver set.

6
Core Mule

 tech facts at your fingertips

DZone communities deliver over 4 million pages each month to

more than 1.7 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheatsheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

DZone, Inc.
1251 NW Maynard
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2008 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher. Reference: Open Source ESBs in Action, Tijs Rademakers and Jos Dirksen, Manning Publications, September 2008

Version 1.0

$7
.9

5

ISBN-13: 978-1-934238-42-4
ISBN-10: 1-934238-42-2

9 781934 238424

50795

ABOUT THE AUTHOR

Open-Source ESBs in Action will

help you to learn open-source in-

tegration technologies quickly and

will provide you with knowledge

that you can use to effectively work

with Mule and ServiceMix.

RECOMMENDED BOOK

Jos Dirksen
Jos Dirksen is a software architect for Atos Origin, where he has been
the architect for a number of large integration projects over the last
couple of years. Jos has worked with various integration products,
commercial and open source, for the last five years. He co-authored

the book Open Source ESBs in Action, and regularly presents on topics ranging from en-
terprise integration patterns to JavaFX, at such conferences as Javapolis and JavaOne.

Publications
Open Source ESBs in Action, co-author with Tijs Rademakers, Manning Publications

Website
www.esbinaction.com

BUY NOW
books.dzone.com/books/opensource-esb

Get More FREE Refcardz. Visit refcardz.com now!
Upcoming Refcardz:
Getting Started with Equinox OSGi

SOA Patterns

Essential EMF

Windows Presentation Foundation

HTML and XHTML

SOA Governance

Agile Methodologies

Available:
Core Mule

Using XML in Java

Core CSS: Part III

Essential JSP Expression Language

Getting Started with
Hibernate Search

Core Seam

Essential Ruby

Essential MySQL

JUnit and EasyMock

Spring Annotations

Getting Started with MyEclipse

Core Java

Core CSS: Part II

PHP

Getting Started with JPA

JavaServer Faces

Core CSS: Part I

Struts2

Core .NET

Very First Steps in Flex

C#

Visit refcardz.com for a complete listing of available Refcardz.

Design Patterns
Published June 2008

FREE

Entry Point Resolvers

The following table shows an overview of the entry point resolvers which are provided by Mule.

Name Description

<callable-entry-point-resolver> An entry point resolver for components that implement the Callable interface.

<custom-entry-point-resolver> Use to create your own custom implementation.

<property-entry-point-resolver> Uses a property to determine which method on your component to invoke.

<method-entry-point-resolver> This uses the “method” property to determine which method to invoke.

<reflection-entry-point-resolver> Tries to determine the method to invoke based on the payload of the message.

<array-entry-point-resolver> Checks whether there is a method available which takes a single array as its parameter.

<no-arguments-entry-point-resolver> Calls a method which has no arguments.

Resources
Open Source Mule site http://www.mulesource.org

Commercial Mule site http://www.mulesource.com

Open Source ESB in action website http://www.esbinaction.com

