

DZone, Inc. | www.dzone.com

JBoss RichFaces
By Nick Belaevski, Ilya Shaikovsky

Jay Balunas, and Max Katz

JB
o

ss
 R

ic
h

F
ac

e
s

 w

w
w

.d
zo

n
e.

co
m

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

What is Richfaces?

installing Richfaces

See the RichFaces Project page for the latest version- http://
www.jboss.org/jbossrichfaces/.

Add these jar files to your WEB-INF/lib directory: richfaces-
api.jar, richfaces-impl.jar, richfaces-ui.jar,

commons-beanutils.jar, commons-collections.jar,

commons-digester.jar, commons-logging.jar

RichFaces Filter
Update the web.xml file with the RichFaces filter:

RichFaces Filter

<filter>
 <display-name>RichFaces Filter</display-name>
 <filter-name>richfaces</filter-name>
 <filter-class>org.ajax4jsf.Filter</filter-class>
 </filter>
 <filter-mapping>
 <filter-name>richfaces</filter-name>
 <servlet-name>Faces Servlet</servlet-name>
 <dispatcher>REQUEST</dispatcher>
 <dispatcher>FORWARD</dispatcher>
 <dispatcher>INCLUDE</dispatcher>
 <dispatcher>ERROR</dispatcher>
 </filter-mapping>

Note
The RichFaces Filter is not needed for applications
that use Seam (http://seamframework.org)

Page setup
Configure RichFaces namespaces and taglibs in your XHTML
and JSP pages.

Facelets

xmlns:a4j=”http://richfaces.org/a4j”
xmlns:rich=”http://richfaces.org/rich”

JSP

<%@ taglib uri=”http://richfaces.org/a4j” prefix=”a4j”%>
<%@ taglib uri=”http://richfaces.org/rich” prefix=”rich”%>

Basic concepts

Sending an AJAX request
a4j:support
Sends an AJAX request based on a DHTML event supported
by the parent component. In this example, the AJAX request
will be triggered after the user types a character in the text box:

a4j:support

<h:inputText value=”#{echoBean.text}”>
 <a4j:support event=”onkeyup” action=”#{echoBean.count}”
 reRender=”echo, cnt”/>
</h:inputText>
<h:outputText id=”echo” value=”Echo: #{echoBean.text}”/>
<h:outputText id=”cnt” value=”Count: #{echoBean.textCount}”/>

a4j:support can be attached to any html tag that supports
DHTML events, such as:

a4j:support

<h:selectOneRadio value=”#{colorBean.color}”>
 <f:selectItems value=”#{colorBean.colorList}” />
 <a4j:support event=”onclick” reRender=”id” />
</h:selectOneRadio>

contents inclUDe:
n	 What is RichFaces?
n	 Basic Concepts
n	 Controlling Traffic
n	 a4j:* Tags
n	 rich:* Tags
n	 Hot Tips and more...

#44

RichFaces is a JSF component library that consists of two
main parts: AJAX enabled JSF components and the CDK
(Component Development Kit). RichFaces UI components are
divided into two tag libraries a4j: and rich:. Both tag libraries
offer out-of-the-box AJAX enabled JSF components. The CDK
is a facility for creating, generating and testing you own rich
JSF components (not covered in this card).

Hot
Tip

Use JBoss Tools for rapid project setup -
http://www.jboss.org/tools

a4j:commandButton, a4j:commandLink
Similar to h:commandButton and h:commandLink but with two
major differences. They trigger an AJAX request and allow
partial JSF component tree rendering.

The request goes through the standard JSF life cyle. During
the Render Response, only components whose client ids are
listed in the reRender attribute (echo, count) are rendered
back the the browser.

a4j:commandButton, a4j:commandLink

<h:inputText value=”#{echoBean.text}”/>
 <h:outputText id=“echo” value=“Echo: #{echoBean.text}”/>
 <h:outputText id=“cnt” value=“Count: #{echoBean.textCount}”/>
 <a4j:commandButton value=“Submit” action=“#{echoBean.count}”
 reRender=“echo, cnt”/>

RichFaces for Java EE

100+ JSF AJAX components
• Works with JSF 1.2 and JSF 2.0 (2nd half 2009)

• Works with Seam, Spring Framework

• Developed by Exadel, the creators of RichFaces and Ajax4jsf

• Contact us today to learn how we can help you
richfaces@exadel.com

Watch live demo at: livedemo.exadel.com/richfaces-demo

Download today: jboss.com/download

1.888.4EXADEL

Brought to you by...

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com
http://seamframework.org
http://www.jboss.org/tools

DZone, Inc. | www.dzone.com

Basic Concepts, continued
When the response is received, the browser DOM is updated
with the new data i.e ‘RichFaces is neat’ and ‘17’.

 a4j:commandLink works exactly the same but renders a link
instead of a button.

a4j:poll
Enables independent periodic polling of the server via an AJAX
request. Polling interval is defined by the interval attribute
and enable/disable polling is configured via enabled attribute
(true|fase).

Basic Concepts, continued

a4j:poll

public class PollBean {
 private Boolean enabled=false; // setter and getter
 public void start () {enabled = true;}
 public void stop () {enabled = false;}
 public Date getNow () {return new Date();}
}

a4j:jsFunction

a4j:jsFunction

<td onmouseover=”setdrink(‘Espresso’)”
 onmouseout=”setdrink(‘’)”>Espresso</td>
...
<h:outputText id=”drink” value=”I like #{bean.drink}” />
<a4j:jsFunction name=”setdrink” reRender=”drink”>
 <a4j:actionparam name=”param1” assignTo=”#{bean.drink}”/>
</a4j:jsFunction>

When the mouse hovers or leaves a drink, the setdrink()
JavaScript function is called. The function is defined by an
a4j:jsFunction tag which sets up the AJAX call. It can call
listeners and perform partial page rendering. The drink
parameter is passed to the server via a4j:actionparam tag.

a4j:push
a4j:push works similarly to a4j:poll; however, in order to
check the presence of a message in a queue, it only makes a
minimal HEAD request(ping-like) to the server without invoking
the JSF life cycle. If a message exists, a sandard JSF request is
sent to the server.

Partial view (page) rendering
There are two ways to perform partial view rendering when
AJAX requests return.

ReRender attribute
Most RichFaces components support the reRender attribute to
define the set of client ids to reRender.

It’s also possible to point to parent components to rerender all
child components:
<a4j:commandLink value=”Submit” reRender=”panel” />
<h:panelGrid id=”panel”>
 <h:outputText />
 <h:dataTable>...</h:dataTable>
</h:panelGrid>

2

a4j:poll

<a4j:poll id=”poll” interval=”500” enabled=”#{pollBean.enabled}”
reRender=”now” />
 <a4j:commandButton value=”Start” reRender=”poll”
 action=”#{pollBean.start}” />
 <a4j:commandButton value=”Stop” reRender=”poll”
 action=”#{pollBean.stop}” />
 <h:outputText id=”now” value=”#{pollBean.now}” />

<a4j:commandLink reRender=”#{bean.renderControls}”/>

Attribute Can bind to

reRender Set, Collection, Array, comma-delimited String

ReRender can be set statically as in the examples above or with
EL:

In the example above the child components of the outputPanel
will be rerendered when the commandLink is submitted.

Note
If ajaxRendered=”false” (default) the
a4j:outputPanel behaves just like h:panelGroup.

To limit rendering to only components set in the reRender
attribute, set limitToList=”true”. In this example, only
h:panelGrid will be rendered:

<a4j:commandLink reRender=”panel” limitToList=”true”/>
<h:panelGrid id=”panel”>
 <h:dataTable>...</h:dataTable>
</h:panelGrid>
<a4j:outputPanel ajaxRendered=”true”>
 <h:dataTable>...</h:dataTable>
</a4j:outputPanel>

Deciding what to process on the server
When an AJAX request is sent to the server, the full HTML
form is always submitted. However, once on the server we
can decide what components to decode or process during
the Apply Request, Process Validations and Update Model
phases. Selecting which components to process is important
in validation. For example, when validating a component (field)
via AJAX, we don’t want to process other components in the
form (in order not to display error messages for components
where input hasn’t been entered yet). Controlling what is
processed will help us with that.

The simplest way to control what is processed on the server is
to define an AJAX region using the a4j:region tag (by default
the whole page is an AJAX region).

<h:inputText>
 <a4j:support event=”onblur” />
</h:inputText>
<a4j:region>
 <h:inputText>
 <a4j:support event=”onblur” />
 </h:inputText>
</a4j:region>

When the user leaves the 2nd input component (onblur event),
an AJAX request will be sent where only this input field will be
processed on the server. All other components outside this
region will not be processed (no conversion/validation, update
model, etc). It’s also possible to nest regions:

<a4j:region>
 ...
 <a4j:region>
 ...
 </a4j:region>
</a4j:region>

Allows sending an AJAX request directly from any JavaScript
function (built-in or custom).

a4j:outputPanel
All child components of an a4j:outputPanel will be rerendered
automatically for any AJAX request.

<a4j:commandLink value=”Submit” />
<a4j:outputPanel ajaxRendered=”true”>
 <h:outputText/>
 <h:dataTable></h:dataTable>
</a4j:outputPanel>

In the example above the child components of the outputPanel
will be rerendered when the commandLink is submitted.

JBoss RichFaces

http://www.dzone.com
http://www.refcardz.com

 tech facts at your fingertips

DZone, Inc. | www.dzone.com

Basic Concepts, continued Controlling Traffic, continued

<a4j:region renderRegionOnly=”true”>
 <h:inputText />
 <a4j:commandButton reRender=”panel”/>
 <h:panelGrid id=”panel”></h:panelGrid>
</a4j:region>
<a4j:outputPanel ajaxRendered=”true”>
 <h:dataTable></h:dataTable>
</a4j:outputPanel>

When the AJAX request is sent from the region, rendering
will be limited to components inside that region only because
renderRegionOnly=”true”. Otherwise, components inside
a4j:outputPanel would be rendered as well.

To process a single input or action component, instead of
wrapping inside a4j:region, it’s possible to use the ajaxSingle
attribute:

<h:inputText>
 <a4j:support event=”onblur” ajaxSingle=”true”/>
</h:inputText>

When using ajaxSingle=”true” and a need arises to process
additional components on a page, the process attribute is
used to include id’s of components to be processed.

<h:inputText>
 <a4j:support event=”onblur” ajaxSingle=”true” process=”mobile”/>
</h:inputText>
<h:inputText id=”mobile”/>

The process can also point to an EL expression or container
component id in which case all components inside the
container will be processed.

When just validating form fields, it is usually not necessary
to go through the Update Model and Invoke Application
phases. Setting bypassUpdates=”true”, will skip these phases,
improving response time, and allowing you to perform
validation without changing the model’s state.

<h:inputText>
 <a4j:support event=”onblur” ajaxSingle=”true”
bypassUpdates=”true”/>
</h:inputText>

JavaScript interactions
RichFaces components send an AJAX request and do partial
page rendering without writing any direct JavaScript code. If
you need to use custom JavaScript functions, the following
attributes can be used to trigger them.

3

Tag Attributte Description

a4j:commandButton,
a4j:commandLink,
a4j:support,
a4j:poll,
a4j:jsFunction

onbeforedomupdate: JavaScript code to be invoked after
response is received but before browser DOM update
oncomplete: JavaScript code to be invoked after browser DOM
updatedata. Allows to get the additional data from the server
during an AJAX call. Value is serialized in JSON format.

a4j:commandButton,
a4j:commandLink

onclick: JavaScript code to be invoked before AJAX request is
sent.

a4j:support,
a4j:poll

onsubmit: JavaScript code to be invoked before AJAX request
is sent.

contRolling tRaffic

Flooding a server with small requests can cripple a web
application, and any dependent services like databases.

When the request is invoked from the inner region, only
components in the inner region will be processed. When
invoked from outer region, all components (including inner
region) will be processed.

When sending a request from a region, processing is limited to
components inside this region. To limit rendering to a region,
the renderRegionOnly attribute can be used:

Richfaces 3.3.0.GA and Higher
Queues can be defined using the <a4j:queue .../>
component and are referred to as Named or Unnamed
queues. Unnamed queues are also referred to as Default
queues because components within a specified scope will use
an unnamed queue by default.

<a4j:queue /> Notable Attributes

Attribute Description

name Optional Attribute that determines if this is a named or
unnamed queue

sizeExceededBehavior When the size limit reached: dropNext, DropNew, fireNext,
fireNew

ignoreDupResponses If true then responses from the server will be ignored if there
are queued evens of the same type waiting.

requestDelay Time in ms. events should wait in the queue incase more
events of the same type are fired

Event Triggers onRequestDequeue, onRequestQueue, onSizeExeeded,
onSubmit

Other notable attributes include: disabled, id, binding,
status, size, timeout.

Named Queues
Named queues will only be used by components that reference
them by name as below:

<a4j:queue name=”fooQueue” ... />
<h:inputText … >
 <a4j:support eventsQueue=”fooQueue” .../>
</h:inputText>

Unnamed Queues
Unnamed queues are used to avoid having to specifically
reference named queues for every component.

Queue Scope Description

Global All views of the application will have a view scoped queue that does not
need to be defined and that all components will use.

View Components within the parent <f:view> will use this queue

Form Component within the parent <h:form> or <a4j:form> will use this queue

Global Queue
To enable the global queue for an application you must add
this to the web.xml file.

<context-param>
<param-name>org.richfaces.queue.global.enabled</param-name>
 <param-value>true</param-value>
</context-param>

It is possible to disable or adjust the global queue’s settings in
a particular view by referencing it by its name.

<a4j:queue name=”org.richfaces.global_queue” disabled=”true”... />

View Scoped Default Queues
Defined the <a4j:queue> as a child to the <f:view>.

<f:view>
 ...
 <a4j:queue ... />

Performance Tips:
• Control the number of requests sent to the server.
• Limit the size of regions that are updated per request
 using <a4j:region/>
• Cache or optimize database access for AJAX requests
• Don’t forget to refresh the page when needed

JBoss RichFaces

http://www.refcardz.com
http://www.dzone.com
http://www.refcardz.com

 tech facts at your fingertips

DZone, Inc. | www.dzone.com

Form Scoped Default Queue
This can be useful for separating behavior and grouping
requests in templates.

a4j:* tags

The a4j:* tags provide core AJAX components that allow
developers to augment existing components and provide
plumbing for custom AJAX behavior.

a4j:repeat
This component is just like ui:repeat from Facelets, but also
allows AJAX updates for particular rows. In the example below
the component is used to output a list of numbers together
with controls to change (the value is updated for the clicked
row only):

#{items} could be any of the supported JSF data models. var
identifies a request-scoped variable where the data for each
iteration step is exposed. No markup is rendered by the
component itself so a4j:repeat cannot serve as a target for
reRender.

The component can be updated fully (by usual means) or
partially. In order to get full control over partial updates you
should use the ajaxKeys attribute. This attribute points to a set
of model keys identifying the element sequence in iteration.
The first element has Integer(0) key, the second – Integer(1) key,
etc. Updates of nested components will be limited to these
elements.

a4j:include
Defines page areas that can be updated by AJAX according to
application navigation rules. It has a viewId attribute defining
the identifier of the view to include:

<a4j:include viewId=”/first.xhtml” />

One handy usage of a4j:include is for building multi-page
wizards. Ajax4jsf command components put inside the
included page (e.g. first.xhtml for our case) will navigate users
to another wizard page via AJAX:

<a4j:commandButton action=”next” value=”To next page” />

4

(The “next” action should be defined in the faces-config.xml
navigation rules for this to work). Setting ajaxRendered true
will cause a4j:include content to be updated on every AJAX
request, not only by navigation. Currently, a4j:include cannot
be created dynamically using Java code.

a4j:keepAlive
Allows you to keep bean state (e.g. for request scoped beans)
between requests:

<a4j:keepAlive beanName=”searchBean” />

Standard JSF state saving is used so in order to be portable

<a4j:repeat value=”#{items}” var=”item”>
 <h:outputText value=”#{item.value} “ id=”value”/>
 <a4j:commandLink action=”#{item.inc}” value=” +1 “
reRender=”value”/>
 </a4j:repeat>

Controlling Traffic, continued a4j:* Components, continued

<h:form>
 ...
 <a4j:queue ... />
 ...

Tag Description

a4j:loadBundle loads a resource bundle localized for the locale of the current view

a4j:loadScript loads an external JavaScript file into the current view

a4j:loadStyle loads an external .css file into the current view

a4j:status
Used to display the current status of AJAX requests such as
“loading...” text and images. The component uses “start” and
“stop” facets to define behavior. It is also possible to invoke
Javascript or set styles based on status mode changes.

a4j:actionparam
Adds additional request parameters and behavior to command
components (like a4j:commandLink or h:commandLink). This
component can also add actionListeners that will be fired after
the model has been updated.

Rich:* tags

The rich: tags are ready-made or self-contained components.
They don’t require any additional wiring or page control
components to function.

Input Tags

Tag Description

rich:calendar Advanced Date and Time input with many options such as
inline/popup, locale, and custom date and time patterns.

rich:editor A complete WYSIWYG editor component that supports
HTML and Seam Text

rich:inplaceInput Inline inconspicuous input fields

rich:inputNumberSlider min/max values slider

Components include: comboBox, fileUpload, inplaceSelect,
inputNumberSpinner

Output Tags

Tag Description

rich:modalPanel Blocks interactions with the rest of the page while active

rich:panelMenu Collapsable grouped panels with subgroup support

rich:progressBar AJAX polling of server state

rich:tabPanel Tabbed panel with client, server, or ajax switching

rich:toolBar Complex content and settings

Components include: paint2D, panel, panelBar,
simpleTogglePanel, togglePanel, toolTip

Data Grids, Lists, and Tables
RichFaces has support for AJAX-based data scrolling, complex
cell content, grid/list/table formats, filtering, sorting, etc....

it is recommended that bean class implements either java.
io.Serializable or javax.faces.component.StateHolder.

a4j:keepAlive cannot be created programmatically using
Java. Mark managed bean classes using the org.ajax4jsf.
model.KeepAlive annotation in order to keep their states.JBoss
Seam’s page scope provides a more powerful analog to ths
behavior.

a4j:loadXXX
RichFaces provides several ways to load bundles, scripts, and
styles into your application.

JBoss RichFaces

http://www.refcardz.com
http://www.dzone.com
http://www.refcardz.com

 tech facts at your fingertips

DZone, Inc. | www.dzone.com

Tag Description

rich:dataTable Supports complex content, AJAX updates, sortable, and
filterable columns

rich:extendedDataTable Adds scrollable data, row selection options, adjustable
column locations, and row/column grouping

rich:dataGrid Complex grid rendering of grouped data from a model

Complex Content Sample

Menus
Hierarchical menus available in RichFaces include:

Tag Description

rich:contextMenu Based on page location
and can be attached to
most components link
images, labels, etc...

rich:dropDownMenu Classic application style
menu that supports
icons and submenus.

Components include: rich:menItem, rich:menuGroup,
rich:menuSeparator

Trees
RichFaces has tree displays that support many options such
as switching (AJAX client or server), drag-drop and are
dynamically generated from data models.

Tag Description

rich:tree Core parent
component for a tree

rich:treeNode Creates sets of tree
elements

rich:treeNodeAdaptor Defines data model
sources for trees

rich:recursiveTree
 NodeAdaptor

Adds recursive node
definition from models

5

rich:* Tags, continued

Selects
Provides visually appealing list manipulation options for the UI.

Tag Description

rich:listShuttle Advanced
data list
manipulation
(figure x)

rich:orderingList Visually
manipulate a
lists order

Validation Tags
AJAX endabled validation including hibernate validation.

Tag Description

rich:ajaxValidator Event triggered validation without updating the model- this skips
all JSF phases except validation.

rich:beanValidator Validate individual input fields using hibernate validators in your
bean/model classes

rich:graphValidator Validate whole subtree of components using hibernate validators.
can also validate the whole bean after model updates.

Drag-Drop
Allows many component types to support drag and drop
features.

Miscellaneous

Tag Description

rich:componentControl Attach triggers to call JS API functions on the components after
defined events.

rich:effect Scriptaculous visual effect support

rich:gmap Embed GoogleMaps with custom controls

rich:hotKey Define events triggered by hot key (example: alt-z)

rich:insert Display and format files from the file system

rich:virtualEarth Embed Virtual Earth images and controls

Components include: rich:message, rich:messages,
rich:jQuery

skinning

Using out-of-the-box skins
RichFaces ships with a number of built-in skins.

Out-of-the-box Skins

default, classic, emeraldTown, blueSky, ruby, wine, deepMarine, sakura, plain, default,
laguna*, glassx*, darkx*

* Require a separate jar file to function

Tag Description

rich:dragSupport Add as a child to components you want to drag.

righ:dropSupport Define components that support dropped items.

rich:dragIndicator Allows for custom visualizations while dragging an item.

rich:dndParam To pass parameters during a drag-n-drop action.

rich:* Tags, continued

Add the org.richfaces.SKIN context parameter to web.xml
and set the skin name.
<context-param>
 <param-name>org.richfaces.SKIN</param-name>
 <param-value>blueSky</param-value>
</context-param>

Sample blueSky skin Sample ruby skin

Using skin property values on the page
You can use skinBean implicit object to use any value from the
skin file on your page.
<h:commandButton value=”Next”
 style=”background-
 color:#{skinBean.
 tabBackgroundColor}”/>

The button color is set according to the current skin[Ruby].s

Loading different skins at runtime
You can define an applications skin with EL expression like this:

<context-param>
 <param-name>org.richfaces.SKIN</param-name>
 <param-value>#(skinBean.currentSkin)</param-value>
</context-param>

Define a session scoped skinBean and manage its currentSkin
property at runtime with your skin names values. Every

JBoss RichFaces

http://www.refcardz.com
http://www.dzone.com
http://www.refcardz.com

Design Patterns

By Jason McDonald

CONTENTS INCLUDE:

n	 Chain of Responsibility

n	 Command

n	 Interpreter

n	 Iterator

n	 Mediator

n	 Observer

n	 Template Method and more...

DZone, Inc. | w
ww.dzone.com

D
es

ig
n

Pa
tt

er
ns

 w

w
w

.d
zo

ne
.c

om

 G
et

 M
o

re
 R

ef
ca

rz
!

V
is

it
 r

ef
ca

rd
z.

co
m

#8

Brought to you by...

Inspired

by the

GoF

Bestseller

This Design Patterns refcard provides a quick reference to the

original 23 Gang of Four (GoF) design patterns, as listed in

the book Design Patterns: Elements of Reusable Object-

Oriented Software. Each pattern includes class diagrams,

explanation, usage information, and a real world example.

Chain of Responsibility
, continued

Object Scope: Deals with object relationships that can

be changed at runtime.

Class S
cope: Deals with class relationships that can be

changed at compile time.

C Abstract Factory

S Adapter

S Bridge

C Builder

B Chain of

Responsibility

B Command

S Composite

S Decorator

S Facade

C Factory Method

S Flyweight

B Interpreter

B Iterator

B Mediator

B Memento

C Prototype

S Proxy

B Observer

C Singleton

B State

B Strategy

B Template Method

B Visito
r

ABOUT DESIGN PATTERNS

Creational Patterns: U
sed to construct objects such

that they can be decoupled from their im
plementing

system.

Structural Patterns: U
sed to form large object

structures between many disparate objects.

Behavioral Patterns: U
sed to manage algorithms,

relationships, and responsibilitie
s between objects.

CHAIN OF RESPONSIBILITY

 O
bject Behavioral

COMMAND

 O

bject Behavioral

successor

Client

<<interface>>

Handler

+handlerequest()

ConcreteHandler 1

+handlerequest()

ConcreteHandler 2

+handlerequest()

Purpose
Gives more than one object an opportunity to handle a request by linking

receiving objects together.

Use

When

n
	Multiple objects may handle a request and the handler doesn’t have to

 be a specific object.

n
	A set of objects should be able to handle a request with the handler

 determined at runtime.

n
	A request not being handled is an acceptable potential outcome.

Example
Exception handling in some languages implements this pattern. When an

exception is thrown in a method the runtime checks to see if th
e method

has a mechanism to handle the exception or if it
 should be passed up the

call stack. When passed up the call stack the process repeats until code to

handle the exception is encountered or until th
ere are no more parent

objects to hand the request to.

Receiver

Invoker

Command

+execute()

Client
ConcreteCommand

+execute()

Purpose
Encapsulates a request allowing it to

 be treated as an object. This allows

the request to be handled in traditionally object based relationships such

as queuing and callbacks.

Use

When

n
	You need callback functionality.

n
	Requests need to be handled at variant tim

es or in variant orders.

n
	A history of requests is needed.

n
	The invoker should be decoupled from the object handling the invocation.

Example
Job queues are widely used to facilitate the asynchronous processing

of algorithms. By utilizing the command pattern the functionality to be

executed can be given to a job queue for processing without any need

for the queue to have knowledge of the actual implementation it is

invoking. The command object that is enqueued implements its particular

algorithm within the confines of the interface the queue is expecting.

Upcoming titles
RichFaces
Agile Software Development
BIRT
JSF 2.0
Adobe AIR
BPM&BPMN
Flex 3 Components

Most popular
Spring Configuration
jQuery Selectors
Windows Powershell
Dependency Injection with EJB 3
Netbeans IDE JavaEditor
Getting Started with Eclipse
Very First Steps in Flex

“Exactly what busy developers need:
simple, short, and to the point.”

James Ward, Adobe Systems

Download Now

Refcardz.com

Professional Cheat Sheets You Can Trust

DZone, Inc.
1251 NW Maynard
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2009 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher. Reference: Practical RichFaces, Max Katz, APress, 2008

Version 1.0

$7
.9

5

DZone communities deliver over 4 million pages each month to

more than 2 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheatsheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

6

Nick Belaevski
Nick Belaevski is the team leader of the RichFaces project working for Exadel Inc.
He has more than four years of experience in development of middleware products
including JBoss Tools and RichFaces.
Projects: RichFaces

Ilya Shaikovski
Ilya Shaikovsky is the Exadel product manager working on the RichFaces project

since Exadel began ajax4jsf. He’s responsible for requirements gathering, specifica-
tion development, JSF related product analysis and supporting RichFaces and

JSF related technologies for business applications. Prior to this he worked on the
Exadel Studio Pro product.

Projects: RichFaces

Jay Balunas
Jay Balunas works as the RichFaces Project Lead and core developer at JBoss, a di-
vision of Red Hat. He has been architecting and developing enterprise applications
for over ten years specializing in web tier frameworks, UI design, and integration.
Jay blogs about Seam, RichFaces, and other technologies at
http://in.relation.to/Bloggers/Jay
Projects: RichFaces, Seam Framework, and JBoss Tattletale

Max Katz
Max Katz is a senior system engineer at Exadel. He is the author of “Practical Rich-

Faces” (Apress). He has been involved with RichFaces since its inception. He has
written numerous articles, provided training, and presented at many conferences

and webinars about RichFaces. Max blogs about RichFaces and RIA technologies at
http://mkblog.exadel.com.

Projects: RichFaces

aBoUt the aUthoRs

rich:* Tags, continued

Advanced Skinning Features
• Create custom skins, or extend the default skins
• Override or extend styles per page as needed
• Automatically skin the standard JSF components
• Plug’n’Skin feature used to generate whole new skins using
 Maven archetypes

time a page is rendered, RichFaces will resolve the value in
#{skinBean.currentSkin} to get the current skin. Changing
Skins should not be done via AJAX but with a full page refresh.
A full page refresh will ensure that all CSS links are correctly
updated based on the new skin

Customizing redefined CSS classes
Under the hood all RichFaces components are equipped with
a set of predefined rich-* CSS classes that can be extended to
allow customization of a components style (see documentation
for details). By modifying these CSS classes you can update all
components that use them such as:

 .rich-input-text {
 color: red;
}

rich:* Tags, continued

RecoMMenDeD Book

Project links for more information or questions:
Project page (http://www.jboss.org/jbossrichfaces)
Documentation (http://jboss.org/jbossrichfaces/docs)

JBoss RichFaces is a rich
JSF component library that
helps developers quickly
develop next–generation
web applications. Practical
RichFaces describes how
to best take advantage of
RichFaces, the integration of
the Ajax4jsf and RichFaces
libraries, to create a flexible

and powerful programs. Assuming some JSF
background, it shows you how you can radically
reduce programming time and effort to create rich
AJAX based applications.

BUY noW
books.dzone.com/books/practicalrichfaces

ISBN-13: 978-1-934238-47-9
ISBN-10: 1-934238-47-3

9 781934 238479

50795

JBoss RichFaces

http://refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.refcardz.com
http://www.jboss.org/jbossrichfaces
http://jboss.org/jbossrichfaces/docs
http://mkblog.exadel.com
http://books.dzone.com/books/practicalrichfaces
http://in.relation.to/Bloggers/Jay

