

DZone, Inc. | www.dzone.com

By Gemba Systems

About Agile Adoption

CONTENTS INCLUDE:
n	 About Agile Adoption
n	 What Agile Practices Improve Time to Market
n	 How to Adopt Agile Strategies Successfully
n	 Next Steps

A
g

il
e

 A
d

o
p

ti
o

n

 w
w

w
.d

zo
n

e.
co

m

G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#45

Agile Adoption:
Decreasing time to market

There are a myriad of Agile practices out there. Which ones
are right for you and your team? What are the business values
you want out of adopting Agile and what is your organization’s

context? This Refcard is focused on helping you evaluate
and choose the practices for your team or organization when
getting to market faster is of prime importance. Instead of
focusing on entire methods such as Scrum and XP, we will
talk about the practices that are the building blocks of these
methods such as iterations and automated developer tests. We
will answer two basic questions:
 • What Agile practices should you consider to improve Time to Market?
 • How should you go about choosing from those practices given your
 organization and context?

What Agile Practices improve time to market?

An iteration is a time-boxed event that is anywhere between 1 to 4 weeks
long. The development staff works throughout this period – without
interruption – to build an agreed upon set of requirements that are accepted
by the customer and meet an agreed upon “done state”.

To get the most of an iteration and reduce your time to market, an iteration
needs to work from an iteration backlog and reach a solid done state at
its completion. Such an iteration reduces time to market because every
time-boxed iteration is a potential release. There is little “work in progress”
between iterations and defects are found early and often for cheaper and
faster removal.

Any software team that is building software where they are not 100% sure of
their outcome is a candidate for performing iterations. Without iterations
the majority of learning (from mistakes) only happens at the end and course-
corrections are difficult if not impossible.

Figure 1- These are the Agile practices that improve time to market. The most
effective practices are near the top of the diagram. Therefore iteration is more effective
than Onsite Customer for improving time to market. The arrows indicate dependencies.
Continuous Integration depends on Automated Developer Tests for it to be effective.

You will be ale to use this Refcard to get a 50,000 ft view of
what will be involved in your team’s delivery speed.

Iteration
Iteration

Automated
Acceptance TestsIteration BacklogsKickoff Meeting Done State Demo Retrospective

Continuous Integration

Continuous integration (CI) is an advanced version of the “daily build”
practice that has been around for years. The development team members
perform CI by frequently integrating their code into the entire system and
running all available automated tests. The system is integrated and tested
several times a day.

Continuous integration reduces the total time it takes to build a software
system by catching errors early and often. Errors caught early cost significantly
less to fix when caught later. It leverages both automated acceptance tests
and automated developer tests to give frequent feedback to the team and to
pay a much smaller price for fixing a defect as shown in Figure 2.

A team that has control or can get access to their build environment will be
able to perform continuous integration. Teams that have agreed on a done
state can benefit from continuous integration as a supporting practice to catch
any failed automatic tests early.

Time

C
os

t o
f F

ix
in

g
D

ef
ec

t

A

B

C

D

... ...

Figure 2- The cost of fixing a defect increases over time because of context switching,
communication, and bugs being built on existing bugs.

Automated
Acceptance Tests

Continuous
Integration

Automated
Developer Tests Done State

*Practices in pink are ones that don’t directly address time to market but are needed to support practices
that do (hence a dependency). They are not described in this Refcard but can be found in the external
references.

Done State

Onsite Customer
Cross Functional

Team

Continuous
Integration

Iteration

Automated
Developer Tests

Less Effective

More Effective

Iteration
Backlogs

Automated
Acceptance

Tests
Release Often

Simple Design

Refactoring

Definition

Time to M arket

Definition

Time to M arket

n 	Authoritative content
n 	Designed for developers
n 	Written by top experts
n 	Latest tools & technologies
n	 Hot tips & examples
n 	Bonus content online
n 	New issue every 1-2 weeks

Subscribe Now for FREE!
Refcardz.com

Get More Refcardz
(They’re free!)

 tech facts at your fingertips

Method Name Parameters and Descriptions

open(method, url, async) open a connection to a URL

method = HTTP verb (GET, POST, etc.)

url = url to open, may include querystring

async = whether to make asynchronous request

onreadystatechange assign a function object as callback (similar to onclick,

onload, etc. in browser event model)

setRequestHeader

(namevalue)

add a header to the HTTP request

send(body) send the request

body = string to be used as request body

abort() stop the XHR from listening for the response

readyState stage in lifecycle of response (only populated after send()

is called)

httpStatus The HTTP return code (integer, only populated after

response reaches the loaded state)

responseText body of response as a JavaScript string (only set after

response reaches the interactive readyState)

responseXML body of the response as a XML document object (only

set after response reaches the interactive readyState)

getResponseHeader

(name)

read a response header by name

getAllResponseHeaders() Get an array of all response header names

Hot
Tip

 tech facts at your fingertips

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

2
Agile Adoption

Release your software to your end customers as often as you can without
inconveniencing them.

Releasing often streamlines your development process and makes you deal
with the pains of getting software good enough to go live. A team that releases
often faces the pains and addresses the problems that make deployment
difficult so that releasing is just another development task.

You are on a project where releasing often will enable you to produce revenue
earlier. Having new features available frequently will not inconvenience your
customer base. The quality of your releases is superb and your customers
eagerly await your next release (instead of religiously keeping away from your
1.0 releases).

Done State
The done state is a definition agreed upon by the entire team of what
constitutes the completion of a requirement. The closer the done state is to
deployable software, the better it is because it forces the team to resolve all
hidden issues.

A done state that is close to deployment enables the team to be confident in
its work. The psychological effect of this confidence is a development team
that gives good estimates, delivers regularly, and is confident in releasing its
software. An executive decision can be made to release what has been built
at anytime.

A team that should consider using a done state is one that has the necessary
expertise and resources to build a requirement from end-to-end and perform
all of the necessary build and deployment tasks.

A backlog is a prioritized list of requirements. There are two common flavors
of backlogs, one for the current iteration and one for the product. The product
backlog contains all of the requirements prioritized by value to the customer.
The iteration backlog is a list of requirements that a team has committed to
building for an iteration.

Properly prioritized backlogs that are used to set the goals for every iteration
ensure that the team is always working on the most important requirements.
When paired with iterations that produce working, tested software, backlogs
give a development team the option to release at the end of any iteration
having always worked on the most important issues.

Iteration Backlog

Automated developer tests are a set of tests that are written and maintained by
developers to reduce the cost of finding and fixing defects—thereby improving
code quality—and to enable the change of the design as requirements are
addressed incrementally.

Automated developer tests reduce the time to market by actually reducing
the development time. This is accomplished by reducing a developer’s time in
debugging loops by catching errors in the safety-net of tests.

You are on a development team that has decided to adopt iterations and
simple design and will need to evolve your design as new requirements are
taken into consideration. Or you are on a distributed team. The lack of both
face-to-face communication and constant feedback is causing an increase in
bugs and a slowdown in development.

Automated Developer Tests

Automated Acceptance Tests

Release Often

Release Often

Continuous
Integration

BACKLOG

As a web customer I want to
cancel my order prior to
shipping.

As a CRS I want to apply
credit to a customer account.

As a Catalog Manager I
want to group products for
cross-sale promotion.

 As a web customer I want to
track my shipped order.

1

2

3

4

3

5

1

3

Item Description Est.

Automated
Acceptance Tests

Onsite Customer

Automated acceptance tests are tests written at the beginning of the iteration
that answer the question: “what will this requirement look like when it is done?”.
This means that you start with failing tests at the beginning of each iteration and
a requirement is only done when that test passes.

This practice builds a regression suite of tests in an incremental manner and
catches errors, miscommunications, and ambiguities very early on. This, in
turn, reduces the amount of work that is thrown away and enables faster
development as you receive early feedback when a requirement is no longer
satisfied.

You are on a development project with an onsite customer who is willing and
able to participate more fully as part of the development team. Your team is also
willing to make difficult changes to any existing code. You are willing to pay the
price of a steep learning curve.

Onsite Customer
The onsite customer role in an Agile development team is a representative of
the users of the system who understands the business domain of the software.
The customer owns the backlog, is responsible for writing and clarifying
requirements, and responsible for checking that the software meets the
requirements specified.

The role of customer helps improve time to market by supporting the
developers by giving them clear requirements, providing clarifications and
verifying that the software does really meet the needs of the user base. The
customer provides early feedback to the development team so they never
spend more than an iteration down a blind alley. Finally, having a customer who
correctly prioritizes a backlog allows the team to deliver the most important
items first when time is of the essence.

The practice of onsite customer works best when the development team can be
co-located with one or more domain experts. The person fulfilling the customer
role is crucial to the success of the team and therefore will need sufficient time
and resources to do the job.

An expert on business value is needed to be part of the team to prioritize the
backlog. If your team has such a person or someone that can coordinate with
the business stakeholders to do so then use a product backlog. If you are using
iterations then use an iteration backlog to set clear goals for the iterations and a
release backlog to maintain long-term goals.

Simple Design

Refactoring Collective Code
Ownership

Simple Design

If a decision between coding a design for today’s requirements and a general
design to accommodate for tomorrow’s requirements needs to be made, the
former is a simple design. Simple design meets the requirements for the current
iteration and no more.

Simple design improves time to market because you build less code to meet
the requirements and you maintain less code afterwards. Simple designs are
easier to build, understand, and maintain.

Simple design should only be used when your team also is writing automated
developer tests and refactoring. A simple design is fine as long as you can
change it to meet future requirements.

Definition

Time to M arket

Definition

Time to M arket

Definition

Time to M arket

Definition

Definition

Time to M arket

Definition

Time to M arket

Definition

Time to M arket

Time to M arket

*Practices in pink are ones that don’t directly address time to market but are needed to support practices
that do (hence a dependency). They are not described in this Refcard but can be found in the external
references.

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

3
Agile Adoption

Refactoring

The practice of Refactoring code changes the structure (i.e., the design) of
the code while maintaining its behavior. Collective code ownership is needed
because a refactoring frequently affects other parts of the system. Automated
developer tests are needed to verify that the behavior of the system has not
changed after the design change introduced by the refactoring.

Refactoring improves time to market by supporting practices like Simple Design
which, in turn, allow you to only write the software for the features that are
needed now.

You are on a development team that is practicing automated developer tests.
You are currently working on a requirement that is not well-supported by the
current design.

Cross-Functional Team

The team that utilizes the Cross Functional Team practice is one that has the
necessary expertise among its members to take a requirement from its initial
concept to a fully deployed and tested piece of software within one iteration.
A requirement can be taken off of the backlog, elaborated and developed,
tested, deployed.

Cross-functional teams primarily affect time to market by enabling true iterative
and incremental development. Resource bottlenecks are resolved and teams
can build features end-to-end.

There is a hardening cycle at the end of each release indicating unresolved
integration issues. Building a slice of functionality end-to-end in your system
finds errors early and requires diverse expertise of many different people.

How to adopt agile practices successfully

To successfully adopt Agile practices let’s start by answering
the question “which ones first?” Once we have a general
idea of how to choose the first practices there are other
considerations.

Become “Well-Oiled” First
One way to look at software development is to see it as
problem solving for business. When considering a problem to
solve there are two fundamental actions that must be taken:

 • Solving the right problem. This is IT/Business alignment.
 • Solving the problem right. This is technical expertise.

Intuitively it would seem that we must focus on solving the
right problem first because, no matter how well we execute
our solution to the problem, if it is the wrong problem then our
solution is worthless. This, unfortunately, is the wrong way to
go. Research shows in Figure 3, that focusing on alignment
first is actually more costly and less effective than doing
nothing. It also shows that being “well-oiled”, that is focusing
on technical ability first, is much more effective and a good
stepping-stone to reaching the state where both issues are
addressed.

This is supported anecdotally by increasing reports of failed
Agile projects that do not deliver on promised results. They
adopt many of the soft practices such as Iteration, but steer
away from the technically difficult practices such as Automated
Developer Tests, Refactoring, and Done State. They never
reach the “well-oiled” state.

So the lesson here is make sure that on your journey to adopt
Agile practices that improve time to market (or any other
business value for that matter), your team will need to become
“well-oiled” to see significant, sustained improvement. And
that means you should plan on adopting the difficult technical
practices for sustainability.

11% 7%

74% 8%

+13

-14 -6

+35

+0

-2 -15

+11

“Alignment Trap” “IT-Enabled Growth”

“Maintenance Zone” “Well-Oiled IT”

EffectivenessLess Effective Highly Effective

Alignment

Highly Aligned

Less Aligned

% of Respondents
(n=504) IT Spending 3-Year Sales

Compound
Annual
Growth Rate

Differences in Percentage
compared to overall averages

Note: Based on 504 responses from 452 companies
Source: Bain Analysis

Figure 3- The Alignment Trap (from Avoiding the Alignment Trap in Information

Technology, Shpilberg, D. et al, MIT Sloan Management Review, Fall 2007.)

Minimize What You Build
Statistics show that most of what software development
teams build is not used. In Figure 4 we see that only 7% of
functionality is always used. And 45% is never used. This is
a sad state of affairs, and an excellent opportunity. One of
the easiest ways to speed up is to do less. If you have less to
build, then not only do you spend less time writing and testing
software, but you also reduce the complexity of the entire
application. And by reducing the complexity of the application
it takes less time to maintain because you have a simpler
design, fewer dependencies, and fewer physical lines of code
that your developers must understand and maintain.

19 %
Rarely
Used

45 %
Never
Used

16 %
Sometimes

Used

13 %
Often Used

7 %
Always
Used

Functionality UsageFigure 4- Most functionality built is not used.

Refactoring

Automated
Developer Tests

Collective Code
Ownership

Definition

Time to M arket

Definition

Time to M arket

*Practices in pink are ones that don’t directly address time to market but are needed to support practices
that do (hence a dependency). They are not described in this Refcard but can be found in the external
references.

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

4
Agile Adoption

Cross-Functional Team

Figure 5- Context matters. Choose Agile practices that fit your context.

The practices are all described within context. So, for example,
the context for the Release Often practice indicates that your
customers should be willing to install and run frequent releases
and that the quality of your current builds are exceptional.
If this is not the case, if your current releases go through a
‘stabilization phase’ and your customers have learned never to
take a 1.0 release, then do not adopt Release Often, you will
end up hurting your relationship with your customers.

Learning is the Bottleneck
Here is a hypothetical situation that we have presented to
many experienced software development teams:

 Suppose I was your client and I asked you and your team to build a
 software system for me. Your team proceeds to build the software system.
 It takes you a full year – 12 months – to deliver working, tested software.

 I then thank the team and take the software and throw it out. I then ask
 you and your team to rebuild the system. You have the same team. The
 same requirements. The same tools and software. Basically – nothing
 has changed – it is exactly the same environment.

 How long will it take you and your team to rebuild the system again?

When we present this hypothetical situation to development
practitioners – many of them with 20+ years experience in

building software – they typically respond with anywhere
between 20% to 70% of the time. That is, rebuilding a system
that originally takes one year to build takes only 2.5 to 8.5
months to build. It is a huge difference!

So, what is the problem? What was different? The team
has learned. They learned about each other as a team and
have gelled over the year. They learned about the true
requirements – not just those written down. They also learned
to use the toolset, they experienced the idiosyncrasies that
come up during all software development, and basically they
worked through all the unknowns until they built and delivered
a successful software solution. Learning is THE bottleneck of
software engineering.

The learning that occurs makes up a significant percentage
of the time spent on the work. That’s the main reason that
Agile practices work so well – they are all about recognizing
and responding to change. Agile practices, from continuous
integration to iterations, all consist of cycles that help the
team learn fast. By cycling in every possible practice, Agile
teams accelerate learning, addressing the bottleneck of
software engineering. Call it “scientific method,” “continuous
improvement” or “inspect and adapt”, to truly benefit from
these practices you and your team(s) must learn well and learn
often.

Know What You Don’t Know
Since learning is the bottleneck, it makes sense to talk a
bit about how we actually learn. The Dreyfus Model of Skill
Acquisition, is a useful model of learning. It is not the only
model of learning, but it is consistent, has been effective, and
works well for our purposes. This model states that there are
levels that one goes through as they learn a skill and that your
level for different skills can and will be different. Depending on
the level you are at, you have different needs and abilities. An
understanding of this model is not crucial to learning a skill;
after all, we’ve been learning long before this model existed.
However, being aware of this model can help us and our
team(s) learn effectively.

So let’s take a closer look at the different skill levels in the
Dreyfus Model:

Novice

Advanced beginner

Competent

Proficient

Expert No longer needs rules; works intuitively.

Sees big picture; can begin addressing problems
for the organization , not just the team.

Has experience with real problems;
no longer struggles with basic rules.

Can start using advice in context .

Needs step-by-step instructions .

Figure 6- The Drefyus Model for skill acquisition. One starts as a novice and through

experience and learning advances towards expertise.

How can the Dreyfus Model help in an organization that is
adopting agile methods? First, we must realize that this model
is per skill, so we are not competent in everything. Secondly,
if agile is new to us, which it probably is, then we are novices
or advanced beginners; we need to search for rules and not
break them until we have enough experience under our belts.
Moreover, since everything really does depend on context,
and we are not qualified to deal with context as novices

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

5
Agile Adoption

and advanced beginners, we had better get access to some
people who are experts or at least proficient to help guide us
in choosing the right agile practices for our particular context.
Finally, we’d better find it in ourselves to be humble and
know what we don’t know to keep from derailing the possible
benefits of this new method. And we need to be patient with
ourselves and with our colleagues. Learning new skills will take
time, and that is OK.

Choosing a Practice to Adopt
Choosing a practice comes down to finding the highest value
practice that will fit into your context. Figure 1 will guide you
in determining which practices are most effective in decreasing
your time to market and will also give you an understanding of
the dependencies. The other
parts in this section discuss
other ideas that can help you
refine your choices. Armed with
this information:

Small steps and failing fast are
the most effective methods
to release quickly. Weed out
defects early because the earlier
you find them, the less they will

cost to fix as shown in Figure 2 and you won’t be building on
a crumbling foundation. This is why Continuous Integration
and Iteration lead the practices that most positively affect time
to market. They are both, however, dependent on several
practices to be effective, so consider starting with Automated
Developer Tests and the Iteration trio – Iteration, Iteration
Backlog, and Done State.

Next Steps
This refcard is a quick introduction to Agile practices that can
help you improve your time to market and an introduction
of how you to choose the practices for your organizational
context. It is only a starting point. If you choose to embark
on an Agile adoption initiative, your next step is to educate

yourself and get as much help
as you can afford. Books and
user groups are a beginning. If
you can, find an expert to join
your team(s). Remember, if you
are new to Agile, then you are
a novice or advanced beginner
and are not capable of making
an informed decision about
tailoring practices to your
context.

Does this
practice’s context

match reality?

Learn about
practice and

adopt

Evaluate
progress towards

business goal

Not satisfactory
Making progress

Get next practice
from top of list

Set new specific
business goal

Figure 7- Steps for Choosing and Implementing Practices

Reference table

Astels, David. 2003. Test-driven development: a practical guide.
Upper Saddle River, NJ: Prentice Hall.

X

Beck, Kent. 2003. Test-driven development by example. Boston, MA:
Pearson Education.

X

Beck, K. and Andres, C., Extreme Programming Explained: Embrace
Change (second edition), Boston: Addison-Wesley, 2005

X X X X X X

Cockburn, A., Agile Software Development: The Cooperative Game
(2nd Edition), Addison-Wesley Professional, 2006.

X

Cohn, M., Agile Estimating and Planning, Prentice Hall, 2005. X

Duvall, Paul, Matyas, Steve, and Glover, Andrew. (2006). Continuous
integration: Improving Software Quality and Reducing Risk. Boston:
Addison-Wesley.

X

Elssamadisy, A., Agile Adoption Patterns: A Roadmap to
Organizational Success, Boston: Pearson Education, 2008

X X X X X X X X X X

Feathers, Michael. 2005. Working effectively with legacy code. Upper
Saddle River, NJ: Prentice Hall.

X

Jeffries, Ron. “Running Tested Features.”
http://www.xprogramming.com/xpmag/jatRtsMetric.htm

X

Jeffries, Ron. 2004. Extreme programming adventures in c#.
Redmond, WA: Microsoft Press.

X

Kerievsky, Joshua. “Don’t Just Break Software, Make Software.”
http://www.industriallogic.com/papers/storytest.pdf

X

http://www.dzone.com
http://www.refcardz.com
http://www.xprogramming.com/xpmag/jatRtsMetric.htm
http://www.industriallogic.com/papers/storytest.pdf

Design Patterns

By Jason McDonald

CONTENTS INCLUDE:

n	 Chain of Responsibility

n	 Command

n	 Interpreter

n	 Iterator

n	 Mediator

n	 Observer

n	 Template Method and more...

DZone, Inc. | w
ww.dzone.com

D
es

ig
n

Pa
tt

er
ns

 w

w
w

.d
zo

ne
.c

om

 G
et

 M
o

re
 R

ef
ca

rz
!

V
is

it
 r

ef
ca

rd
z.

co
m

#8

Brought to you by...

Inspired

by the

GoF

Bestseller

This Design Patterns refcard provides a quick reference to the

original 23 Gang of Four (GoF) design patterns, as listed in

the book Design Patterns: Elements of Reusable Object-

Oriented Software. Each pattern includes class diagrams,

explanation, usage information, and a real world example.

Chain of Responsibility
, continued

Object Scope: Deals with object relationships that can

be changed at runtime.

Class S
cope: Deals with class relationships that can be

changed at compile time.

C Abstract Factory

S Adapter

S Bridge

C Builder

B Chain of

Responsibility

B Command

S Composite

S Decorator

S Facade

C Factory Method

S Flyweight

B Interpreter

B Iterator

B Mediator

B Memento

C Prototype

S Proxy

B Observer

C Singleton

B State

B Strategy

B Template Method

B Visito
r

ABOUT DESIGN PATTERNS

Creational Patterns: U
sed to construct objects such

that they can be decoupled from their im
plementing

system.

Structural Patterns: U
sed to form large object

structures between many disparate objects.

Behavioral Patterns: U
sed to manage algorithms,

relationships, and responsibilitie
s between objects.

CHAIN OF RESPONSIBILITY

 O
bject Behavioral

COMMAND

 O

bject Behavioral

successor

Client

<<interface>>

Handler

+handlerequest()

ConcreteHandler 1

+handlerequest()

ConcreteHandler 2

+handlerequest()

Purpose
Gives more than one object an opportunity to handle a request by linking

receiving objects together.

Use

When

n
	Multiple objects may handle a request and the handler doesn’t have to

 be a specific object.

n
	A set of objects should be able to handle a request with the handler

 determined at runtime.

n
	A request not being handled is an acceptable potential outcome.

Example
Exception handling in some languages implements this pattern. When an

exception is thrown in a method the runtime checks to see if th
e method

has a mechanism to handle the exception or if it
 should be passed up the

call stack. When passed up the call stack the process repeats until code to

handle the exception is encountered or until th
ere are no more parent

objects to hand the request to.

Receiver

Invoker

Command

+execute()

Client
ConcreteCommand

+execute()

Purpose
Encapsulates a request allowing it to

 be treated as an object. This allows

the request to be handled in traditionally object based relationships such

as queuing and callbacks.

Use

When

n
	You need callback functionality.

n
	Requests need to be handled at variant tim

es or in variant orders.

n
	A history of requests is needed.

n
	The invoker should be decoupled from the object handling the invocation.

Example
Job queues are widely used to facilitate the asynchronous processing

of algorithms. By utilizing the command pattern the functionality to be

executed can be given to a job queue for processing without any need

for the queue to have knowledge of the actual implementation it is

invoking. The command object that is enqueued implements its particular

algorithm within the confines of the interface the queue is expecting.

Upcoming Titles
RichFaces
Agile Software Development
BIRT
JSF 2.0
Adobe AIR
BPM&BPMN
Flex 3 Components

Most Popular
Spring Configuration
jQuery Selectors
Windows Powershell
Dependency Injection with EJB 3
Netbeans IDE JavaEditor
Getting Started with Eclipse
Very First Steps in Flex

“Exactly what busy developers need:
simple, short, and to the point.”

James Ward, Adobe Systems

Download Now

Refcardz.com

Professional Cheat Sheets You Can Trust

DZone, Inc.
1251 NW Maynard
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2009 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher. Reference: Agile Adoption Patterns, Amr Elssamadisy, Addison-Wesley, July 2008

Version 1.0

$7
.9

5

DZone communities deliver over 4 million pages each month to

more than 2 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheatsheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

6
Agile Adoption

RECOMMENDED BOOKABOUT Gemba Systems

Larman, C., Agile and Iterative Development: A Manager’s Guide,
Boston: Addison-Wesley, 2004

X X

Larman, C., and Vodde, B., Scaling Lean and Agile Development,
Boston: Addison-Wesley, 2009

X

Massol, Vincent. 2004. Junit in action. Greenwich, CT: Manning
Publications.

X

Meszaros, XUnit Test Patterns: Refactoring Test Code, Boston:
Addison-Wesley, 2007.

X

Mugridge, R., and W. Cunningham. 2005. Fit for Developing
Software: Framework for Integrated Tests. Upper Saddle River, NJ:
Pearson Education.

X

Poppendieck, M., and Poppendieck, T., Implementing Lean Software
Development, Addison-Wesley Professional, 2006.

X

Rainsberger, J.B. 2004. Junit recipes: Practical methods for
programmer testing. Greenwich, CT: Manning Publications.

X

Schwaber, K., and Beedle, M., Agile Software Development with
Scrum, Upper Saddle River, New Jersey: Prentice Hall, 2001.

X X X X X

Gemba Systems is comprised of a group of seasoned practitioners
who are experts at Lean & Agile Development as well as crafting
effective learning experiences. Whether the method is Scrum, Extreme
Programming, Lean Development or others - Gemba Systems helps
individuals and teams to learn and adopt better product development
practices. Gemba Systems has taught better development techniques
- including lean thinking, Scrum and Agile Methods - to thousands of
developers in dozens of companies around the globe. To learn more visit
http://us.gembasystems.com/

Agile Adoption Patterns will help you
whether you’re planning your first agile
project, trying to improve your next project,
or evangelizing agility throughout your
organization. This actionable advice is
designed to work with any agile method,
from XP and Scrum to Crystal Clear and
Lean. The practical insights will make you
more effective in any agile project role: as
leader, developer, architect, or customer.

ISBN-13: 978-1-934238-48-6
ISBN-10: 1-934238-48-1

9 781934 238486

50795

BUY NOW
books.dzone.com/books/agile-adoption-patterns

http://refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.refcardz.com
http://us.gembasystems.com/
http://books.dzone.com/books/agile-adoption-patterns

