

DZone, Inc. | www.dzone.com

Seam UI
By Jacob Orshalick

ABOUT Seam UI

Seam is a next generation web framework that integrates
standard Java EE technologies with a wide variety of non-
standard technologies into a consistent, unified, programming
model. Seam drove the development of Web Beans (JSR-299)
and continues to develop innovations that are changing the
face of web development as well as Java EE technologies. If
you haven’t taken a look at Seam, I suggest you do.

As you develop Seam applications, you’ll find this reference
a handy guide for understanding how Seam simplifies JSF
development. This reference does not cover all of what Seam
provides, but covers the most commonly used UI annotations
and XML elements as of Seam 2.1.

While Seam is no longer limited to JSF as it’s view layer, one of
the framework’s initial goals was simplifying JSF development.
Seam plugs into the JSF lifecycle to provide a number of
enhancements including:

 n Direct Facelets support (https://facelets.dev.java.net/)
 n A unified component model
 n Additional contexts including conversations
 n Bean validations
 n A component event model
 n Exception handling
 n RESTful URLs
 n Extended EL support
 n And much more...

Simplifying jsf

Page navigation with JSF can be verbose and only provides
a limited feature set. Seam provides a concise navigation
language that incorporates conversation management,
security, exception handling, request parameters, event
notification, and more. Here we will discuss the pages
namespace which defines the navigation flow of a Seam
application as well as the navigation namespace for
configuring the navigation components.

The Pages Namespace

Schema URI
http://jboss.com/products/seam/pages

Schema XSD
http://jboss.com/products/seam/pages-2.1.xsd
The pages namespace is used to define the WEB-INF/pages.
xml definition. The pages.xml file unifies navigation logic

Page Navigation

Page Navigation, continued

with Seam “orchestration” logic. This logic includes page
parameters, conversation management, and allows navigation
to be based on evaluation of arbitrary EL expressions instead
of relying on return values. In addition, event notification is
possible, generic exception handling, security restrictions, etc.

Seam XML Diagram Key
The Seam XML diagrams use the following notations to indi-
cate required elements, cardinality, and containment:

S
e

am
 U

I

 w

w
w

.d
zo

n
e.

co
m

 G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#42

CONTENTS INCLUDE:
n	 About SEAM UI
n	 Simplifying JSF
n	 Page Navigation
n	 JSF Component Annotations
n	 JSF Component Tags
n	 Hot Tips and more...

Required XML Element 0..*

0..1

Zero or more

ContainmentZero or one

Pages Namespace Diagram

<pages>

<page>

<conversation>

<exception>

<restrict>

<description>

<param>

<actions>

<header>

<begin-conversation>

<navigation>

<raise-event>

<end-conversation>

<http-error> <message>

<rule>

<redirect>

<render>

Get support for Seam 2
JBoss Enterprise Application Platform
now includes Seam 2
• JBoss Enterprise Application Platform pre-integrates
 JBoss Application Server, Seam, and Hibernate

• Latest feature pack includes support for Seam 2

• Includes caching, clustering, messaging, transactions,
 and integrated web services stack

• Support for industry-leading Java and newer technologies,
 including JAX-WS, EJB 3.0, JPA 1.0, JSF 1.2, and JTA 1.1

Download today: jboss.com/download

© 2008 Red Hat Middleware, LLC. All Rights Reserved. Red Hat, Red Hat Enterprise Linux, the
Shadowman logo and JBoss are registered trademarks of Red Hat, Inc. in the U.S. and other
countries. Linux is a registered trademark of Linus Torvalds.

Element Description

<pages> Root element defining general configuation applied to all pages.

<page> Defines the navigation as well as “orchestration” logic associated with
a view-id.

Pages Namespace Elements

Brought to you by...

http://www.refcardz.com
http://www.dzone.com
http://facelets.dev.java.net/
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com
http://www.jboss.com/downloads/index

 tech facts at your fingertips

DZone, Inc. | www.dzone.com

Page Navigation, continued

Pages Namespace Examples

Defining Navigation Rules
The following example defines a few pages with some simple
navigation rules based on the execution of EL expressions:

When a hotel is selected on the /main.xhtml view and the
selectHotel method is invoked, we begin a long-running
conversation and the user is redirected to the /hotelxhtml
view. A user is required to be logged in to access /main.
xhtml. If the user is not logged in, he or she will be re-
directed to the login-view-id, or /home.xhtml in this case.

The /rewards.xhtml page is further restricted to users
with the REWARDS role. The s:hasRole EL function throws an

Page Navigation, continued

Using Page Parameters and Natural Conversations
The following example defines a natural conversation named
Booking. The parameter-name and parameter-value define
the parameter that will be using to uniquely identify a
conversation instance. You must ensure that the EL expression
evaluates to a value when the conversation is initialized.

Pages Namespace Examples

<pages xmlns=”http://jboss.com/progucts/seam/pages”
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xsi:schemaLocation=
 “http://jboss.com/products/seam/pages
 http://jboss.com/products/seam/pages-2.1.xsd”
 no-conversation-view-id=”/main.xhtml”
 login-view-id=”/home.xhtml”>

 <page view-id=”/main.xhtml” login-required=”true”>
 <navigation from-action=
 “#{hotelBooking.selectHotel(hotel.id)}”>
 <begin-conversation />
 <redirect view-id=”/hotel.xhtml”/>
 </navigation>

 </page>
 <page view-id=”/rewards.xhtml”>
 <restrict>#{s:hasRole(‘REWARDS’)}</restrict>
 </page>

 <exception class=
 “org.jboss.seam.security.AuthorizationException”>
 <end-conversation/>
 <redirect view-id=”/generalError.xhtml”>
 <message>You are not authorized</message>
 </redirect>
 </exception>

</pages>

Using page Parameters and Natural Conversations

<pages xmlns=”http://jboss.com/products/seam/pages”
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xsi:schemaLocation=
 “http://jboss.com/products/seam/pages
 http://jboss.com/products/seam/pages-2.1xsd”
 no-conversation-view-id=”/main.xhtml”
 login-view-id=”/home.xhtml”>

 <conversation name=”Booking” parameter-name=”hotelId”
 parameter-value=”#{hotel.hotelId}” />
 <page view-id=”/hotel.xhtml” conversation=”Booking”
 login-required=”true”>
 <param name=”hotelId” value=”#{hotelBooking.hotelId}” />
 <begin-conversation join=”true” />

 </page>
 <page view-id=”/book.xhtml” conversation=”Booking”
 conversation-required=”true” login-required=”true”>

 </page>
 <page view-id=”/confirm.xhtml” conversation=”Booking”
 conversation-required=”true” login-required=”true”>

 </page>
</pages>

2

Manage your conversations through page navigation. This is generally up to personal preference, but from experience the
navigation approach to conversation management tends to lead to more maintainable code. The navigation approach provides
clear boundaries for the conversation based on user navigation rather than trying to relate conversation boundaries to page
components the user interacts with.

Hot
Tips

Each of the pages defined participate in the natural
conversation by specifying Booking as the conversation
attribute. The /hotel.xhtml page begins the natural
conversation by loading the current hotel according to the
value of the hotelId param. This param is initialized from a
request query parameter: http://seam-booking-example/
hotel.seam?hotelId=10. The hotelBooking action then uses
this parameter value to initialize the hotel in the conversation
context through an @Factory method.

Note that all pages other than /hotel.xhtml specify
conversation-required=”true”. This ensures that should a
user attempt to access one of these pages outside the context
of a long-runningconversation, the user will be redirected to
the no-conversation-view-id defined in the <pages> tag.

Navigation Namespace
Schema URI
http://jboss.com/products/seam/navigation

Schema XSD
http://jboss.com/products/seam/navigation-2.1.xsd

The navigation namespace provides the ability to externalize
configuration of the Pages component from the pages.xml file
and override the location of pages configuration files.

<conversation> Configures a named natural conversation.

<exception> Defines handling for a specific type of exception.

<http-error> Specifies an HTTP error code to be returned to the user.

<message> Specifies a message that should be displayed to the user.

<restrict> Configures a security restriction for a page defined through EL.

<description> Provides a description for a page that will be displayed in the
ConversationSwitcher. Note that without this description the
conversation will not show up in this component.

<param> Defines a page parameter to be set from a GET request query
parameter into a component.

<action> Defines an action to be executed as a method-binding expression.

<header> Specifies HTTP headers to be added to a page.

<navigation> Defines the navigation rules associated with a page.

<rule> Specifies a specific action outcome or boolean value-binding
expression under which navigation should occur.

<redirect> Redirects the user to the specified view-id.

<render> Specifies a view-id to be rendered.

<raise-event> Configures an event to be raised on page display or navigation.

<begin-
conversation>

Begins a long-running conversation either on access of a page or on
navigation.

<end-
conversation>

Ends a long runing conversation either on access of a page, on
navigation, or on occurrence of an exception.

AuthorizationException if the user is not authorized thereby
ending the conversation and sending the user to the error
page with an appropriate message.

Navigation Namespace Diagram
<navigation:pages> <navigation:resources><components>

http://www.refcardz.com
http://www.dzone.com

 tech facts at your fingertips

DZone, Inc. | www.dzone.com

Page Navigation, continued

Element Description

<navigation:pages> Configures the Pages component which drives navigation
based on the /WEB-INF/pages.xml file.

<navigation:resources> Allows you to specify a list of pages configuration files.
Setting this value overrides the default /WEB-INF/
pages.xml.

Navigation Namespace Elements

The ports have now been defined for both HTTP and HTTPS.
In addition, if a page has been configured as conversation-

required=”true”, the user will be redirected to /main.xhtml
if a long-running conversation is not in progress. The login-

view-id specifies that the user should be redirected to /home.
xhtml if a login is required by a page definition and the user
has not yet logged in.

Ports change, so make it easy to change them.The http-port and https-port can be defined in components.xml rather
than in pages.xml to allow use of wild-cards. Wild-cards are defined as @propertyValue@ and are replaced with values
from a components.properties file. These ports can (and generally do) change based on environment which makes it
useful to break these values out into a properties file for simple substitution.

JSF component annotations

The definition of components found in a typical JSF
application is simple when using Seam. Data models,
converters, and validators can be defined quickly with no XML
configuration required through use of component annotations.

Datamodel Annotations
The following annotations simplify display of a clickable
<h:dataTable> in JSF backed by a DataModel by directly
binding a Collection to action attributes.

Navigation Namespace Example
Below is an example of <navigation:pages> definition:

Navigation Namespace Example

<components
 xmlns=”http://jboss.com/products/seam/components”
 xmlns:navigation=
 “http://jboss.com/products/seam/navigation”
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xsi:schemaLocation=
 “http://jboss.com/products/seam/navigation
 http://jboss.com/products/seam/navigation-2.1.xsd
 http://jboss.com/products/seam/components
 http://jboss.com/products/seam/components-2.1.xsd”>
 <navigation:pages http-port=”8080” https-port=”8443”
 no-conversation-view-id=”/main.xhtml”
 login-view-id=”/home.xhtml” />

</components>

Annotation Use Description

@DataModel Field,
Method

Turns the annotated field or getter method
into a JSF DataModel object, and implies
the @Out annotation. Can be used with a
List, Map, or Set.

@DataModelSelection Field,
Method

Injects the user’s @DataModel selection.
The actual object instance selected is
injected.

@DataModelSelectionIndex Field,
Method

Injects the row index of the user’s
@DataModel selection.

Conversion and Validation Annotations
The following annotations allow you to quickly define Seam
components as custom JSF converters and validators

3

Annotation Use Description

@Converter Type Allows a Seam component to act as a JSF converter. The
annotated class must be a Seam component, and must
implement: javax.faces.convertConverter

Hot
Tips

Jsf Component tags

An extended JSF tag library is defined by Seam to provide
control over conversational navigation, simplified dropdowns,
bean validation, and component formatting.

Integrating the Seam Taglib
Taglib URI
http://jboss.com/products/seam/taglib

Taglib Declaration
Facelets <html xmlns=”http://www.w3.org/1999/xhtml”

 xmlns:s=”http://jboss.com/products/seam/taglib”>

JSP <%@ taglib uri=”http://jboss.com/products/seam/taglib”

 prefix=”s” %>

Controlling Navigation
Seam provides a set of JSF components for controlling
conversation propagation across both GET and POST
requests. These components also extend the capabilities
of JSF to allow GET requests to trigger actions and make it
simple to define default page actions.

Navigation Tags
Tag Description

<s:link> Link that performs a GET request to invoke an action and allows
conversation propagation to be controlled.

<s:button> Button that performs a GET request to invoke an action and
allows conversation propagation to be controlled.

<s:conversationId> Adds the conversation ID to a JSF link or button, especially
useful with the <h:outputLink>.

<s:conversation

Propagation>

Allows the conversation propagation to be controlled for a JSF
command link or command button.

<s:defaultAction> Configures a button (e.g.<h:commandButton>) as the default
action when the form is submitted using the enter key

Navigation Examples
The conversation propagation can be controlled from a
link through use of the <s:link> component. For instance,
if you click on the following link, Seam leaves the current
conversation when the main.xhtml page is loaded, just as a
regular HTTP GET request would do.

Navigation Examples

<s:link view-id=”/main.xhtml” propagation=”none”

 value=”Back to Main” />

We can also trigger an action during an HTTP GET request:

Navigation Examples

<s:link view-id=”/hotel.xhtml”

 action=”#{hotelBooking.selectHotel(hotel.id)}”

 value=”Select Hotel” />

@Validator Type Allows a Seam component to act as a JSF validator. The
annotated class must be a Seam component, and
must implement: javax.faces.validator.Validator

JSF Component Annotations, continued

The <s:link> component has richer conversation-management
capabilities than the plain JSF <commandbutton>, which
simply propagates the conversation context between pages.

http://www.refcardz.com
http://www.dzone.com

 tech facts at your fingertips

DZone, Inc. | www.dzone.com

JSF Component Tags, continued

Dropdown Selection
When developing JSF pages it is commonly required
to associate the possible selections of a dropdown
component with a list of objects or an enumeration of values.
Unfortunately with standard JSF this requires quite a bit
of glue code to achieve. Seam makes this simple through
the <s:selectItems> and <s:enumItem> tags. Even further
when the <s:convertEntity> and the <s:selectItems> tags
are combined, you can directly associate JPA or Hibernate
managed entities by simply binding a dropdown component
to an entity association attribute.

Dropdown Tags

In addition, by specifying the button is the <s:defaultAction/>
the user is returned to /main.xhtml through a navigation rule
should the user submit the form by pressing the enter key.

Navigation Examples

<h:commandButton action=”main”value=”Back to Main”>

 <s:conversationPropagation type=”none”/>

 <s:defaultAction />

</h:commandButton>

Tag Description

<s:convertEntity> Converts a managed entity to and from its unique identifier.
Used for selecting entities in a dropdown component.

<s:convertEnum> Converts an enum to and from its constant representation.
Generally used for selecting enums in a dropdown component.

<s:enumItem> Creates a SelectItem from an enum value allowing the label
to be specified.

<s:selectItems> Creates a List<SelectItem> from a List, Set, DataModel
or Array. Iterates over the Collection with a var allowing the
itemLabel and itemValue to be defined through EL.

Dropdown Examples
The following example demonstrates directly associating a
managed entity from a List of entities. The CreditCard class
represents types of credit cards and the @NamedQuery allows us
to load all CreditCard types from the data store.

4

Dropdown Examples

@Entity

@NamedQuery(name=”loadCreditCardTypes”,

 query=”select c from CreditCard as c “ +

 “order by c.description”)

public class CreditCard implements Serializable {

 @Id

 private Long id;

 private String description;

 //

}

Use of Conversation Propagation in Links and
Buttons. It is recommended that you limit the
use of conversation propagation for links and

buttons to simply choosing whether or not to propagate the
current conversation. Propagating the conversation is as
simple as ensuring the conversationId is sent with the
request. Propagation of none leaves the current conversation
by not passing the conversationId. Potential maintenance
difficulties can arise when beginning or ending a conversation
in a link or button as this does not provide a clear delineation
of conversational boundaries.

Hot
Tips

JSF Component Tags, continued

The Booking class is then be defined with a @ManyToOne
reference to the CreditCard entity.
Dropdown Examples

@Entity

public class Booking implements Serializable {

 //

 @ManyToOne

 @JoinColumn(name=”CC_ID”)

 private CreditCard creditCard;

 public CreditCard getCreditCard() {

 return creditCard;

 }

 public void setCreditCard(CreditCard creditCard) {

 this.creditCard = creditCard;

 }

 //

}

In order to load the list of credit card types, the Booking
Action can define an @Factory method which initializes the list
of CreditCard entities in the conversation context.

Dropdown Examples

@Name(“bookingAction”)

@Scope(CONVERSATION)

public class BookingAction implements Serializable {

 //

 @In private EntityManager entityManager;

 @Factory(“creditCardTypes”)

 public List<CreditCard> loadCreditCardTypes() {

 return entityManager

 .createNamedQuery(“loadCreditCardTypes”)

 .getResultList();

 }

 //

}

The method simply uses the named query we defined
previously to load the entities from the current Entity-
Manager instance. Note that our Seam-managed Persistence
Context (SMPC) is named entityManager. If your SMPC is
named something other than entityManager, you will have to
configure the EntityConverter in components.xml (see the UI
Namespace).

Finally, we can define a JSF <h:selectOneMenu> component
which simply binds directly to the creditCard attribute of the
current booking instance.

What if you want to exit, begin, or end a conversation context
from a button click? The following example shows a button
that exits the current conversation context.

The #{creditCardTypes} are loaded into the conversation
context from the @Factory method we defined previously.
The <s:selectItems> component allows us to iterate over
the list of CreditCard entities and display the description by
referencing the type variable. The <s:convertEntity> tag
ensures that the user selection is converted to an entity for
association with the booking instance.

Simplifying Validation
When using Seam you can define validations directly on your
entity beans that behave like JSF validators. These bean
validators are provided by the Hibernate Validator framework

Dropdown Examples

<h:selectOneMenu id=”creditCard”

 value=”#{booking.creditCard}” required=”true”>

 <s:selectItems noSelectionLabel=””

 var=”type” value=”#{creditCardTypes}”

 itemLabel=”#{type.description}” />

 <s:convertEntity />

</h:selectOneMenu>

http://www.refcardz.com
http://www.dzone.com

 tech facts at your fingertips

DZone, Inc. | www.dzone.com

JSF Component Tags, continued JSF Component Tags, continued

Tag Description

<s:validate> Triggers entity bean validations for the tagged component on a
form submission.

<s:validateAll> Triggers entity bean validations for all components embedded
within this tag on a form submission.

Validation Examples

@Entity

public class Booking {

 @Length(min=16, max=16,

 message=”Credit card number must be 16 digits long”)

 @Pattern(regex=”\\d*”,

 message=”Credit card number must be numeric”)

 private String creditCardNumber;

 public Booking() {}

Validation Examples

<div class=”entry”>

 <div class=”label”>

 Credit Card #:

 </div>

 <div class=”input”>

 <h:inputText id=”creditCard”

 value=”#{booking.creditCardNumber}”>

 <s:validate />

 </h:inputText>

 <s:message id=”message”

 styleClass=”error errors” />

 </div>

</div>

5

Keep validations DRY by defining them only once.
The Hibernate Validator framework allows you to
keep your validations DRY (Don’t Repeat Yourself)
by only defining them once in the entity. Through

hooks with Hibernate these validations are enforced at persist-
time and with the JSF integration provided by Seam are also
enforced in the UI. When placed in entities, validations can be
reused by other JSFpages, services, or even other applications
avoiding repetitive logic.

Hot
Tips

Formatting
While validation becomes simple with Seam, standard JSF
validation messages are not very flexible. Although you can

Tag Description

<s:decorate> “Decorate” a JSF input field when validation fails or when
required=”true” is set using a Facelets template.

<s:label> “Decorate” a JSF input field with the label. The label is placed inside
the HTML <label> tag, and is associated with the nearest JSF input
component.

<s:message> “Decorate” a JSF input field with the validation error message
associated with that field.

<s:div> Render an HTML <div>. Allows the <div> to be optionally
rendered through the rendered attribute.

<s:span> Render an HTML . Allows the to be optionally
rendered through the rendered attribute.

<s:fragment> A non-rendering component useful for optionally rendering its children
through the rendered attribute.

Formatting Examples
To use a Seam decorator, you first define how the
decorator behaves using special named JSF facets. The
beforeInvalidField facet defines what to display in front
of the invalid field; the afterInvalidField facet defines
what to display after the invalid field, and the <s:message>
tag shows the error message for the input field; and the
aroundInvalidField facet defines a span or div element that
encloses the invalid field and the error message. You also can
use the aroundField facet to decorate the appearance of valid
(or initial) input fields.

Validation Examples
The Seam Booking example allows a user to enter her credit
card number while booking a hotel. Credit card numbers
have a common pattern and should be validated on input.
The following example demonstrates how we can apply these
restrictions using Hibernate Validator annotations:

The @Length annotation restricts the String length to 16
characters while the @Pattern annotation specifies a regular
expression restricting the String to digits only. Once these
annotations are added to the entity, we can trigger them as
validations during the JSF validations phase.
Simply embedding the <s:validate> tag within the
<h:inputText> component ensures the validation is triggered.
If an invalid credit card number is input, the user will be
presented with the message defined in the annotation.

Formatting Examples

<f:facet name=”beforeInvalidField”>

 <h:graphicImage styleClass=”errorImg”value=”error.png”/>

</f:facet>

<f:facet name=”afterInvalidField”>

 <s:message/>

</f:facet>

<f:facet name=”aroundInvalidField”>

 <s:span styleClass=”error”/>

</f:facet>

(http://validatior.hibernate.org), but with Seam can be
triggered as JSF validations.

Validation Tags

assign CSS classes to customize the look of the error message
itself, you cannot alter the appearance of the input field that
contains the invalid input. The following formatting tags allow
you to decorate invalid fields with styles and messages. In
addition to validation message formatting Seam provides
formatting components for applying labels directly to JSF
input fields, optionally rendering HTML <div> and tags,
and optionally rendering page fragments.

Now you can simply enclose each input field in a pair of
<s:decorate> tags as shown below:

Formatting Examples

<s:validateAll>

 <s:decorate>

 <h:inputText value=”#{booking.creditCardNumber}”/>

 </s:decorate>

</s:validateAll>

The UI Namespace
Schema URI
http://jboss.com/products/seam/ui

Schema XSD
http://jboss.com/products/seam/ui-2.1.xsd

As you have seen, the <s:convertEntity/> tag provides the
ability to convert entities to and from dropdown selections.
In most cases this is as simple as defining <s:convertEntity>
within the dropdown, but there are cases where this needs to
be customized. The UI namespace allows you to configure

http://www.refcardz.com
http://www.dzone.com

 Design PatternsBy Jason McDonald

CONTENTS INCLUDE:
n	 Chain of Responsibility

n	 Commandn	 Interpretern	 Iterator
n	 Mediatorn	 Observern	 Template Method and more...

DZone, Inc. | www.dzone.com

D
e

si
g

n
 P

at
te

rn
s

w

w
w

.d
zo

n
e.

co
m

 G

e
t

M
o

re
 R

e
fc

ar
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#8

Brought to you by...

Inspired by the
GoF Bestseller

This Design Patterns refcard provides a quick reference to the

original 23 Gang of Four (GoF) design patterns, as listed in

the book Design Patterns: Elements of Reusable Object-

Oriented Software. Each pattern includes class diagrams,

explanation, usage information, and a real world example.

Chain of Responsibility, continued

Object Scope: Deals with object relationships that can

be changed at runtime.Class Scope: Deals with class relationships that can be

changed at compile time.C Abstract Factory
S Adapter

S Bridge
C Builder

B Chain of Responsibility
B Command

S Composite

S Decorator
S Facade

C Factory MethodS Flyweight
B Interpreter

B Iterator
B Mediator

B Memento

C Prototype
S Proxy

B Observer
C Singleton

B State
B Strategy

B Template MethodB Visitor

ABOUT DESIGN PATTERNS

Creational Patterns: Used to construct objects such

that they can be decoupled from their implementing

system.
Structural Patterns: Used to form large object

structures between many disparate objects.

Behavioral Patterns: Used to manage algorithms,

relationships, and responsibilities between objects.

CHAIN OF RESPONSIBILITY Object Behavioral

COMMAND
 Object Behavioral

successorClient <<interface>>Handler
+handlerequest()

ConcreteHandler 1+handlerequest() ConcreteHandler 2+handlerequest()
Purpose Gives more than one object an opportunity to handle a request by linking

receiving objects together.

Use
When

n	Multiple objects may handle a request and the handler doesn’t have to

 be a specific object.
n	A set of objects should be able to handle a request with the handler

 determined at runtime.
n	A request not being handled is an acceptable potential outcome.

Example Exception handling in some languages implements this pattern. When an

exception is thrown in a method the runtime checks to see if the method

has a mechanism to handle the exception or if it should be passed up the

call stack. When passed up the call stack the process repeats until code to

handle the exception is encountered or until there are no more parent

objects to hand the request to.

Receiver

Invoker

Command+execute()

Client

ConcreteCommand
+execute()

Purpose Encapsulates a request allowing it to be treated as an object. This allows

the request to be handled in traditionally object based relationships such

as queuing and callbacks.
Use
When

n	You need callback functionality.

n	Requests need to be handled at variant times or in variant orders.

n	A history of requests is needed.

n	The invoker should be decoupled from the object handling the invocation.

Example Job queues are widely used to facilitate the asynchronous processing

of algorithms. By utilizing the command pattern the functionality to be

executed can be given to a job queue for processing without any need

for the queue to have knowledge of the actual implementation it is

invoking. The command object that is enqueued implements its particular

algorithm within the confines of the interface the queue is expecting.

Upcoming Titles
RichFaces
Agile Software Development
BIRT
JSF 2.0
Adobe AIR

Most Popular
Spring Configuration
jQuery Selectors
Windows Powershell
Dependency Injection with EJB 3
Netbeans IDE JavaEditor

“Exactly what busy developers need:
simple, short, and to the point.”

James Ward, Adobe Systems

Download Now

Refcardz.com

Professional Cheat Sheets You Can Trust

 tech facts at your fingertips

DZone, Inc.
1251 NW Maynard
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2009 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher. Reference: Version 1.0

$7
.9

5

DZone communities deliver over 4 million pages each month to

more than 2 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheatsheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

Jacob Orshalick is an independent software
consultant, open source enthusiast, and the owner
of Focus IT Solutions, an independent software
consulting firm. He has a Masters degree in
Software Engineering from The University of Texas
at Dallas and has eight years of development

experience in the retail, financial, and telecommunications
industries. You can also find Jacob writing about Seam in his blog.

Blog: http://solutionsfit.com/blog/

Projects: Committer to Seam Framework

ABOUT THE AUTHOR
The Seam Framework has simplified Java enter-
prise Web development forthousands of develop-
ers and significantly influenced the broader Java
Enterprise Edition platform. Now, the authors of
the leading guide to Seam development have sys-
tematically updated it to reflect the major improve-

ments and new features introduced with Seam 2.x. The book also
introduces Web Beans (JSR-299), the future core of Seam that will
transform Java EE Web development.

JSF Component Tags, continued

UI Namespace Diagram

UI Namespace Elements

Tag Description

<ui:entity-
converter>

Allows a custom EntityConverter to be defined which is
useful if more than one EntityManager is being used.

<ui:jpa-entity-
loader>

Configures a Seam-Managed Persistence Context (SMPC) named
something other than entityManager.

<ui:hibernate-
entity-loader>

Allows a Managed Hibernate Session to be configured for use
with the EntityConverter. By default assumes the component
name session.

JSF Component Tags, continued

UI Namespace Examples

<components xmlns=

 ”http://jboss.com/products/seam/components”

 xmlns:persistence=

 “http://jboss.com/products/seam/persistence”

 xmlns:ui=”http://jboss.com/products/seam/ui”

 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

 xsi:schemaLocation=

 “http://jboss.com/products/seam/persistence

 http://jboss.com/products/seam/persistence-2.1.xsd

 http://jboss.com/products/seam/ui

 http://jboss.com/products/seam/ui-2.1.xsd

 http://jboss.com/products/seam/components

 http://jboss.com/products/seam/components-2.1.xsd”>

 <persistence:managed-persistence-context name=”em”

 auto-create=”true”persistence-unit-jndi-name=

 “java:/EMFactories/bookingEntityManagerFactory”/>

 <ui:jpa-entity-loader entity-manager=”#{em}” />

</components>

UI Namespace Examples
The following example configures the EntityConverter with a
custom EntityManager name:

As you can see, the Seam-managed Persistence Context is
given the name em. This is simply referenced through an EL
expression in the jpa-entity-loader configuration.

the EntityConverter component in the following cases:

 nJPA is the persistence provider and your Seam-Managed
Persistence Context (SMPC) is named something other than
EntityManager
 nHibernate is being used directly as the persistence provider
 nYou would like to use more than one EntityManager with
the EntityConverter

In each of these cases, it is necessary to configure the Entity-
Converter component using the UI namespace.

<components> <ui:jpa-entity-loader>

<ui:hibernate-entity-loader>

<ui:entity-converter>

RECOMMENDED BOOK

BUY NOW
books.dzone.com/books/seam-framework

6

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://books.dzone.com/books/seam-framework
http://books.dzone.com/books/seam-framework

