
fusesource.com

FuseSource

Created by James Strachan, co-founder of Apache Camel

Experts in professional open source integration & messaging

A Progress Software Company

Download New Camel IDE Today

Go to fusesource.com/ide and try it out today

IDE for implementing enterprise integration patterns easily in ServiceMix using Camel

http://fusesource.com/ide
http://fusesource.com/ide

DZone, Inc. | www.dzone.com

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#47
T

h
e

 T
o

p
 T

w
e

lv
e

 I
n

te
g

ra
ti

o
n

 P
at

te
rn

s
fo

r
A

p
ac

h
e

 C
am

e
l

CONTENTS INCLUDE:
n	 About Enterprise Integration Patterns	
n	 About Apache Camel
n	 Essential Patterns
n	 Conclusions and more... By Claus Ibsen

The Top Twelve Integration Patterns
for Apache Camel

ABOUT ENTERPRISE INTEGRATION PATTERNS

Integration is a complex problem. To help deal with the
complexity of integration problems, the Enterprise Integration
Patterns (EIP) have become the standard way to describe,
document and implement complex integration problems. Hohpe
& Woolf’s book the Enterprise Integration Patterns has become
the bible in the integration space – essential reading for any
integration professional.

Apache Camel is an open-source project for implementing
the EIP easily in a few lines of Java code or XML configuration.
This Refcard guides you through the most common Enterprise
Integration Patterns and gives you examples of how to
implement them either in Java code or using XML. This Refcard
is targeted at software developers and enterprise architects, but
anyone in the integration space can benefit as well.

ABOUT APACHE CAMEL

Apache Camel is a powerful open-source integration platform
based on Enterprise Integration Patterns (EIP) with powerful
bean integration. Camel lets you implement EIP routing using
Camels intuitive Domain Specific Language (DSL) based on
Java (aka fluent builder) or XML. Camel uses URI for endpoint
resolution so it’s very easy to work with any kind of transport
such as JMS, HTTP, SOAP, REST, File, FTP, TCP, XMPP, JBI, SMTP,
and many others. Camel also provides data formats for various
popular formats such as CSV, EDI, FIX, HL7, JAXB, and JSon,
etc. Camel is an integration API that can be embedded in any
server of choice such as Apache ServiceMix, ActiveMQ, Tomcat,
Jetty, JEE Application Server, standalone, or in the cloud. Camel
is OSGi compliant, allowing you to host your Camel bundles in
an OSGi container such as Apache ServiceMix. Camel’s bean
integration let you define loose coupling allowing you to fully
separate your business logic from the integration logic. Camel
is based on a modular architecture allowing you to plug in your
own component or data format, so they seamlessly blend in
with existing modules. Camel provides a test kit for unit and
integration testing with strong mock and assertion capabilities.

ESSENTIAL PATTERNS

This group consists of the most essential patterns that anyone
working with integration must know.

Pipes and Filters
How can we perform complex processing on a message while maintaining
independence and flexibility?

Problem A single event often triggers a sequence of processing steps.

Solution Use Pipes and Filters to divide a larger processing steps (filters) that are
connected by channels (pipes).

Camel Camel supports Pipes and Filters using the pipeline node.

Java DSL from(“jms:queue:order:in”).pipeline(“direct:transformOrd
er”, “direct:validateOrder”, “jms:queue:order:process”);

Where jms represents the JMS component used for consuming JMS
messages on the JMS broker. Direct is used for combining endpoints in a
synchronous fashion, allowing you to divide routes into sub routes and/or
reuse common routes.

Tip: Pipeline is the default mode of operation when you specify multiple
outputs, so it can be omitted and replaced with the more common node:
from(“jms:queue:order:in”).to(“direct:transformOrder”,
“direct:validateOrder”, “jms:queue:order:process”);

TIP: You can also separate each step as individual to nodes:
from(“jms:queue:order:in”)
 .to(“direct:transformOrder”)
 .to(“direct:validateOrder”)
 .to(“jms:queue:order:process”);

XML DSL <route>
 <from uri=”jms:queue:order:in”/>
 <pipeline>
 <to uri=”direct:transformOrder”/>
 <to uri=”direct:validateOrder”/>
 <to uri=”jms:queue:order:process”/>
 </pipeline>
</route>
<route>
 <from uri=”jms:queue:order:in”/>
 <to uri=”direct:transformOrder”/>
 <to uri=”direct:validateOrder”/>
 <to uri=”jms:queue:order:process”/>
</route>

Message Router
How can you deouple individual processing steps so that messages can be
passed to different filters depending on a set of conditions?

Problem Pipes and Filters route each message in the same processing steps. How can
we route messages differently?

Solution Filter using predicates to choose the right output destination.

Camel Camel supports Message Router using the choice node. For more details see
the Content-Based router pattern.

Decrypt Authenticate
Pipe Pipe

Filter Filter

De-Dup
Pipe

Filter

Pipe

Incoming
Order

‘Clean’
Order

inQueue

Message Router

outQueue 2

outQueue 1

Update for

Apache Camel

FuseSource Free downloads-fusesource.com

Come to FuseSource for
•	 IDE, Training & Consulting
•	 Getting started resources
•	 Enterprise subscriptions

Ready to start development with Camel?

http://www.refcardz.com
http://www.dzone.com
http://www.refcardz.com
http://fusesource.com/ide
http://fusesource.com/ide

2 The Top Twelve Integration Patterns for Apache Camel

DZone, Inc. | www.dzone.com

Content-Based Router
How do we handle a situation where the implementation of a single logical
function (e.g., inventory check) is spread across multiple physical systems?

Problem How do we ensure a Message is sent to the correct recipient based on
information from its content?

Solution Use a Content-Based Router to route each message to the correct recipient
based on the message content.

Camel Camel has extensive support for Content-Based Routing. Camel supports
content based routing based on choice, filter, or any other expression.

Java DSL from(“jms:order.process”)
 .choice()
 .when(header(“type”).isEqualTo(“widget”))
 .to(“jms:order.widget”)
 .when(header(“type”).isEqualTo(“gadget”))
 .to(“jms:order.gadget”)
 .otherwise()
 .to(“jms:order.other”);

XML DSL <route>
 <from uri=”jms:order.process”/>
 <choice>
 <when>
 <simple>${header.type} == ‘widget’</simple>
 <to uri=”jms:order.widget”/>
 </when>
 <when>
 <simple>${header.type} == ‘gadget’</simple>
 <to uri=”jms:order.gadget”/>
 </when>
 <otherwise>
 <to uri=”jms:order.other”/>
 </otherwise>
 </choice>
</route>

TIP: In XML DSL you cannot invoke code, as opposed to the Java DSL. To
express the predicates for the choices we need to use a language. We will use
simple language that uses a simple expression parser that supports a limited
set of operators. You can use any of the more powerful languages supported
in Camel such as: JavaScript, Groovy, Unified EL and many others.

TIP: You can also use a method call to invoke a method on a bean to evaluate
the predicate. Lets try that:
<when>
 <method bean=”myBean” method=”isGadget”/>
 ...
</when>
<bean id=”myBean” class=”com.mycomapany.MyBean”/>

public boolean isGadget(@Header(name = “type”) String
type) {
 return type.equals(“Gadget”);
}

Notice how we use Bean Parameter Binding to instruct Camel to invoke this
method and pass in the type header as the String parameter. This allows your
code to be fully decoupled from any Camel API so its easy to read, write and
unit test.

Message Translator
How can systems using different data formats communicate with each other
using messaging?

Problem Each application uses its own data format, so we need to translate the
message into the data format the application supports.

Solution Use a special filter, a message translator, between filters or applications to
translate one data format into another.

Camel Camel supports the message translator using the processor, bean or
transform nodes.

TIP: Camel routes the message as a chain of processor nodes.

Java DSL public class OrderTransformProcessor
 implements Processor {
 public void process(Exchange exchange)
 throws Exception {
 // do message translation here
  }
 }

from(“direct:transformOrder”)
 .process(new OrderTransformProcessor());

Bean
Instead of the processor, we can use Bean (POJO). An advantage of using
a Bean over Processor is the fact that we do not have to implement or use
any Camel specific interfaces or types. This allows you to fully decouple your
beans from Camel.

public class OrderTransformerBean {
 public StringtransformOrder(String body) {
  // do message translation here
  } 
}

Object transformer = new OrderTransformerBean();
from(“direct:transformOrder”).bean(transformer);

TIP: Camel can create an instance of the bean automatically; you can just refer
to the class type.

from(“direct:transformOrder”)
 .bean(OrderTransformerBean.class);

TIP: Camel will try to figure out which method to invoke on the bean in case
there are multiple methods. In case of ambiguity, you can specify which
methods to invoke by the method parameter: 

from(“direct:transformOrder”)
 .bean(OrderTransformerBean.class, “transformOrder”);

Transform
Transform is a particular processor allowing you to set a response to be
returned to the original caller. We use transform to return a constant ACK
response to the TCP listener after we have copied the message to the JMS
queue. Notice we use a constant to build an “ACK” string as response.

from(“mina:tcp://localhost:8888?textline=true”)
 .to(“jms:queue:order:in”) 
 .transform(constant(“ACK”));

XML DSL Processor
<route>
 <from uri=”direct:transformOrder”/> 
 <process ref=”transformer”/> 
</route>

<bean id=”transformer” class=”com.mycompany.
OrderTransformProcessor”/>

In XML DSL, Camel will look up the processor or POJO/Bean in the registry
based on the id of the bean.

Bean
<route>
 <from uri=”direct:transformOrder”/>
 <bean ref=”transformer”/> 
</route>

<bean id=”tramsformer”
 class=”com.mycompany.OrderTransformBean”/>

Transform
<route>
 <from uri=”mina:tcp://localhost:8888?textline=true”/>
 <to uri=”jms:queue:order:in”/> 
 <transform>
 <constant>ACK</constant> 
 </transform>
</route>

Annotation
DSL

You can also use the @Consume annotation for transformations. For
example, in the method below we consume from a JMS queue and do
the transformation in regular Java code. Notice that the input and output
parameters of the method is String. Camel will automatically coerce the
payload to the expected type defined by the method. Since this is a JMS
example, the response will be sent back to the JMS reply-to destination.

@Consume(uri=”jms:queue:order:transform”) 
public String transformOrder(String body) {
  // do message translation
}

TIP: You can use Bean Parameter Binding to help Camel coerce the Message
into the method parameters. For instance, you can use @Body, @Headers
parameter annotations to bind parameters to the body and headers.

New Order Router

Widget
Inventory

Gadget
Inventory

Incoming Message Translated Message

Translator

http://www.refcardz.com
http://www.dzone.com

3 The Top Twelve Integration Patterns for Apache Camel

DZone, Inc. | www.dzone.com

Message Filter
How can a component avoid receiving unwanted messages?

Problem How do you discard unwanted messages?

Solution Use a special kind of Message Router, a Message Filter, to eliminate undesired
messages from a channel based on a set of criteria.

Camel Camel has support for Message Filter using the filter method. The filter
evaluates a predicate whether its true or false; only allowing the true condition
to pass the filter, where as the false condition will silently be ignored.

Java DSL We want to discard any test messages so we only route non-test messages to
the order queue.

from(“jms:inbox”)
 .filter(header(“test”).isNotEqualTo(“true”))
 .to(“jms:order”);

XML DSL In the XML DSL we use the built-in expression language (simple) to define the
predicate to be used by the filter.

<route>
 <from uri=”jms:inbox”/>
 <filter>
 <simple>${header.test} == false</simple>
 <to uri=”jms:order”/>
 </filter>
</route>

Dynamic Router
How can you avoid the dependency of the router on all possible destinations
while maintaining its efficiency?

Problem How can we route messages based on a dynamic list of destinations?

Solution Use a Dynamic Router, a router that can self-configure based on special
configuration messages from participating destinations.

Camel Camel has support for Dynamic Router using the dynamicRouter method.
An expression must be provided to determine where the message should be
routed next. After the message has been routed Camel will re-evaluate the
expression to compute where the message should go next. It will keep doing
this until the expression returns null to indicate the end.

Java DSL We use a bean as the expression to compute where the message should be routed.

public class MyRouter {
 public String whereToGo(String body) {
 // query a data store to find where we should go next.
Return null to indicate end.
 }
}

We can then use the bean in the dynamicRouter in the Camel route:
from(“jms:queue:order”)
 .dynamicRouter(bean(new MyRouter()));

XML DSL In XML DSL we have to define the bean as a regular spring bean.

<bean id=”router” class=”com.foo.MyRouter”/>

Which we then can refer to in the <dynamicRouter> tag.
<route>
 <from uri=”jms:queue:order”/>
 <dynamicRouter>
 <method ref=”router”/>
 </dynamicRouter>
</route>

Annotation
DSL

You can use @DynamicRouter annotation in a bean to turn it into a dynamic router.

public class MyRouterBean {
 @DynamicRouter
 public String route(Exchange exchange) {
 // query a data store to find where we should go next.
Return null to indicate end.
 }
}

Annotation
DSL,
continued

Pay attention to the Camel route as you must invoke the bean as if it were a
regular bean instead.
from(“jms:queue:order”)
 .bean(new MyRouterBean());

TIP: You can use @Body, @Header, and @Headers annotations to bind
parameters to the message body and headers in the method signature of the
route method on the bean.

Recipient List
How do we route a message to a list of statically or dynamically specified
recipients?

Problem How can we route messages based on a static or dynamic list of destinations?

Solution Define a channel for each recipient. Then use a Recipient List to inspect an
incoming message, determine the list of desired recipients and forward the
message to all channels associated with the recipients in the list.

Camel Camel supports the static Recipient List using the multicast node, and the
dynamic Recipient List using the recipientList node.

Java DSL Static
In this route, we route to a static list of two recipients that will receive a copy of
the same message simultaneously.

from(“jms:queue:inbox”)
 .multicast().to(“file://backup”, “seda:inbox”);

Dynamic
In this route, we route to a dynamic list of recipients defined in the message
header [mails] containing a list of recipients as endpoint URLs. The bean
processMails is used to add the header[mails] to the message.

from(“seda:confirmMails”).beanRef(processMails)
 .recipientList(“destinations”);

And in the process mails bean we use @Headers Bean Parameter Binding to
provide a java.util.Map to store the recipients.

public void confirm(@Headers Map headers, @Body String
body} {
  String[] recipients = ...
  headers.put(“destinations”, recipients); 
}

XML DSL Static
<route>
 <from uri=”jms:queue:inbox/> 
 <multicast>
 <to uri=”file://backup”/> 
 <to uri=”seda:inbox”/>
 </multicast>
</route>

Dynamic
In this example, we invoke a method call on a Bean to provide the dynamic
list of recipients.

<route> 
 <from uri=”jms:queue:inbox/> 
 <recipientList>
 <method bean=”myDynamicRouter” method=”route”/>
 </recipientList>
</route>

<bean id=”myDynamicRouter”
 class=”com.mycompany.MyDynamicRouter”/>

public class myDynamicRouter {
 public String[] route(String body) {
 return new String[] { “file://backup”, } 
 }
}

Annotation
DSL

In the CustomerService, class we annoate the whereTo method with
@RecipientList and return a single destination based on the customer id.
Notice the flexibility of Camel as it can adapt accordingly to how you define
what your methods are returning: a single element, a list, an iterator, etc.

public class CustomerService {
 @RecipientList
 public String whereTo(@Header(“customerId”) id) {
 return “jms:queue:customer:” + id;
 } 
}

And then we can route to the bean and it will act as a dynamic recipient list.

from(“jms:queue:inbox”)
 .bean(CustomerService.class, “whereTo”);

Widget
Quote

Gadget
Quote

Widget
Quote

Message
Filter

Widget
Quote

Widget
Quote

A

B

C

Input Channel

Dynamic Router Output Channel

Output Channel

Output Channel

Control Channel

Message Router

Dynamic
Rule Base

A

B

C

D
Recipient

List

Recipient Channel

http://www.refcardz.com
http://www.dzone.com

4 The Top Twelve Integration Patterns for Apache Camel

DZone, Inc. | www.dzone.com

Splitter
How can a component avoid receiving unwanted messages?

Problem How can we split a single message into pieces to be routed individually?

Solution Use a Splitter to break out the composite message into a series of individual
messages, each containing data related to one item.

Camel Camel has support for Splitter using the split node.

Java DSL In this route, we consume files from the inbox folder. Each file is then split into
a new message. We use a tokenizer to split the file content line by line based
on line breaks.
from(“file://inbox”)
 .split(body().tokenize(“\n”))
 .to(“seda:orderLines”);

TIP: Camel also supports splitting streams using the streaming node. We can
split the stream by using a comma:

.split(body().tokenize(“,”)).streaming().
to(“seda:parts”);

TIP: In the routes above each individual split message will be executed in
sequence. Camel also supports parallel execution using the parallelProcessing
node.

.split(body().tokenize(“,”)).streaming()
 .parallelProcessing().to(“seda:parts”);

XML DSL In this route, we use XPath to split XML payloads received on the JMS order
queue.
<route>
 <from uri=”jms:queue:order”/>
 <split>
 <xpath>/invoice/lineItems</xpath>
 <to uri=”seda:processOrderLine”/>
 </split> 
</route>

And in this route we split the messages using a regular expression:
<route>
 <from uri=”jms:queue:order”/>
 <split>
 <tokenizer token=”([A-Z|0-9]*);” regex=”true”/>
 <to uri=”seda:processOrderLine”/>
 </split>
</route>

TIP: Split evaluates an org.apahce.camel.Expression to provide
something that is iterable to produce each individual new message. This
allows you to provide any kind of expression such as a Bean invoked as a
method call.
 <split>
 <method bean=”mySplitter” method=”splitMe”/>
 <to uri=”seda:processOrderLine”/>
 </split>

 <bean id=”mySplitter” class=”com.mycompany.
MySplitter”/>

public List splitMe(String body) {
 // split using java code and return a List
 List parts = ...
 return parts;
}

Aggregator
How do we combine the results of individual, but related messages so that they
can be processed as a whole?

Problem How do we combine multiple messages into a single combined message?

Solution Use a stateful filter, an Aggregator, to collect and store individual messages until
it receives a complete set of related messages to be published.

Camel Camel has support for the Aggregator using the aggregate method. A
correlation expression is used to determine which messages are related.
An aggregation strategy is used to combine aggregated messages into the
outgoing message. Camel’s aggregator also supports a completion predicate
allowing you to signal when the aggregation is complete.

Java DSL Stock quote example
We want to update a website 5th second with the latest stock quotes. The
quotes are received on a JMS topic. As we can receive multiple quotes for the
same stock within this time period we only want to keep the last one as its the
most up to date. We can do this with the aggregator:

from(“jms:topic:stock:quote”)
 .aggregate()
 .xpath(“/quote/@symbol”)
 .completionInterval(5000)
 .to(“direct:quotes”);

As the correlation expression we use XPath to fetch the stock symbol from the
message body. As the aggregation strategy we use the default provided by
Camel that picks the latest message, and thus also the most up to date. To
trigger the outgoing messages to be published we use a completion interval set
to 5 seconds.

Loan broker example
We aggregate responses from various banks for their quote for a given loan
request. We want to pick the bank with the best quote (the cheapest loan),
therefore we need to base our aggregation strategy to pick the best quote.

from(“jms:topic:loan:quote”)
 .aggregate()
 .header(“loanId”)
 .aggregationStrategy(bestQuote)
 .completionSize(3)
 .to(“direct:bestLoanQuote”);

We wish to trigger completion when we have received 3 quotes to pick the best
among. The following shows the code snippet for the aggregation strategy we
must implement to pick the best quote:

 public class BestQuoteStrategy implements
AggregationStrategy {
 public Exchange aggregate(Exchange oldExchange, Exchange
newExchange) {
 double oldQuote = oldExchange.getIn().getBody(Double.
class);
 double newQuote = newExchange.getIn().getBody(Double.
class);
 // return the “winner” that has the lowest quote
 return newQuote < oldQuote ? newExchange : oldExchange;
 }
}

XML DZL Stock quote example
<route>
 <from uri=”jms:topic:stock:quote”/>
 <aggregate completionInterval=”5000”>
 <correlationExpression>
 <xpath>/quote/@symbol</xpath>
 </correlationExpression>
 <to uri=”direct:quotes”/>
 </aggregate>
</route>
Loan Broker Example
<bean id=”bestQuote” class=”com.mycompany.
BestQuoteStrategy”/>
<route>
 <from uri=”jms:topic:loan:qoute”/>
 <aggregate strategyRef=”bestQuote” completionSize=”3”>
 <correlationExpression>
 <header>loanId</header>
 </correlationExpression>
 <to uri=”seda:bestLoanQuote”/>
 </aggregate>
</route>

TIP: The aggregate supports 5 different types of completions such as based
on timeout, inactivity, a predicate, or size. You can use configure multiple
completions such as a timeout and a size.

TIP: If the completed predicate is more complex we can use a method call to
invoke a bean so we can do the evaluation in pure Java code:

<bean id=”quoteService” class=”com.foo.QuoteService”/>
public boolean isComplete(String body) {
 return body.equals(“STOP”);
}
<completionPredicate>
 <method bean=”quoteService” method=”isComplete”/>
</completionPredicate>
Which can be even simpler using the Simple expression language:
<completionPredicate>
 <simple>${body} == STOP</simple>
</completionPredicate>

Resequencer
How can we get a stream of related but out-of-sequence messages back into
the correct order?

New Order Splitter
Order
Item 1

Order
Item 2

Order
Item 3

Inventory
Item 1

Inventory
Item 2

Inventory
Item 3

Aggregator Inventory
Order

Resequencer

http://www.refcardz.com
http://www.dzone.com

5 The Top Twelve Integration Patterns for Apache Camel

DZone, Inc. | www.dzone.com

Problem How do we ensure ordering of messages?

Solution Use a stateful filter, a Resequencer, to collect and reorder messages so that they
can be published in a specified order.

Camel Camel has support for the Resequencer using the resequence node. Camel
uses a stateful batch processor that is capable of reordering related messages.
Camel supports two resequencing algorithms:

batch: collects messages into a batch, sorts the messages and publishes the
messages.
stream: reorders, continuously, message streams based on detection of gaps
between messages.

Batch is similar to the aggregator but with sorting. Stream is the traditional
Resequencer pattern with gap detection. Stream requires usage of number
(longs) as sequencer numbers, enforced by the gap detection, as it must be
able to compute if gaps exist. A gap is detected if a number in a series is
missing, (e.g. 3, 4, 6 with number 5 missing). Camel will back off the messages
until number 5 arrives.

Java DSL Batch:
We want to process received stock quotes, once a minute, ordered by their
stock symbol. We use XPath as the expression to select the stock symbol, as the
value used for sorting.

from(“jms:topic:stock:quote”)
 .resequence().xpath(“/quote/@symbol”)
 .timeout(60 * 1000)
 .to(“seda:quotes”);

Camel will default the order to ascending. You can provide your own
comparison for sorting if needed.

Stream:
Suppose we continuously poll a file directory for inventory updates, and it’s
important they are processed in sequence by their inventory id. To do this we
enable streaming and use one hour as the timeout.

from(“file://inventory”)
 .resequence().xpath(“/inventory/@id”)
 .stream().timeout(60 * 60 * 1000)
 .to(“seda:inventoryUpdates”);

XML DSL Batch:
<route>
 <from uri=”jms:topic:stock:quote”/>
 <resequence>
 <xpath>/quote/@symbol</xpath>
 <batch-config batchTimeout=”60000”/>
 </resequence>
 <to uri=”seda:quotes”/>
</route>

Stream:
<route>
 <from uri=”file://inventory”/>
 <resequence>
 <xpath>/inventory/@id</xpath>
 <stream-config timeout=”3600000”/>
 </resequence>
 <to uri=”seda:quotes”/>
</route>

Notice that you can enable streaming by specifying <stream-config> instead
of <batch-config>.

Dead Letter Channel
What will the messaging system do with a message it cannot deliver?

Problem The messaging system cannot deliver a message

Solution When a message cannot be delivered it should be moved to a Dead Letter Channel

Camel Camel has extensive support for Dead Letter Channel by its error handler and
exception clauses. Error handler supports redelivery policies to decide how many
times to try redelivering a message, before moving it to a Dead Letter Channel.

The default Dead Letter Channel will log the message at ERROR level and
perform up to 6 redeliveries using a one second delay before each retry.
Error handlers have two-level scope at either global or route.

TIP: The Camel in Action book, chapter 5 is devoted to cover error handling,
which is the best source for information

Camel,
continued

TIP: See Exception Clause for selective interception of thrown exception. This
allows you to route certain exceptions differently or even reset the failure by
marking it as handled.

TIP: DeadLetterChannel supports processing the message before it gets
redelivered using onRedelivery. This allows you to alter the message
beforehand (i.e. to set any custom headers).

Java DSL Global scope
In global scope error handlers is defined before routes and applies to any routes
which has not a route specific error handler.

errorHandler(deadLetterChannel(“file:error”)
 .maximumRedeliveries(3));

from(...)

Route scope
In route scope the error handler is defined inside the route and applies only to
the given route.

from(“jms:queue:event”)
 .errorHandler(deadLetterChannel(“file:error/event”)
 .maximumRedeliveries(5).redeliveryDelay(5000))
 // and here begins the route
 .to(“log:event”)
 .to(“bean:handleEvent”);

XML DSL Global scope
To use global scoped error handler you refer to it using the errorHandlerRef
attribute on the <camelContext> tag as shown:
<camelContext errorHandlerRef=”eh”>
 <errorHandler id=”eh” type=”DeadLetterChannel”
deadLetterUri=”file:error”>
 <redeliveryPolicy maximumRedeliveries=”3”/>
 </errorHandler>
 <route>
 ...
 </route>
</camelContext>

Route scope
Route scope is likewise configured by referring to an error handler using
errorHandlerRef attribute on the <route> tag as shown:
<route errorHandlerRef=”other-eh”>
 ...
</route>

Wire Tap
How do you inspect messages that travel on a point-to-point channel?

Problem How do you tap messages while they are routed?

Solution Insert a Wire Tap into the channel that publishes each incoming message to the
main channel as well as to a secondary channel.

Camel Camel has support for Wire Tap using the wireTap node that supports two
modes: traditional and new message. The traditional mode sends a copy of the
original message, as opposed to sending a new message. All messages are sent
as Event Message and run in parallel with the original message.

Java DSL Traditional
The route uses the traditional mode to send a copy of the original message to
the seda tapped queue, while the original message is routed to its destination,
the process order bean.

from(“jms:queue:order”)
 .wireTap(“seda:tappedOrder”)
  .to(“bean:processOrder”);

New message
In this route, we tap the high-priority orders and send a new message
containing a body with the from part of the order. 

Tip: As Camel uses an Expression for evaluation you can use other functions
than xpath; for instance to send a fixed String, you can use constant.

from(“jms:queue:order”)
 .choice()
  .when(“/order/priority = ‘high’”) 
 .wireTap(“seda:from”, xpath(“/order/from”))
  .to(“bean:processHighOrder”);
  .otherwise()
  .to(“bean:processOrder”);

Sender Message Channel

Reroute Delivery

Delivery Fails

Intended
Receiver

Dead
Message

Dead Letter
Channel

Source Destination

http://www.refcardz.com
http://www.dzone.com

6 The Top Twelve Integration Patterns for Apache Camel

DZone, Inc.
140 Preston Executive Dr.
Suite 100
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2011 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise,
without prior written permission of the publisher.

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to
more than 3.3 million software developers, architects and decision
makers. DZone offers something for everyone, including news,
tutorials, cheat sheets, blogs, feature articles, source code and more.
“DZone is a developer’s dream,” says PC Magazine.

RECOMMENDED BOOKABOUT THE AUTHOR

ISBN-13: 978-1-936502-03-5
ISBN-10: 1-936502-03-8

9 781936 502035

50795

XML DSL Traditional
<route>
 <from uri=”jms:queue:order”/>
 <wireTap uri=”seda:tappedOrder”/>
 <to uri=”bean:processOrder”/> 
</route>

New Message
<route>
 <choice>
 <when>
 <xpath>/order/priority = ‘high’</xpath>
 <wireTap uri=”seda:from”>
 <body><xpath>/order/from</xpath></body>
 </wireTap>
 <to uri=”bean:processHighOrder”/>
 </when>
 <otherwise>
 <to uri=”bean:processOrder”/>
 </otherwise>
 </choice>
</route>

CONCLUSION

The 12 patterns in this Refcard cover the often used patterns in
the integration space. In this Refcard, you saw some of the great
powers of the EIP patterns and what you can do when using them
in practice with Apache Camel. You can find more examples
of using EIPs at the Camel website: http://camel.apache.org/
enterprise-integration-patterns.html. For more details about
Camel, we highly recommend the book Camel in Action.

Get More Information
Camel website
http://camel.apache.org

The home of the Apache Camel project. Find downloads, tutorials, examples,
getting started guides, issue tracker, roadmap, and mailing lists.

FuseSource website
http://fusesource.com

The home of the FuseSource company, the professional company behind
Apache Camel with enterprise offerings, subscription, support, consulting,
training, getting started guides, webinars, and tooling.

Camel in Action website
http://manning.com/ibsen

The home of the Camel in Action book, published by Manning. The book is
also on sale at Amazon and other retailers.

About Author
http://davsclaus.blogspot.com

The personal blog of the author of this reference card. You can follow the
author on twitter @davsclaus.

By Paul M. Duvall

ABOUT CONTINUOUS INTEGRATION

 G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#84

Continuous Integration:

Patterns and Anti-Patterns

CONTENTS INCLUDE:

■ About Continuous Integration

■ Build Software at Every Change

■ Patterns and Anti-patterns

■ Version Control

■ Build Management

■ Build Practices and more...

Continuous Integration (CI) is the process of building software

with every change committed to a project’s version control

repository.

CI can be explained via patterns (i.e., a solution to a problem

in a particular context) and anti-patterns (i.e., ineffective

approaches sometimes used to “fi x” the particular problem)

associated with the process. Anti-patterns are solutions that

appear to be benefi cial, but, in the end, they tend to produce

adverse effects. They are not necessarily bad practices, but can

produce unintended results when compared to implementing

the pattern.

Continuous Integration

While the conventional use of the term Continuous Integration

efers to the “build and test” cycle, this Refcard

expands on the notion of CI to include concepts such as

Aldon®

Change. Collaborate. Comply.

Pattern

Description

Private Workspace
Develop software in a Private Workspace to isolate changes

Repository

Commit all fi les to a version-control repository

Mainline

Develop on a mainline to minimize merging and to manage

active code lines

Codeline Policy

Developing software within a system that utilizes multiple

codelines

Task-Level Commit
Organize source code changes by task-oriented units of work

and submit changes as a Task Level Commit

Label Build

Label the build with unique name

Automated Build

Automate all activities to build software from source without

manual confi guration

Minimal Dependencies
Reduce pre-installed tool dependencies to the bare minimum

Binary Integrity

For each tagged deployment, use the same deployment

package (e.g. WAR or EAR) in each target environment

Dependency Management Centralize all dependent libraries

Template Verifi er

Create a single template fi le that all target environment

properties are based on

Staged Builds

Run remote builds into different target environments

Private Build

Perform a Private Build before committing changes to the

Repository

Integration Build

Perform an Integration Build periodically, continually, etc.

Send automated feedback from CI server to development team

ors as soon as they occur

Generate developer documentation with builds based on

brought to you by...

By Andy Harris

HTML BASICS

e.
co

m

G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#64

Core HTMLHTML and XHTML are the foundation of all web development.

HTML is used as the graphical user interface in client-side

programs written in JavaScript. Server-side languages like PHP

and Java also receive data from web pages and use HTML

as the output mechanism. The emerging Ajax technologies

likewise use HTML and XHTML as their visual engine. HTML

was once a very loosely-defi ned language with very little

standardization, but as it has become more important, the

need for standards has become more apparent. Regardless of

whether you choose to write HTML or XHTML, understanding

the current standards will help you provide a solid foundation

that will simplify all your other web coding. Fortunately HTML

and XHTML are actually simpler than they used to be, because

much of the functionality has moved to CSS.

common elements
Every page (HTML or XHTML shares certain elements in

common.) All are essentially plain text

extension. HTML fi les should not be cr

processor

CONTENTS INCLUDE:
■ HTML Basics■ HTML vs XHTML

■ Validation■ Useful Open Source Tools

■ Page Structure Elements
■ Key Structural Elements and more...

The src attribute describes where the image fi le can be found,

and the alt attribute describes alternate text that is displayed if

the image is unavailable.Nested tagsTags can be (and frequently are) nested inside each other. Tags

cannot overlap, so <a> is not legal, but <a></

b> is fi ne.

HTML VS XHTMLHTML has been around for some time. While it has done its

job admirably, that job has expanded far more than anybody

expected. Early HTML had very limited layout support.

Browser manufacturers added many competing standar

web developers came up with clever workar

result is a lack of standar
The latest web standar

Browse our collection of over 100 Free Cheat Sheets
Upcoming Refcardz
RichFaces
CSS3
Lucene
Spring Roo

By Daniel Rubio

ABOUT CLOUD COMPUTING

 C
lo

u
d

 C
o

m
p

u
ti

n
g

w

w
w

.d
zo

n
e.

co
m

 G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#82

Getting Started with
Cloud Computing

CONTENTS INCLUDE:
■ About Cloud Computing
■ Usage Scenarios
■ Underlying Concepts
■ Cost
■ Data Tier Technologies
■ Platform Management and more...

Web applications have always been deployed on servers
connected to what is now deemed the ‘cloud’.

However, the demands and technology used on such servers
has changed substantially in recent years, especially with
the entrance of service providers like Amazon, Google and
Microsoft.

These companies have long deployed web applications
that adapt and scale to large user bases, making them
knowledgeable in many aspects related to cloud computing.

This Refcard will introduce to you to cloud computing, with an
emphasis on these providers, so you can better understand
what it is a cloud computing platform can offer your web
applications.

USAGE SCENARIOS

Pay only what you consume
Web application deployment until a few years ago was similar
to most phone services: plans with alloted resources, with an
incurred cost whether such resources were consumed or not.

Cloud computing as it’s known today has changed this.
The various resources consumed by web applications (e.g.
bandwidth, memory, CPU) are tallied on a per-unit basis
(starting from zero) by all major cloud computing platforms.

also minimizes the need to make design changes to support
one time events.

Automated growth & scalable technologies
Having the capability to support one time events, cloud
computing platforms also facilitate the gradual growth curves
faced by web applications.

Large scale growth scenarios involving specialized equipment
(e.g. load balancers and clusters) are all but abstracted away by
relying on a cloud computing platform’s technology.

In addition, several cloud computing platforms support data
tier technologies that exceed the precedent set by Relational
Database Systems (RDBMS): Map Reduce, web service APIs,
etc. Some platforms support large scale RDBMS deployments.

CLOUD COMPUTING PLATFORMS AND
UNDERLYING CONCEPTS

Amazon EC2: Industry standard software and virtualization
Amazon’s cloud computing platform is heavily based on
industry standard software and virtualization technology.

Virtualization allows a physical piece of hardware to be
utilized by multiple operating systems. This allows resources
(e.g. bandwidth, memory, CPU) to be allocated exclusively to
individual operating system instances.

As a user of Amazon’s EC2 cloud computing platform, you are
assigned an operating system in the same way as on all hosting

Claus Ibsen is a principal engineer working
for FuseSource Corporation specializing
in the enterprise integration space. Claus
focuses mostly on Apache Camel and
FUSE-related products. Claus has been
engaged with Camel since late 2007, and
he’s co-author of the Camel in Action book,
published by Manning. Claus is very active
in the Apache and FUSE communities,
writing blogs, twittering and assisting on
the forums and irc channels. Claus is lead
on Apache Camel and drives the roadmap.
You will be able to meet Claus at various
conferences where he speaks about Camel.

Camel in Action is a Camel tutorial full of
small examples showing how to work with
the integration patterns. It starts with core
concepts like sending, receiving, routing
and transforming data. It then shows you
the entire lifecycle and goes in depth on
how to test, deal with errors, scale, deploy,
and even monitor your app—details you
can find only in the Camel code itself.
Written by the developers of Camel, this
book distills their experiences and practical
insights so that you can tackle integration
tasks like a pro.

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com

