

DZone, Inc. | www.dzone.com

Core ASP.NET
By Holger Schwichtenberg

ABOUT ASP.NEt

CONTENTS INCLUDE:
n	 Installation
n	 ASP.NET Web Applications
n	 The ASP.NET Webform Model
n	 Web Controls
n	 The Page Class
n	 Hot Tips and more...

C
o

re
 A

S
P.

N
E

T

w

w
w

.d
zo

n
e.

co
m

 G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#46

ASP.NET stands for “Active Server Pages .NET”, however
the full name is rarely used. ASP.NET is a framework for the
development of dynamic websites and web services. It is based
on the Microsoft .NET Framework and has been part of .NET
since Version 1.0 was released in January 2002. The current
version named 3.5 Service Pack 1 was released in August 2008.
The next version, 4.0, is expected to be released at the end of
the year 2009.

This Refcard summarizes the most commonly used core fun-
ctions of ASP.NET. You will find this Refcard useful for some of
the most common tasks with ASP.NET, regardless of the version
you are using

ASP.NEt Web Applications

An ASP.NET application consists of several .aspx files. An
.aspx file can contain HTML markup and special ASP.NET
markup (called Web Controls) as well as the code (Single Page
Model). However, the Code Behind Model which comes with
a separate code file called, the “Code Behind File” (.aspx.
cs or .aspx.vb), provides a cleaner architecture and better
collaboration between Web designers and Web developers.
ASP.NET applications may contain several other elements
such as configuration files (maximum one per folder), a global
application file (only one per web application), web services,
data files, media files and additional code files.

There are two types of Web projects: “Website Projects” (File/
New/Web Site) and “Web Application Projects” (File/New/
Project/Web Application). “Website” is the newer model,
while Web Application Projects mainly exist for compatibility
with Visual Studio .NET 2002 and 2003. This Refcard will only
cover Web Site Projects. Most of this content is also valid for
Web Applications.

Hot
Tip

A well designed ASP.NET application distinguishes
itself by having as little code in the Code Behind
files and other code files as possible. The large
majority of your code should be in referenced
Assemblies (DLLs) as they are reusable in other
Web applications. If you don’t want to put your code
into a separate assembly, you at least should use
separate classes in the “App_Code” folder within your
web project.

Installation

The best development environment for ASP.NET is Microsoft’s
Visual Studio. You can either use the free Visual Web
Developer Express Edition (http://www.microsoft.com/express/
vwd/) or any of the commercial editions of Visual Studio (e.g.
Visual Studio Professional). The latest version that supports
ASP.NET 2.0 and ASP.NET 3.5 is “2008” (internal version:
9.0). The .NET Framework and ASP.NET are part of the setup
of Visual Web Developer Express Edition and Visual Studio.
However, make sure you install Service Pack 1 for Visual Studio
2008, as this will not only fix some bugs but also add a lot of
new features.

ASP.NET needs a server with the HTTP protocol (web server)
to run. Visual Web Developer Express 2005/2008 and Visual
Studio 2005/2008 contain a webserver for local use on your
development machine. The “ASP.NET Development Server”
(ADS) will be used when specifying a “File System” location
when creating your project. Thus, “HTTP” would mean you
address a local or remote instance of Internet Information
Server (IIS) or any other ASP.NET enabled web server. ADS
is a lightweight server that cannot be reached from other
systems. However, there are differences between ADS and
IIS, especially in the security model that makes it sometimes
hard for beginners to deploy a website to the IIS that was
developed with ADS. On the production system you will use IIS
and only install the .NET Framework, because Visual Studio is
not required here.

Hot
Tip

If you choose to use Internet Information Server (IIS),
install the IIS on your machine before installing the
.NET Framework or Visual Studio. If you did not follow
this installation order, you may use aspnet_regi-
is.exe to properly register ASP.NET within the IIS.

n 	Authoritative content
n 	Designed for developers
n 	Written by top experts
n 	Latest tools & technologies
n	 Hot tips & examples
n 	Bonus content online
n 	New issue every 1-2 weeks

Subscribe Now for FREE!
Refcardz.com

Get More Refcardz
(They’re free!)

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com
http://www.microsoft.com/express/vwd/
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

2

Name of Member Description

Id Unique identifier for a control within a page

ClientID Gets the unique identifier that ASP.NET generates if more
than one control on the page has the same (String) ID.

Core ASP.NET

Table 1: Core Members in the base class system. Web.UI.WebControls.WebControl.

Tables 2, 3 and 4 list the most commonly used controls for ASP.
NET web pages. However, there are more controls included
in the .NET platform and many more from third parties not
mentioned here.

Control Purpose Important specific members in
addition to the members inherited
from WebControl

<asp:Label> Static Text Text

<asp:TextBox> Edit Text (single line,
multiline or password)

TextMode, Text, TextChanged()

<asp:FileUpload> Choose a file for
upload

FileName, FileContent, FileBytes,
SaveAs()

<asp:Button> Display a clasic button Click(), CommdName, Command()

<asp:ImageButton> Display a clickable
image

Click(), CommdName, Command()

<asp:LinkButton> Display a hyperlink that
works like a button

ImageUrl, ImageAlign, Click(),
CommdName, Command()

<asp:CheckBox> Choose an option Text, Checked, CheckedChanged()

<asp:RadioButton> Choose an option Text, Checked, CheckedChanged()

<asp:HyperLink> Display a hyperlink NavigateURL, Target, Text

<asp:Image> Display an image ImageURL, ImageAlign

<asp:ImageMap> Display a clickable
image with different
regions

ImageURL, ImageAlign, HotSpots,
HotSpotsMode, Click()

Table 2: Core controls for ASP.NET web pages.

List controls display several items that the user can choose
from. The selectable items are declared static in the .aspx
file or created manually using the Items collection or created
automatically by using data binding. For data binding you can
fill DataSource with any enumerable collection of .NET objects.
DataTextField and DataValueField specify which properties of
the objects in the collection are used for the list control.

Figure 1: The Content of an ASP.NET Web Application

The ASP.NET Webform Model

ASP.NET uses an object- and event-oriented model for web
pages. The ASP.NET Page Framework analyzes all incoming
requests as well as the .aspx page that the request is aimed
at. The Page Framework creates an object model (alias control
tree) based on this information and also fires a series of events.
Event handlers in your code can access data, call external
code in referenced .NET assemblies and manipulate the object
model (e.g. fill a listbox or change the color of a textbox). After
all event handlers have executed, the Page Framework renders
the current state of the object model into HTML tags with
optional CSS formatting, JavaScript code and state information
(e.g. hidden fields or cookies). After interacting with the page,
the user can issue a new request by clicking a button or a link
that will restart the whole process.

Figure 2: The ASP.NET request/response life cycle

Web Controls

An ASP.NET page can contain common HTML markup.
However, only ASP.NET web controls provide full object-
and event-based functionality. Web controls have two
representations: In the .aspx files they are tags with the prefix
“asp:”, e.g. <asp:TextBox>. In the code they are .NET classes,
e.g. System.Web.UI.WebControls.TextBox.

Table 1 lists the core members of all web controls that are
implemented in the base class “System.Web.UI.WebControls.
WebControl”.

Page Pointer to the page where the control lives

Parent Pointer to the parent control, may be the same as “Page”

HasControls() True, if the control has sub-controls

Controls Collection of sub-controls

FindControl(“NAME”) Finds a sub-control within the Controls collection by its ID

BackColor, BorderColor,
Borderstyle, BorderWidth,
Font, ForeColor, Height,
Width, ToolTip, TabIndex

Self-explaining properties for the formatting of the control.

CssClas The name of CSS class that is used for formatting the control

Style A collection of single CSS styles, if you don’t want to use a
CSS class or override behavior in a CSS class

EnableViewState Disables page-scoped state management for this control

Visible Disables rendering of the control

Enabled Set to false if you want the control to be disabled in the
browser

Focus() Set the focus to this control

DataBind() Gets the data (if the control is bound to a data source)

Init() Fires during initializtion of the page. Last chance to change
basic setting e.g. the culture of the current thread that
determines the behavior used for rendering the page.

Load() Fires during the loading of the page. Last to change to do
any preparations.

PreRender() Fires after all user defined event handlers have completed
and right before rendering of the page starts. Your last
chance to make any changes to the controls on the page!

UnLoad() Event fires during the unloading of a page.

Hot
Tip

If you bind a collection of primitive types such as
strings or numbers, just leave DataTextField and
DataValueField empty.

http://www.dzone.com
http://www.refcardz.com

 tech facts at your fingertips

DZone, Inc. | www.dzone.com

3
Core ASP.NET

Control Purpose Important specific members
in addition to the members
inherited from WebControl

<asp:Required
 FieldValidator>

Checks if a user changed the
initial value of an input control

ControlToValidate, ErrorMessage,
Display, EnableClientScript,
IsValid, InitialValue

<asp:Compare
 Validator>

Compares the value entered by
the user in an input control with
the value entered in another
input control, or with a constant
value

ControlToValidate, ErrorMessage,
Display, EnablesClientScript,
IsValid, ValueToCompare, Type,
ControlToCompare

<asp:Range
 Validator>

Checks whether the value of
an input control is within a
specified range of values

ControlToValidate, ErrorMessage,
Display, EnableClientScript,
IsValid, MinimumValue,
MaximumValue, Type

<asp:Regular
 Expression
 Validator>

Checks if the user input
matches a given regular

ControlToValidate, ErrorMessage,
Display, EnavleClientScript,
IsValid, ValidationExpression

<asp:Custom
 Validator>

Performs custom checks on the
server and optional also on the
client using JavaScript

ControlTValidate, ErrorMessage,
Display, EnableClientScript,
IsValid, ValidateEmptyText,
Client ValidationFunction,
ServerValidate()

Table 4: Validation controls for ASP.NET web pages

Hot
Tip

For the CustomValidator you can optionally write
a JavaScript function that performs client side vali-
dation. The function has to look like this:
<script type=”text/javascript”>
 function ClientValidate(source, args)
 {
 if (x > 0) // Any condition
 { args.IsValid=true; }
 else
 { args.IsValid=false; }
 }
</script>

The Page Class

All web pages in ASP.NET are .NET classes that inherit from
the base class “System.Web.UI.Page”. The class Page has
associations to several other objects such as Server, Request,
Response, Application, Session and ViewState (see figure
3). Therefore, developers have access to a wide array of
properties, methods and events within their code. Table 5 lists
the most important members of a Page and its dependent
classes. Please note that the Page class has the class Control in
its inheritance hierarchy and therefore shares a lot of members
with the WebControl class (e.g. Init(), Load(), Controls,
FindControl). However, these members are not repeated here.

Member Description

Page Title Title string of the Page

Page.IsPostBack True, if page is being loaded in response to a
client postback. False if it is being loaded for
the first time.

Page.IsAsync True, if the page is loaded in an
asynchronous request (i.e. AJAX request)

Page.IsValid True, if all validation server controls in
the current validation group validated
successfully

Page.Master Returns the MasterPage object associated
with this page

Page.PreviousPage Gets the page that transferred control to
the current page (only available if using
Server.Transfer, not available with Response.
Redirect)

Page.SetFocus(Control ControlID) Sets the browser focus to the specified
control (using JavaScript)

Trace.Write Writes trace information to the trace log.

User.Identity.IsAuthenticated True, if the user has been authenticated.

Hot
Tip

Setting AppendDataBoundItems to true will add the
databound items to the static items declared in the
.aspx file. This will allow the user to select values that
don’t exist in the data source such as the values “All”
or “None”

Control Purpose Important specific members in
addition to the members inherited
from WebControl

<asp:Drop
 DownList>

Allows the user to select
a single item from a
drop-down list

Items.Add(), Items.
Remove(), DataSource,,
DataTextField, DataValueField,
AppendDataBoundItems,
SelectedIndez, SelectedItem,
SelectedValue, SelectedIndexChanged()

<asp:ListBox> Single or multiple
selection box

Items.Add(), Items.
Remove(), DataSource,,
DataTextField, DataValueField,
AppendDataBoundItems,
SelectedIndez, SelectedItem,
SelectedValue, SelectedIndexChanged(),
Rows, SelectionMode

<asp:Check
 BoxList>

Multi selection check
box group

Items.Add(), Items.
Remove(), DataSource,,
DataTextField, DataValueField,
AppendDataBoundItems,
SelectedIndez, SelectedItem,
SelectedValue, SelectedIndexChanged(),
RepeatLayout, RepeatDirection

<asp:Radio
 ButtonList>

Single selection radio
button group

Items.Add(), Items.
Remove(), DataSource,,
DataTextField, DataValueField,
AppendDataBoundItems,
SelectedIndez, SelectedItem,
SelectedValue, SelectedIndexChanged(),
RepeatLayout, RepeatDirection

<asp:Bulleted
 List>

List of items in a
bulleted format

Items.Add(), Items.
Remove(), DataSource,,
DataTextField, DataValueField,
AppendDataBoundItems,
SelectedIndez, SelectedItem,
SelectedValue, SelectedIndexChanged(),
BulletImageUrl, BulletStyle

Table 3: List Controls for ASP.NET web pages

Validation Controls check user input. They always refer to
one input control ControlToValidate and display a text
ErrorMessage if the validation fails. They perform the checks in
the browser using JavaScript and also on the server. The client
side validation can be disabled by setting EnableClientScript
to false. However, the server side validation cannot be
disabled for security reasons.

Figure 3: Object Model of “System.Web.UI.Page”

http://www.refcardz.com
http://www.dzone.com
http://www.refcardz.com

 tech facts at your fingertips

DZone, Inc. | www.dzone.com

4
Core ASP.NET

User.Identity.AuthenticationType Type of Authentication used (Basic, NTLM,
Kerberos, etc)

User.Identity.Name Name of the current user

Server.MachineName Name of the computer the web server is
running on

Server.GetLastError() Gets the Exception object for the last
exception

Server.HtmlEncode(Text) Applies HTML encoding to a string

Server.UrlEncode(Pah) Applies URL encoding to a string

Server.MapPath(Path) Maps the given relative path to an absolute
path on the web server

Server.Transfer(Path) Stops the execution of the current page and
starts executing the given page as part of the
current HTTP request

Request.AcceptTypes String array of cliet-supported MIME accept
types.

Request.Browser Provides information about the browser

Request.ClientCertificate Provides the certificate of the client, if SSL
client authentication is used

Request.Cookies The list of cookies that the browser sent to
the web server

Request.Form The name and value of the input fields the
browser sent to the web server

Request.Headers Data from the HTTP header the browser sent
to the web server

Request.IsAuthenticated True, if the user is authenticated

Request.IsSecureConnection True, if SSL is used

Request.Path Virtual path of the HTTP request (without
server name)

Request.QueryString Name/Value pairs the browser sent as part
of the URL

Request.ServerVariables Complete list of name/value pairs with
information about the server and the current
request

Request.Url Complete URL of the request

Request.UrlReferrer Refering URL of the request (Previous page,
the browser visited)

Request.UserAgent Browser identification

Request.UserHostAddress IP address of the client

Request.UserLanguages Preferred languages of the user (determined
by browser settings)

Response.BinaryWrite(bytes) Writes information to an HTTP response
output stream.

Response.Write(string) Writes information to an HTTP response
output stream.

Response.WriteFile(string) Writes the specified file directly to an HTTP
response output stream.

Response.BufferOutput True if the output to client is buffered

Response.Cookies Collection of cookies that shall be sent to
the browser

Response.Redirect(Path) Redirects a client to a new URL using the
HTTP status code 302

Response.StatusCode HTTP status code (integer) of the output
returned to the client

Response.StatusDescription HTTP status string of the output returned to
the client

Session.SessionID Unique identifier for the current session (a
session is user specific)

Session.Item Gets or sets individual session values.

Session.IsCookieless True, if the ID for the current sessions are
embedded in the URL. False, if its stored in
an HTTP cookie

ViewState.Item Gets or sets the value of an item stored in the
ViewState, which is a hidden field used for
state management witin a page

Application.Item Gets or sets the value of an item stored in
the application state, which is an application-
scope state management facility

Table 5: Most important members of the Page class and its associated classes

A Typical Page

Figure 4 shows the typical content of an .aspx page and Figure
5 the content of a typical code behind class. The sample used
is a registration form with three fields: Name, Job Title and
Email Address.

<%@ Page Language=”C#” AutoEventWireup=”true”
 CodeFile=”PageName.aspx.cs” Inherits=”PageName” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//en”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title>Registration Page</title>
 <link href=”MyStyles.css” rel=”stylesheet” type=”text/css”/>
 <style type=”text/css”>
 .Headline
 {
 font-size: large; font-weight: bold;
 }
 </style>
</head>
<body>
 <form id=”c_Form” ruanat=”server”>
 <div>
 <asp:Label runat=”server” ID=”C_Headline” Text=”Please register:”
 class=”Headline”></asp:label>
 <p>Name:
 <asp:TextBox ID=”C_Name” runat=”server”></asp:TextBox>
 <asp:RequiredFieldValidator ID=”C_NameVal” ControlToValidate=”C_
 Name” ruanat=”server” ErrorMessage=”Name required”></
 asp:RequiredFieldValidator>
 </p>
 <p>Job Title:
 <asp:DropDownList ID=”C_JobTitle” runat=”server”>
 <asp:ListItem Text=”Software Developer” Value=”SD”></
 asp:ListItem>
 <asp:ListItem Text=”Software Architect” Value=”SA”></
 asp:ListItem>
 </asp:DropDownList>
 </p>
 <p>EMail:
 <asp:TextBox ID=”C_EMail” runat=”server”></asp:TextBox>
 <asp:RequiredFieldValidator Id=”C_EMailVal1” ControlToValidate=”C_
 EMail” runat=”server” ErrorMessage=”EMail required”></
 asp:RequiredFieldValidator>
 <asp:RegularExpressionValidator ID=”C_EMailVal2”
 ControlToValidate=”C_EMail” runat=”server” ErrorMessage=”Email
 not valid” ValidationExpression=”\w+([-+.’]\w+)*@\w+([-.]\
 w+)*\.\w+([-.]\w+)*”>
 </asp:RegularExpressionValidator>
 </p>
 <p>
 <asp:Button ID=”C_register” runat=”server” Text=”Register”
 onclick=”C_Register_Click”/>
 </p>
 </div>
 </form>
</body>
</html>

Page
Directive

HTML Tags

Inline
Styles Form Tag(exactly

one per page) Dynamic
Label

Static
Labels

Web Control with
Subcontrols

Reference to Style Sheet Files

Simple Web
Control

Validation
Controls

Figure 4: Typical content of an ASPX file

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;

public partial class PageName : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 // If an authenticated users starts using this page,
 // use his login name in the name textbox
 if (!Page.IsPostBack && Page.User.Identity.IsAuthenticated)
 {
 this.C_Name.Text = Page.User.Identity.Name;
 this.C_Name.Enabled = false;
 }
 }

All page classes
must derive from

“page”

The “Load” event is
fired every time the
Page is requested

All page classes
must derive from

“page”

http://www.refcardz.com
http://www.dzone.com
http://www.refcardz.com

 tech facts at your fingertips

DZone, Inc. | www.dzone.com

5
Core ASP.NET

Figure 5: Typical content of a Code Behind file

 protected void C_Register_Click(object sender, EventArgs e)
 {
 if (Page.IsValid) // if all validation controls succedded
 { // call business logic and
 if (BL.Register(this.C_Name.Text, this.C_EMail.Text, this.C_
 JobTitle.SelectedValue))
 { // redirect to confirmation page
 Response.Redirect(“RegistrationConfirmation.aspx”);
 }
 else
 { // change the headline
 this.C_Headline. = “You are already registered!”;
 }
 }
 }
 }

Reaction to a User’s
Action

Call Business
Logic

Redirect to annother
Page

Changing a Property
of a Webcontrol

<!-- Connection strings -->
<connectionStrings>
 <add name=”RegistrationDatabase” connectionString=”Data
Source=EO2;Initial Catalog= RegistrationDatabase;Integrated
Security=True” providerName=”System.Data.SqlClient” />
</connectionStrings>
<!-- User defined settings -->
<AppSettings>
 <and key=”WebmasterEMail” value=”hs@IT-Visions.de” />
</appSettings>

<system.web>
 <!-- Specify a login page -->
 <!-- Use the URL for storing the authentication ID if cookies are
not allowed -->
 <!-- Set the authentication timeout to 30 minutes -->
 <authentication mode=”Forms”>
 <forms loginUrl=”Login.aspx” cookieless=”AutoDetect” timeout=”30”>
 </forms>
 </authentication>
 <!-- Deny all unauthorizd access to this application -->
 <authorization>
 <deny users=”?” />
 </authorization>
 <!-- Use the URL for storing the session ID if cookies are not
allowed -->
 <!-- Set the session timeout to 30 minutes -->
 <sessionState cookieless=”AutoDetect” timeout=”30”></sessionState>

ViewState[“Counter”] = CurrentCounter_Page + 1;
Session[“Counter”] = CurrentCounter_Session + 1;
Application[“Counter”] = CurrentCounter_Application + 1;
Response.Cookies[“Counter”].Value = (CurrentCounter_User +
 1).ToString();
Response.Cookies[“Counter”].Expires = DateTime.MaxValue; // no
 expiration

State Management

State management is a big issue in web applications as the
HTTP protocol itself is stateless. There are three standard
options for state management: hidden files, URL parameters
and cookies. However, ASP.NET has some integrated
abstractions from these base mechanisms know as View State,
Session State, and Application State. Also, the direct use of
cookies is supported in ASP.NET.

Mechanism Scope Lifetime Base Mechanism Data Type Storing Value Reading Value

View State Single user on a single page Leaving the current page Hidden FIeld “ViewState” Object (any
serializable.NET
data type)

Page.ViewState Page.ViewState

Session State Latest interaction of a single
user with the web page

Limited number of minutes
after the last request from
the user

Cookie (“ASPSessionJD...”)
or URL Parameter “(S(...))”
plus server side store (local
RAM, RAM on dedicated
server or database)

Object. Object
must be serializable
if the store is not
the local RAM

Page.Session Page.Session

Cookies A single User Closing of the browser or
dedicated point in time

Cookie String Page.Response.Cookies Page.Response.Cookies

Application State All users Shutting down the web
application

Local RAM Object Page.Application Page.Application

Hot
Tip

Disabling the View State (EnableViewState=false in
a control) will significantly reduce the size of the
page sent to the browser. However, you will have to
take care of the state management of the controls
with disabled View State on your own. Some complex
controls will suffer the loss of functionality without
View State.

The following code snippet shows how to set values for a
counter stored in each of these mechanisms:

The following code snippet shows how to read the current
counter value from each of these mechanisms: Next Column ---->

long CurrentCounter_Application, CurrentCounter_ApplicationLimited,
CurrentCounter_Session, CurrentCounter_Page, CurrentCounter_User;
if (Application[“Counter”] == null) { CurrentCounter_Application =
 0; }
 else { CurrentCounter_Application = Convert.ToInt64(Application[“C
 ounter”]); }
if (Session[“Counter”] == null) { CurrentCounter_Session = 0; }
 else { CurrentCounter_Session = Convert.
 ToInt64(Session[“Counter”]);}
if (ViewState[“Counter”] == null) { CurrentCounter_Page = 0; }
 else { CurrentCounter_Page = Convert.
 ToInt64(ViewState[“Counter”]); }
if (Request.Cookies[“Counter”] == null) { CurrentCounter_User = 0; }
 else { CurrentCounter_User = Convert.ToInt64(Request.
 Cookies[“Counter”].Value); }

Hot
Tip

When reading value from these objects, you have to
check first if they already exist. Otherwise you will
recieve the exception “NullReferenceExeception:
Object reference not set to an instance of an object.”

Configuration

All configurations for ASP.NET applications are stored in XML-
based configuration files with the fixed name “web.config”. In
addition to the configuration files in the application root folder,
subfolders may also contain a web.config that overrides parent
settings. Also, there are the global configuration files machine.
config and web.config in the folder \Windows\Microsoft.NET\
Framework\v2.0.50727\CONFIG that provide some default
settings for all web applications. (Note: v2.0.50727 is still
correct for ASP.NET 3.5!).

Visual Studio and Visual Web Developer create a default root
configuration file in your web project that contains a lot of
internal setting for ASP.NET 3.5 to work properly. Figure 6
shows a fragment from a web.config file with settings that are
often used.

Figure 6: Setting Values

Figure 7: Reading Values

http://www.refcardz.com
http://www.dzone.com
http://www.refcardz.com

Design Patterns

By Jason McDonald

CONTENTS INCLUDE:

n	 Chain of Responsibility

n	 Command

n	 Interpreter

n	 Iterator

n	 Mediator

n	 Observer

n	 Template Method and more...

DZone, Inc. | w
ww.dzone.com

D
es

ig
n

Pa
tt

er
ns

 w

w
w

.d
zo

ne
.c

om

 G
et

 M
o

re
 R

ef
ca

rz
!

V
is

it
 r

ef
ca

rd
z.

co
m

#8

Brought to you by...

Inspired

by the

GoF

Bestseller

This Design Patterns refcard provides a quick reference to the

original 23 Gang of Four (GoF) design patterns, as listed in

the book Design Patterns: Elements of Reusable Object-

Oriented Software. Each pattern includes class diagrams,

explanation, usage information, and a real world example.

Chain of Responsibility
, continued

Object Scope: Deals with object relationships that can

be changed at runtime.

Class S
cope: Deals with class relationships that can be

changed at compile time.

C Abstract Factory

S Adapter

S Bridge

C Builder

B Chain of

Responsibility

B Command

S Composite

S Decorator

S Facade

C Factory Method

S Flyweight

B Interpreter

B Iterator

B Mediator

B Memento

C Prototype

S Proxy

B Observer

C Singleton

B State

B Strategy

B Template Method

B Visito
r

ABOUT DESIGN PATTERNS

Creational Patterns: U
sed to construct objects such

that they can be decoupled from their im
plementing

system.

Structural Patterns: U
sed to form large object

structures between many disparate objects.

Behavioral Patterns: U
sed to manage algorithms,

relationships, and responsibilitie
s between objects.

CHAIN OF RESPONSIBILITY

 O
bject Behavioral

COMMAND

 O

bject Behavioral

successor

Client

<<interface>>

Handler

+handlerequest()

ConcreteHandler 1

+handlerequest()

ConcreteHandler 2

+handlerequest()

Purpose
Gives more than one object an opportunity to handle a request by linking

receiving objects together.

Use

When

n
	Multiple objects may handle a request and the handler doesn’t have to

 be a specific object.

n
	A set of objects should be able to handle a request with the handler

 determined at runtime.

n
	A request not being handled is an acceptable potential outcome.

Example
Exception handling in some languages implements this pattern. When an

exception is thrown in a method the runtime checks to see if th
e method

has a mechanism to handle the exception or if it
 should be passed up the

call stack. When passed up the call stack the process repeats until code to

handle the exception is encountered or until th
ere are no more parent

objects to hand the request to.

Receiver

Invoker

Command

+execute()

Client
ConcreteCommand

+execute()

Purpose
Encapsulates a request allowing it to

 be treated as an object. This allows

the request to be handled in traditionally object based relationships such

as queuing and callbacks.

Use

When

n
	You need callback functionality.

n
	Requests need to be handled at variant tim

es or in variant orders.

n
	A history of requests is needed.

n
	The invoker should be decoupled from the object handling the invocation.

Example
Job queues are widely used to facilitate the asynchronous processing

of algorithms. By utilizing the command pattern the functionality to be

executed can be given to a job queue for processing without any need

for the queue to have knowledge of the actual implementation it is

invoking. The command object that is enqueued implements its particular

algorithm within the confines of the interface the queue is expecting.

Upcoming Titles
RichFaces
Agile Software Development
BIRT
JSF 2.0
Adobe AIR
BPM&BPMN
Flex 3 Components

Most Popular
Spring Configuration
jQuery Selectors
Windows Powershell
Dependency Injection with EJB 3
Netbeans IDE JavaEditor
Getting Started with Eclipse
Very First Steps in Flex

“Exactly what busy developers need:
simple, short, and to the point.”

James Ward, Adobe Systems

Download Now

Refcardz.com

Professional Cheat Sheets You Can Trust

DZone, Inc.
1251 NW Maynard
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2009 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher. Reference: Programming Microsoft ASP.NET 3.5, Dino Esposito, Microsoft Press, 2008

Version 1.0

$7
.9

5

DZone communities deliver over 4 million pages each month to

more than 1.7 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheatsheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

ABOUT THE AUTHOR

6
Core ASP.NET

RECOMMENDED BOOK

Deployment

ASP.NET applications can be deployed as source code
via the so called “XCopy deployment”. This means you
copy the whole content of the web project folder to the

Hot
Tip

Download the “Visual Studio 2008 Web Deployment
Projects” from microsoft.com. This is an Add-In that
provides better control over the precompilation
process.

Hot
Tip

Please make sure you turn debugging off again
before deploying your application as this decreases
execution performance.

 <!-- Display custom error pages for remote users -->
 <customErrors mode=”RemoteOnly” defaultRedirect=”GenericErrorPage.
 htm”>
 <error statusCode=”403” redirect=”NoAccess.htm” />
 <error statusCode=”404” redirect=”FileNotFound.htm” />
 </customErrors>
 <!-- Turn on debugging -->
 <compilation debug=”false”>

Figure 8: Typical setting in the web.config file.

production system and configure the target folder on the
production system as an IIS web application (e.g. using the
IIS Manager). The production web server will automatically
compile the application during the first request and recompile
automatically if any of the source files changed.

However, you can precompile the application into .NET
assemblies to improve protection of your intellectual property
and increase execution speed for the first user. Precompilation
can be performed through Visual Studio/Visual Web developer
(Menu “Build/Publish Website”) or the command line tool
aspnet_compiler.exe.

Holger Schwichtenberg is one of Europe’s best-known experts
on .NET and Windows PowerShell. He holds both a Master’s
degree and a Ph.D. in business informatics. Microsoft recognizes
him as a Most Valuable Professional (MVP) since 2003. He is a
.NET Code Wise Member, an MSDN Online Expert and an INETA
speaker. He regularly gives high-level talks at conferences such as
TechEd, Microsoft Summit, BASTA and IT Forum. He is the CEO
of the German based company www.IT-Visions.de that provides

consulting and training for many companies throughout Europe.
Publicaitions
Holger Schwichtenberg has published more than twenty books for Addison Wesley
and Microsoft Press in Germany, as well as about 400 journal articles. His recent
book “Essential PowerShell” has also been published by Addison Wesley in English.

Blog
www.dotnet-doktor.de (German)

Website
www.IT-Visions.de/en

An in-depth guide to the core
features of Web development with
ASP.NET, this book goes beyond the
fundamentals. It expertly illustrates
the intricacies and uses of ASP.NET
3.5 in a single volume. Complete
with extensive code samples and
code snippets in Microsoft Visual C#
2008, this is the ideal reference for
developers who want to learn what
s new in ASP.NET 3.5, or for those
building professional-level Web
development skills.

ISBN-13: 978-1-934238-49-3
ISBN-10: 1-934238-49-X

9 781934 238493

50795

BUY NOW
books.dzone.com/books/programming-asp-net

http://refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
www.dotnet-doktor.de
www.it-visions.de/en
http://books.dzone.com/books/programming-asp-net
http://www.refcardz.com

