

DZone, Inc. | www.dzone.com

Scalability &
High Availability

By Eugene Ciurana

Overview

CONTENTS INCLUDE:
n	 Overview
n	 Implementing Scalable Systems
n	 Caching Strategies
n	 Clustering
n	 Redundancy and Fault Tolerance
n	 Hot Tips and more...

S
ca

la
b

il
it

y
&

 H
ig

h
 A

va
ila

b
ili

ty

w

w
w

.d
zo

n
e.

co
m

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#43

Scalability, High Availability, and Performance
The terms scalability, high availability, performance, and
mission-critical can mean different things to different
organizations, or to different departments within an
organization. They are often interchanged and create
confusion that results in poorly managed expectations,
implementation delays, or unrealistic metrics. This Refcard
provides you with the tools to define these terms so that
your team can implement mission-critical systems with well-
understood performance goals.

Scalability
It’s the property of a system or application to handle bigger
amounts of work, or to be easily expanded, in response to
increased demand for network, processing, database access or
file system resources.

Horizontal scalability
A system scales horizontally, or out, when it’s expanded by
adding new nodes with identical functionality to existing
ones, redistributing the load among all of them. SOA
systems and web servers scale out by adding more servers to
a load-balanced network so that incoming requests may be
distributed among all of them. Cluster is a common term for
describing a scaled out processing system.

Scalability, continued

Node Node Node Node

Load Balancer

Node Node Node

Load Balancer

Scales

out

Figure 1 - Clustering

Dual Core
Dual Processor

32 MB RAM

Virtual Node 0

Virtual Node 3

Virtual Node 2

Virtual Node 1

Dual Core

Single Processor

16 MB RAM

Virtual Node 0

Virtual Node 2

Virtual Node 1

Scales up

Figure 2 - Virtualization

High Availability
Availability describes how well a system provides useful
resources over a set period of time. High availability
guarantees an absolute degree of functional continuity within
a time window expressed as the relationship between uptime
and downtime.

A = 100 – (100*D/U), D ::= unplanned downtime, U ::= uptime;
D, U expressed in minutes

Uptime and availability don’t mean the same thing. A
system may be up for a complete measuring period, but
may be unavailable due to network outages or downtime in
related support systems. Downtime and unavailability are
synonymous.

Vertical scalability
A system scales vertically, or up, when it’s expanded by adding
processing, main memory, storage, or network interfaces to
a node to satisfy more requests per system. Hosting services
companies scale up by increasing the number of processors or

the amount of main memory to host more virtual servers in the
same hardware.

Figure 1: Clustering

Figure 2: Virtualization

40+ Professional
Cheat Sheets.
Choose your
favorite topics.

Design Patterns
By Jason McDonald

CONTENTS INCLUDE:
n	 Chain of Responsibility
n	 Command
n	 Interpreter
n	 Iterator
n	 Mediator
n	 Observer
n	 Template Method and more...

DZone, Inc. | www.dzone.com

D
e

si
g

n
 P

at
te

rn
s

w

w
w

.d
zo

n
e

.c
o

m

 G
e

t
M

o
re

 R
e

fc
ar

z!
 V

is
it

 r
e

fc
ar

d
z.

co
m

#8 Brought to you by...

Inspired
by the
GoF

Bestseller

This Design Patterns refcard provides a quick reference to the
original 23 Gang of Four (GoF) design patterns, as listed in
the book Design Patterns: Elements of Reusable Object-
Oriented Software. Each pattern includes class diagrams,
explanation, usage information, and a real world example.

Chain of Responsibility, continued

Object Scope: Deals with object relationships that can
be changed at runtime.

Class Scope: Deals with class relationships that can be
changed at compile time.

C Abstract Factory

S Adapter

S Bridge

C Builder

B Chain of
 Responsibility

B Command

S Composite

S Decorator

S Facade

C Factory Method

S Flyweight

B Interpreter

B Iterator

B Mediator

B Memento

C Prototype

S Proxy

B Observer

C Singleton

B State

B Strategy

B Template Method

B Visitor

ABOUT DESIGN PATTERNS

Creational Patterns: Used to construct objects such
that they can be decoupled from their implementing
system.

Structural Patterns: Used to form large object
structures between many disparate objects.

Behavioral Patterns: Used to manage algorithms,
relationships, and responsibilities between objects.

CHAIN OF RESPONSIBILITY Object Behavioral

COMMAND Object Behavioral

successor

Client
<<interface>>

Handler

+handlerequest()

ConcreteHandler 1

+handlerequest()

ConcreteHandler 2

+handlerequest()

Purpose Gives more than one object an opportunity to handle a request by linking
receiving objects together.

Use
When

n	Multiple objects may handle a request and the handler doesn’t have to
 be a specific object.
n	A set of objects should be able to handle a request with the handler
 determined at runtime.
n	A request not being handled is an acceptable potential outcome.

Example Exception handling in some languages implements this pattern. When an
exception is thrown in a method the runtime checks to see if the method
has a mechanism to handle the exception or if it should be passed up the
call stack. When passed up the call stack the process repeats until code to
handle the exception is encountered or until there are no more parent
objects to hand the request to.

Receiver

Invoker

Command
+execute()

Client

ConcreteCommand
+execute()

Purpose Encapsulates a request allowing it to be treated as an object. This allows
the request to be handled in traditionally object based relationships such
as queuing and callbacks.

Use
When

n	You need callback functionality.
n	Requests need to be handled at variant times or in variant orders.
n	A history of requests is needed.
n	The invoker should be decoupled from the object handling the invocation.

Example Job queues are widely used to facilitate the asynchronous processing
of algorithms. By utilizing the command pattern the functionality to be
executed can be given to a job queue for processing without any need
for the queue to have knowledge of the actual implementation it is
invoking. The command object that is enqueued implements its particular
algorithm within the confines of the interface the queue is expecting.

Cheat Like a Pro

Refcardz.com

Spring Configuration
jQuery Selectors
Windows Powershell
EJB 3
Netbeans IDE JavaEditor
Getting Started with Eclipse
Very First Steps in Flex
And Many More...

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com
http://refcardz.dzone.com/refcardz/design-patterns
http://refcardz.com
http://refcardz.com

DZone, Inc. | www.dzone.com

High Availability, continued

2
Scalability & High Availability

Implementing Scalable Systems, continued

Availability % Downtime in Minutes Downtime per Year Vendor Jargon

90 52,560.00 36.5 days one nine

99 5,256.00 4 days two nines

99.9 525.60 8.8 hours three nines

99.99 52.56 53 minutes four nines

99.999 5.26 5.3 minutes five nines

99.9999 0.53 32 seconds six nines

Measuring Availability
Vendors define availability as a given number of “nines” like
in Table 1, which also describes the number of minutes or
seconds of estimated downtime in relation to the number of
minutes in a 365-day year, or 525,600, making U a constant for
their marketing purposes.

Table 1: Availability as a Percentage of Total Yearly Uptime

Analysis
High availability depends on the expected uptime defined for
system requirements; don’t be misled by vendor figures. The
meaning of having a highly available system and its measurable
uptime are a direct function of a Service Level Agreement.
Availability goes up when factoring planned downtime, such as
a monthly 8-hour maintenance window.

The cost of each additional nine of availability can grow
exponentially. Availability is a function of scaling the systems
up or out and implementing system, network, and storage
redundancy.

Service Level Agreement (SLA)
SLAs are the negotiated terms that outline the obligations of
the two parties involved in delivering and using a system, like:

 • System type (virtual or dedicated servers, shared hosting)
 • Levels of availability
 • Minimum
 • Target
 • Uptime
 • Network
 • Power
 • Maintenance windows
 • Serviceability
 • Performance and metrics
 • Billing

SLAs can bind obligations between two internal organizations
(e.g. the IT and e-commerce departments), or between the
organization and an outsourced services provider. The SLA
establishes the metrics for evaluating the system performance,
and provides the definitions for availability and the scalability
targets. It makes no sense to talk about any of these topics
unless an SLA is being drawn or one already exists.

Implementing Scalable Systems

SLAs determine whether systems must scale up or out. They
also drive the growth timeline. A stock trading system must
scale in real-time within minimum and maximum availability
levels. An e-commerce system, in contrast, may scale in during
the “slow” months of the year, and scale out during the retail
holiday season to satisfy much larger demand.

Scheduling rules are algorithms for determining which server
must service a request. Web applications and services are
balanced by following round robin scheduling rules. Caching
pools are balanced by applying frequency rules and expiration
algorithms. Applications where stateless requests arrive with
a uniform probability for any number of servers may use a
pseudo-random scheduler. Applications like music stores,
where some content is statistically more popular, may use
asymmetric load balancers to shift the larger number popular
requests to higher performance systems, serving the rest of the
requests from less powerful systems or clusters.

Persistent Load Balancers
Stateful applications require persistent or sticky load
balancing, where a consumer is guaranteed to maintain a
session with a specific server from the pool. Figure 4 shows a
sticky balancer that maintains sessions from multiple clients.
Figure 5 shows how the cluster maintains sessions by sharing
data using a database.

Node

192.168.202.55

Node

192.168.202.66

Node

192.168.202.67

Node

192.168.202.69

Load Balancer

74.0.125.28

Rn
R = request
n = sequence number

Consumer

R2R3R1

Figure 3 - Load Balancer

Load Balancing
Load balancing is a technique for minimizing response time
and maximizing throughput by spreading requests among two
or more resources. Load balancers may be implemented in
dedicated hardware devices, or in software. Figure 3 shows
how load-balanced systems appear to the resource consumers
as a single resource exposed through a well-known address.
The load balancer is responsible for routing requests to
available systems based on a scheduling rule.

Node
192.168.202.55 Node

192.168.202.66

Node
192.168.202.67

Node
192.168.202.69

Sticky Load
Balancer

74.0.125.28

Consumer ConsumerConsumer

Figure 4 - Sticky Load Balancer

Common Features of a Load Balancer
Asymmetric load distribution – assigns some servers to handle
a bigger load than others
 • Content filtering – inbound or outbound
 • Distributed Denial of Service (DDoS) attack protection
 • Firewalling
 • Payload switching – send requests to different servers
 based on URI, port, and/or protocol
 • Priority activation – adds standing by servers to the pool

Figure 3: Load Balancer

Figure 4: Sticky Load Balancer

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

3
Scalability & High Availability

Load Balancing, continued

Caching Strategies

Stateful load balancing techniques require data sharing among
the service providers. Caching is a technique for sharing
data among multiple consumers or servers that are expensive
to either compute or fetch. Data are stored and retrieved
in a subsystem that provides quick access to a copy of the
frequently accessed data.

Caches are implemented as an indexed table where a unique
key is used for referencing some datum.
Consumers access data by checking
(hitting) the cache first and retrieving
the datum from it. If it’s not there
(cache miss), then the costlier retrieval
operation takes place and the consumer
or a subsystem inserts the datum to the
cache.

Write Policy
The cache may become stale if the
backing store changes without updating
the cache. A write policy for the cache
defines how cached data are refreshed.
Some common write policies include:
 • Write-through: every write to the
 cache follows a synchronous write to
 the backing store
 • Write-behind: updated entries are
 marked in the cache table as dirty
 and it’s updated only when a dirty
 datum is requested.
 • No-write allocation: only read
 requests are cached under the
 assumption that the data won’t
 change over time but it’s expensive
 to retrieve

Caching Strategies, continued

Node

192.168.202.55

Node

192.168.202.66

Node

192.168.202.67

Node

192.168.202.69

Load Balancer

74.0.125.28

Consumer

Session

Data

Figure 5 - Database Sessions

Application Caching
 • Implicit caching happens when there is little or no
 programmer participation in implementing the caching.
 The program executes queries and updates using its native
 API and the caching layer automatically caches the
 requests independently of the application. Example:
 Terracotta (http://www.terracotta.org).

 • Explicit caching happens when the programmer
 participates in implementing the caching API and may also
 implement the caching policies. The program must import
 the caching API into its flow in order to use it. Examples:
 memcached (http://www.danga.com/memcached) and
 Oracle Coherence (http://coherence.oracle.com).

In general, implicit caching systems are specific to a platform
or language. Terracotta, for example, only works with Java and
JVM-hosted languages like Groovy. Explicit caching systems
may be used with many programming languages and across
multiple platforms at the same time. memcached works with
every major programming language, and Coherence works with
Java, .Net, and native C++ applications.

Web Caching
Web caching is used for storing documents or portions of
documents (‘particles’) to reduce server load, bandwidth usage
and lag for web applications. Web caching can exist on the
browser (user cache) or on the server, the topic of this section.
Web caches are invisible to the client may be classified in any
of these categories:

 • Web accelerators: they operate on behalf of the
 server of origin. Used for expediting access
 to heavy resources, like media files. Content

distribution networks (CDNs) are an
example of web acceleration caches;
Akamai, Amazon S3, Nirvanix are
examples of this technology.

• Proxy caches: they serve requests to a
 group of clients that may all have
 access to the same resources. They
 can be used for content filtering and
 for reducing bandwidth usage. Squid,
 Apache, ISA server are examples
 of this technology.

Distributed Caching
Caching techniques can be implemented
across multiple systems that serve
requests for multiple consumers and
from multiple resources. These are
known as distributed caches, like the
setup in Figure 7. Akamai is an example
of a distributed web cache. memcached
is an example of a distributed application
cache.

 • Rate shaping – ability to give different priority to different
 traffic
 • Scripting – reduces human interaction by implementing
 programming rules or actions
 • SSL offloading – hardware-assisted encryption frees web
 server resources
 • TCP buffering and offloading – throttle requests to servers
 in the pool

Figure 5: Database Sessions

Begin

Fetch

datum from

cache

datum is

None

Query

datum from

database

Add datum to

cache

Use datum

in app

End

yes

no

Query?

Update

datum in

database

Invalidate cache

Add or update

datum to cache

query update

Figure 6 - Caching Usage Pattern

Figure 6: Caching Usage Pattern

http://www.dzone.com
http://www.refcardz.com
http://www.terracotta.org
http://www.danga.com/memcached
http://coherence.oracle.com

DZone, Inc. | www.dzone.com

4
Scalability & High Availability

Clustering

A cluster is a group of computer systems that work together
to form what appears to the user as a single system. Clusters
are deployed to improve services availability or to increase
computational or data manipulation performance. In terms
of equivalent computing power, a cluster is more cost-
effective than a monolithic system with the same performance
characteristics.

The systems in a cluster are interconnected over high-speed
local area networks like gigabit Ethernet, fiber distributed data
interface (FDDI), Infiniband, Myrinet, or other technologies.

Load-Balancing Cluster (Active/Active): Distribute the load
among multiple back-end, redundant nodes. All nodes in the
cluster offer full-service capabilities to the consumers and are
active at the same time.

Load Balanced Conguration or Datagram

Node

192.168.202.55

Node

192.168.202.66

Node

192.168.202.67

Node

192.168.202.69

Load Balancer

74.0.125.28

Consumer

Cache 0 Cache 1 Cache 2 Cache 3

Database

Figure 7 - Distributed Cache

Node

192.168.202.55

Node

192.168.202.66

Node

192.168.202.67

Node

192.168.202.69

Load Balancer

74.0.125.28

Consumer

Figure 8 - Load Balancing Cluster

Active Node
192.168.202.55

Failover Node

192.168.202.69

Router
74.0.125.28

Consumer

State Data
Cache

Failover

Database
Database

heartbeat

replication or clustered database

Figure 9 - High Availability Cluster

High Availability Cluster(Active/Passive): Improve services
availability by providing uninterrupted service through
redundant nodes that eliminate single points of failure.
High availability clusters require two nodes at a minimum, a
“heartbeat” to detect that all nodes are ready, and a routing
mechanism that will automatically switch traffic if the main
node fails.

Node Node Node Node

Load Balancer

Node Node Node Node

Load Balancer

Consumer

Master

Figure 10 - Grid

Grid: Process workloads defined as independent jobs that
don’t require data sharing among processes. Storage or
network may be shared across all nodes of the grid, but
intermediate results have no bearing on other jobs progress
or on other nodes in the grid, such as a Cloudera Map Reduce
cluster (http://www.cloudera.com).

Clustering, continued

Node Node Node Node

Node Node Node Node

Consumer

Master

Figure 11- Computational Cluster

Computational Clusters: Exeute processes that require raw
computational power instead of executing transactional
operations like web or database clusters. The nodes are tightly
coupled, homogeneous, and in close physical proximity. They
often replace supercomputers.

Redundancy and fault tolerance

Redundant system design depends on the expectation that
any system component failure is independent of failure in the
other components.

Fault tolerant systems continue to operate in the event of
component or subsystem failure; throughput may decrease but
overall system availability remains constant. Faults in hardware
or software are handled through component redundancy. Fault
tolerance requirements are derived from SLAs. The implemen-
tation depends on the hardware and software components,
and on the rules by which they interact.

Caching Strategies, continued

Figure 7: Distributed Cache

Figure 8: Load Balancing Cluster

Figure 9: High Availability Cluster

Figure 10: Grid

Figure 11: Computational Clusters

http://www.dzone.com
http://www.refcardz.com
http://www.cloudera.com

DZone, Inc. | www.dzone.com

5
Scalability & High Availability

Redundancy and Fault Tolerance, continued Cloud Computing, continued

Some stateful applications may only scale up; the A/P cluster
in Figure 13 provides uninterrupted service and disaster
recovery for such an application. A/A configurations provide
failure transparency. A/P configurations may provide failure
transparency at a much higher cost because automatic failure
detection and reconfiguration are implemented through a
feedback control system, which is more expensive and trickier
to implement.

Enterprise systems most commonly implement A/P fault
tolerance and recovery through fault transparency by diverting
services to the passive system and bringing it on-line as soon
as possible. Robotics and life-critical systems may implement
probabilistic, linear model, fault hiding, and optimization
control systems instead.

Cloud Computing
Cloud computing describes applications running on
distributed, computing resources owned and operated by a
third-party.

End-user apps are the most common examples. They utilize
the Software as a Service (SaaS) and Platform as a Service
(PaaS) computing models.

Fault Tolerance SLA Requirements
 • No single point of failure – redundant components ensure
 continuous operation and allow repairs without disruption
 of service
 • Fault isolation – problem detection must pinpoint the
 specific faulty component
 • Fault propagation containment – faults in one component
 must not cascade to others
 • Reversion mode – set the system back to a known state

Redundant clustered systems can provide higher availability,
better throughput, and fault tolerance. The A/A cluster
in Figure 12 provides uninterrupted service for a scalable,
stateless application.

Cloud Services Types
 • Web services – Salesforce
 com, USPS, Google Maps
 • Service platforms – Google App Engine, Amazon Web
 Services (EC2, S3, Cloud Front), Nirvanix, Akamai,
 MuleSource

Fault Detection Methods
Fault detection methods must provide enough information
to isolate the fault and execute automatic or assisted failover
action. Some of the most common fault detection methods
include:

 • Built-in Diagnostics
 • Protocol Sniffers
 • Sanity Checks
 • Watchdog Checks

Criticality is defined as the number of consecutive faults
reported by two or more detection mechanisms over a fixed
time period. A fault detection mechanism is useless if it
reports every single glitch (noise) or if it fails to report a real
fault over a number of monitoring periods.

System Performance

Performance refers to the system throughput under a
particular workload for a defined period of time. Performance
testing validates implementation decisions about the system
throughput, scalability, reliability, and resource usage.
Performance engineers work with the development and
deployment teams to ensure that the system’s non-functional
requirements like SLAs are implemented as part of the system
development lifecycle. System performance encompasses
hardware, software, and networking optimizations.

Hot
Tip

Performance testing efforts must begin at the
same time as the development project and
continue through deployment

Node

192.168.202.55

Node

192.168.202.66

Node

192.168.202.67

Node

192.168.202.69

Load Balancer

74.0.125.28

Consumer

Replacement
Node

192.168.202.53

Figure 12 - A/A Fault Tolerance and RecoveryFigure 12: A/A Full Tolerance and Recovery

Figure 13: A/P Fault Tolerance and Recovery

Google App Engine
http://www.company.com

User

services.company.com

Node Node Node Node

Legacy Back-end

Enterprise

Database

Enterprise Service Bus

Node Node Node Node

Node Node Node Node

Datastore Datastore

Firewall

Amazon S3
http://media.company.com

PNG PNG PNG PNG

PNG PNG PNG PNG

Figure 15 - Cloud Computing ConfigurationFigure 14: Cloud Computing Configuration

http://www.dzone.com
http://www.refcardz.com

Design Patterns

By Jason McDonald

CONTENTS INCLUDE:

n	 Chain of Responsibility

n	 Command

n	 Interpreter

n	 Iterator

n	 Mediator

n	 Observer

n	 Template Method and more...

DZone, Inc. | w
ww.dzone.com

D
es

ig
n

Pa
tt

er
ns

 w

w
w

.d
zo

ne
.c

om

 G
et

 M
o

re
 R

ef
ca

rz
!

V
is

it
 r

ef
ca

rd
z.

co
m

#8

Brought to you by...

Inspired

by the

GoF

Bestseller

This Design Patterns refcard provides a quick reference to the

original 23 Gang of Four (GoF) design patterns, as listed in

the book Design Patterns: Elements of Reusable Object-

Oriented Software. Each pattern includes class diagrams,

explanation, usage information, and a real world example.

Chain of Responsibility
, continued

Object Scope: Deals with object relationships that can

be changed at runtime.

Class S
cope: Deals with class relationships that can be

changed at compile time.

C Abstract Factory

S Adapter

S Bridge

C Builder

B Chain of

Responsibility

B Command

S Composite

S Decorator

S Facade

C Factory Method

S Flyweight

B Interpreter

B Iterator

B Mediator

B Memento

C Prototype

S Proxy

B Observer

C Singleton

B State

B Strategy

B Template Method

B Visito
r

ABOUT DESIGN PATTERNS

Creational Patterns: U
sed to construct objects such

that they can be decoupled from their im
plementing

system.

Structural Patterns: U
sed to form large object

structures between many disparate objects.

Behavioral Patterns: U
sed to manage algorithms,

relationships, and responsibilitie
s between objects.

CHAIN OF RESPONSIBILITY

 O
bject Behavioral

COMMAND

 O

bject Behavioral

successor

Client

<<interface>>

Handler

+handlerequest()

ConcreteHandler 1

+handlerequest()

ConcreteHandler 2

+handlerequest()

Purpose
Gives more than one object an opportunity to handle a request by linking

receiving objects together.

Use

When

n
	Multiple objects may handle a request and the handler doesn’t have to

 be a specific object.

n
	A set of objects should be able to handle a request with the handler

 determined at runtime.

n
	A request not being handled is an acceptable potential outcome.

Example
Exception handling in some languages implements this pattern. When an

exception is thrown in a method the runtime checks to see if th
e method

has a mechanism to handle the exception or if it
 should be passed up the

call stack. When passed up the call stack the process repeats until code to

handle the exception is encountered or until th
ere are no more parent

objects to hand the request to.

Receiver

Invoker

Command

+execute()

Client
ConcreteCommand

+execute()

Purpose
Encapsulates a request allowing it to

 be treated as an object. This allows

the request to be handled in traditionally object based relationships such

as queuing and callbacks.

Use

When

n
	You need callback functionality.

n
	Requests need to be handled at variant tim

es or in variant orders.

n
	A history of requests is needed.

n
	The invoker should be decoupled from the object handling the invocation.

Example
Job queues are widely used to facilitate the asynchronous processing

of algorithms. By utilizing the command pattern the functionality to be

executed can be given to a job queue for processing without any need

for the queue to have knowledge of the actual implementation it is

invoking. The command object that is enqueued implements its particular

algorithm within the confines of the interface the queue is expecting.

Upcoming Titles
RichFaces
Agile Software Development
BIRT
JSF 2.0
Adobe AIR
BPM&BPMN
Flex 3 Components

Most Popular
Spring Configuration
jQuery Selectors
Windows Powershell
Dependency Injection with EJB 3
Netbeans IDE JavaEditor
Getting Started with Eclipse
Very First Steps in Flex

“Exactly what busy developers need:
simple, short, and to the point.”

James Ward, Adobe Systems

Download Now

Refcardz.com

Professional Cheat Sheets You Can Trust

DZone, Inc.
1251 NW Maynard
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2009 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher. Reference: Developing with Google App Engine, Eugene Ciurana, APress, 2009

Version 1.0

$7
.9

5

DZone communities deliver over 4 million pages each month to

more than 2 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheatsheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

6
Scalability & High Availability

System Performance, continued System Performance, continued

RECOMMENDED BOOKABOUT THE AUTHOR

Eugene Ciurana
Eugene Ciurana is an open-source evangelist who

specializes in the design and implementation of mission-

critical, high-availability large scale systems. As Director

of Systems Infrastructure, he and his team designed and

built a 100% SOA and cloud system that enables millions

of Internet-ready educational and handheld products and services. As chief

liaison between Walmart.com Global and the ISD Technology Council, he led

the official adoption of Linux and other open-source technologies at Walmart

Stores Information Systems Division. He’s also designed high performance

systems for major financial institutions and many Fortune 100 companies in

the United States and Europe.

Publications
n	 Developing with the Google App Engine
n	� Best Of Breed: Building High Quality Systems,

Within Budget, On Time, and Without Nonsense
n	 The Tesla Testament: A Thriller

Web site
http://eugeneciurana.com

Developing with Google App Engine

introduces Google App Engine, a platform

that provides developers and users with

the infrastructure that Google itself uses for

developing and deploying massively scalable

applications. Using Python as the primary

programming tool, Developing with Google

App Engine makes it easy to implement

scalability and high performance features like

distributed databases, clustering, stateless

applications, and sophisticated data caching.

The performance engineer’s objective is to detect bottlenecks
early and to collaborate with the development and deployment
teams on eliminating them.

System Performance Tests
Performance specifications are documented along with the
SLA and with the system design. Performance troubleshooting
includes these types of testing:
 • Endurance testing- identifies resource leaks under the
 continuous, expected load.
 • Load testing – determines the system behavior under a
 specific load.
 • Spike testing – shows how the system operates in
 response to dramatic changes in load.
 • Stress testing – identifies the breaking point for the
 application under dramatic load changes for extended
 periods of time.

Software Testing Tools
There are many software performance testing tools in the
market. Some of the best are released as open-source
software. A comprehensive list of those is available from:

http://www.opensourcetesting.org/performance.php

These include Java, native, PHP, .Net, and other languages
and platforms.

Staying Current
Do you want to know about specific projects and cases where
scalability, high availability, and performance are the hot
topic? Join the scalability newsletter:

http://eugeneciurana.com/scalablesystems

ISBN-13: 978-1-934238-46-2
ISBN-10: 1-934238-46-5

9 781934 238462

50795

BUY NOW
books.dzone.com/books/google-app-engine

http://refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.refcardz.com
http://eugeneciurana.com
http://eugeneciurana.com
http://www.opensourcetesting.org/performance.php
http://eugeneciurana.com/scalablesystems
http://books.dzone.com/books/google-app-engine

