

DZone, Inc. | www.dzone.com

By Claus Ibsen

About EntErprisE intEgrAtion pAttErns

ContEnts inCLuDE:
n	 About Enterprise Integration Patterns
n	 About Apache Camel
n	 Essential Patterns
n	 Conclusions and more...

E
n

te
rp

ri
se

 I
nt

eg
ra

ti
o

n
P

at
te

rn
s

w
w

w
.d

zo
n

e.
co

m

 G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#47

Enterprise Integration Patterns
with Apache Camel

Integration is a hard problem. To help deal with the complexity
of integration problems the Enterprise Integration Patterns
(EIP) have become the standard way to describe, document
and implement complex integration problems. Hohpe &
Woolf’s book the Enterprise Integration Patterns has become
the bible in the integration space – essential reading for any
integration professional.

Apache Camel is an open source project for implementing
the EIP easily in a few lines of Java code or Spring XML
configuration. This reference card, the first in a two card series,
guides you through the most common Enterprise Integration
Patterns and gives you examples of how to implement them
either in Java code or using Spring XML. This Refcard is
targeted for software developers and enterprise architects, but
anyone in the integration space can benefit as well.

About ApAChE CAmEL

Apache Camel is a powerful open source integration platform
based on Enterprise Integration Patterns (EIP) with powerful
Bean Integration. Camel lets you implementing EIP routing
using Camels intuitive Domain Specific Language (DSL)
based on Java (aka fluent builder) or XML. Camel uses URI for
endpoint resolution so its very easy to work with any kind of
transport such as HTTP, REST, JMS, web service, File, FTP, TCP,
Mail, JBI, Bean (POJO) and many others. Camel also provides
Data Formats for various popular formats such as: CSV, EDI,
FIX, HL7, JAXB, Json, Xstream. Camel is an integration API that
can be embedded in any server of choice such as: J2EE Server,
ActiveMQ, Tomcat, OSGi, or as standalone. Camels Bean
Integration let you define loose coupling allowing you to fully
separate your business logic from the integration logic. Camel
is based on a modular architecture allowing you to plugin your
own component or data format, so they seamlessly blend in
with existing modules. Camel provides a test kit for unit and
integration testing with strong mock and assertion capabilities.

EssEntiAL pAttErns

This group consists of the most essential patterns that anyone
working with integration must know.

Pipes and Filters
How can we perform complex processing on a message while maintaining
independence and flexibility?

Problem A single event often triggers a sequence of processing steps

Solution Use Pipes and Filters to divide a larger processing steps (filters) that are
connected by channels (pipes)

Camel Camel supports Pipes and Filters using the pipeline node.

Java DSL from(“jms:queue:order:in”).pipeline(“direct:transformOrd
er”, “direct:validateOrder”, “jms:queue:order:process”);

Where jms represents the JMS component used for consuming JMS messages
on the JMS broker. Direct is used for combining endpoints in a synchronous
fashion, allow you to divide routes into sub routes and/or reuse common routes.

Tip: Pipeline is the default mode of operation when you specify multiple
outputs, so it can be omitted and replaced with the more common node:
from(“jms:queue:order:in”).to(“direct:transformOrder”,
“direct:validateOrder”, “jms:queue:order:process”);

TIP: You can also separate each step as individual to nodes:
from(“jms:queue:order:in”)
 .to(“direct:transformOrder”)
 .to(“direct:validateOrder”)
 .to(“jms:queue:order:process”);

Spring DSL <route>
 <from uri=”jms:queue:order:in”/>
 <pipeline>
 <to uri=”direct:transformOrder”/>
 <to uri=”direct:validateOrder”/>
 <to uri=”jms:queue:order:process”/>
 </pipeline>
</route>
<route>
 <from uri=”jms:queue:order:in”/>
 <to uri=”direct:transformOrder”/>
 <to uri=”direct:validateOrder”/>
 <to uri=”jms:queue:order:process”/>
</route>

Message Router
How can you deouple indevidual processing steps so that messages can be
passed to different filters depending on a set of conditions?

Problem Pipes and Filters route each message in the same processing steps. How can we
route messages differently?

Solution Filter using predicates to choose the right output destination.

Camel Camel supports Message Router using the choice node. For more details see the
Content Based router pattern.

Are you using Apache Camel, Apache ActiveMQ,
Apache ServiceMix, or Apache CXF?

Progress FUSE products are Apache-licensed,
certified releases based on these Apache SOA
projects.

 Synchronized with Apache projects
 Enterprise support by Apache committers
 Online and on-site training

Register for a FREE webinar & learn
how to build & deploy integration
flows, web services & RESTful
services with Apache Camel, Apache
CXF, and Apache ServiceMix

Click here to register

Brought to you by...

Decrypt Authenticate
Pipe Pipe

Filter Filter

De-Dup
Pipe

Filter

Pipe

Incoming
Order

‘Clean’
Order

inQueue

Message Router

outQueue 2

outQueue 1

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com
https://progress.webex.com/progress/onstage/g.php?t=a&d=713980489&SourceId=refcard
https://progress.webex.com/progress/onstage/g.php?t=a&d=713980489&SourceId=refcard

DZone, Inc. | www.dzone.com

2
Enterprise Integration Patterns

How do we handle a situation where the implementation of a single logical
function (e.g., inventory check) is spread across multiple physical systems?

Problem How do we ensure a Message is sent to the correct recipient based on
information from its content?

Solution Use a Content-Based Router to route each message to the correct recipient
based on the message content.

Camel Camel has extensive support for Content-Based Routing. Camel supports
content based routing based on choice, filter, or any other expression.

Java DSL Choice
from(“jms:queue:order”)
 .choice()
 .when(header(“type”).in(“widget”,“wiggy”))
 .to(“jms:queue:order:widget”)
 .when(header(“type”).isEqualTo(“gadget”))
 .to(“jms:queue:order:gadget”)
 .otherwise().to(“jms:queue:order:misc”)
 .end();
TIP: In the route above end() can be omitted as its the last node and we do not
route the message to a new destination after the choice.

TIP: You can continue routing after the choice ends.

Spring
DSL

Choice
<route>
 <from uri=”jms:queue:order”/>
 <choice>
 <when>
 <simple>${header.type} in ‘widget,wiggy’</simple>
 <to uri=”jms:queue:order:widget”/>
 </when>
 <when>
 <simple>${header.type} == ‘gadget’</simple>
 <to uri=”jms:queue:order:gadget”/>
 </when>
 <otherwise>
 <to uri=”jms:queue:order:misc”/>
 </otherwise>
 </choice>
</route>

TIP: In Spring DSL you cannot invoke code, as opposed to the Java DSL that is
100% Java. To express the predicates for the choices we need to use a language.
We will use simple language that uses a simple expression parser that supports
a limited set of operators. You can use any of the more powerful languages
supported in Camel such as: JavaScript, Groovy, Unified EL and many others.

TIP: You can also use a method call to invoke a method on a bean to evaluate the
predicate. Lets try that:

<when>
 <method bean=”myBean” method=”isGadget”/>
 ...
</when>

<bean id=”myBean” class=”com.mycomapany.MyBean”/>

 public boolean isGadget(@Header(name = “type”) String
type) {
 return type.equals(“Gadget”);
 }

Notice how we use Bean Parameter Binding to instruct Camel to invoke this
method and pass in the type header as the String parameter. This allows your
code to be fully decoupled from any Camel API so its easy to read, write and
unit test.

Content-Based Router

Message Translator
How can systems using different data formats communicate with each other
using messaging?

Problem Each application uses its own data format, so we need to translate the
message into the data format the application supports.

Solution Use a special filter, a messae translator, between filters or applications to
translate one data format into another.

Camel Camel supports the message translator using the processor, bean or
transform nodes.

TIP: Camel routes the message as a chain of processor nodes.

Java DSL Processor
public class OrderTransformProcessor
 implements Processor {
 public void process(Exchange exchange)
 throws Exception {
 // do message translation here
 }
 }

from(“direct:transformOrder”)
 .process(new OrderTransformProcessor());

Bean
Instead of the processor we can use Bean (POJO). An advantage of using a
Bean over Processor is the fact that we do not have to implement or use any
Camel specific interfaces or types. This allows you to fully decouple your beans
from Camel.

public class OrderTransformerBean {
 public StringtransformOrder(String body) {
 // do message translation here
 }
}

Object transformer = new OrderTransformerBean();
from(“direct:transformOrder”).bean(transformer);

TIP: Camel can create an instance of the bean automatically; you can just refer
to the class type.

from(“direct:transformOrder”)
 .bean(OrderTransformerBean.class);

TIP: Camel will try to figure out which method to invoke on the bean in
case there are multiple methods. In case of ambiguity you can specify which
methods to invoke by the method parameter:

from(“direct:transformOrder”)
 .bean(OrderTransformerBean.class, “transformOrder”);

Transform
Transform is a particular processor allowing you to set a response to be
returned to the original caller. We use transform to return a constant ACK
response to the TCP listener after we have copied the message to the JMS
queue. Notice we use a constant to build an “ACK” string as response.

from(“mina:tcp://localhost:8888?textline=true”)
 .to(“jms:queue:order:in”)
 .transform(constant(“ACK”));

Spring DSL Processor
<route>
 <from uri=”direct:transformOrder”/>
 <process ref=”transformer”/>
</route>

<bean id=”transformer” class=”com.mycompany.
OrderTransformProcessor”/>

In Spring DSL Camel will look up the processor or POJO/Bean in the registry
based on the id of the bean.

Bean
<route>
 <from uri=”direct:transformOrder”/>
 <bean ref=”transformer”/>
</route>

<bean id=”tramsformer”
 class=”com.mycompany.OrderTransformBean”/>

Transform
<route>
 <from uri=”mina:tcp://localhost:8888?textline=true”/>
 <to uri=”jms:queue:order:in”/>
 <transform>
 <constant>ACK</constant>
 </transform>
</route>

Annotation
DSL

You can also use the @Consume annotation for transformations. For
example in the method below we consume from a JMS queue and do
the transformation in regular Java code. Notice that the input and output
parameters of the method is String. Camel will automatically coerce the
payload to the expected type defined by the method. Since this is a JMS
example the response will be sent back to the JMS reply-to destination.

@Consume(uri=”jms:queue:order:transform”)
public String transformOrder(String body) {
 // do message translation
}

TIP: You can use Bean Parameter Binding to help Camel coerce the Message
into the method parameters. For instance you can use @Body, @Headers
parameter annotations to bind parameters to the body and headers.

New Order Router

Widget
Inventory

Gadget
Inventory

Incoming Message Translated Message

Translator

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

3
Enterprise Integration Patterns

How can a component avoid receiving unwanted messages?

Problem How do you discard unwanted messages?

Solution Use a special kind of Message Router, a Message Filter, to eliminate undesired
messages from a channel based on a set of criteria.

Camel Camel has support for Message Filter using the filter node. The filter evaluates
a predicate whether its true or false; only allowing the true condition to pass the
filter, where as the false condition will silently be ignored.

Java DSL We want to discard any test messages so we only route non-test messages to the
order queue.

from(“jms:queue:inbox”)
 .filter(header(“test”).isNotEqualTo(“true”))
 .to(“jms:queue:order”);

Spring
DSL

For the Spring DSL we use XPath to evaluate the predicate. The $test is a special
shorthand in Camel to refer to the header with the given name. So even if the
payload is not XML based we can still use XPath to evaluate predicates.

<route>
 <from uri=”jms:queue:inbox”/>
 <filter>
 <xpath>$test = ‘false’</xpath>
 <to uri=”jms:queue:inbox”/>
 </filter>
</route>

Message Filter

How can you avoid the dependency of the router on all possible destinations
while maintaining its efficiency?

Problem How can we route messages based on a dynamic list of destinations?

Solution Use a Dynamic Router, a router that can self-configure based on special
configuration messages from participating destinations.

Camel Camel has support for Dynamic Router using the Dynamic Recipient List
combined with a data store holding the list of destinations.

Java DSL We use a Processor as the dynamic router to determine the destinations. We
could also have used a Bean instead.
from(“jms:queue:order”)
 .processRef(myDynamicRouter)
 .recipientList(“destinations”);

public class MyDynamicRouter implements Processor {
 public void process(Exchange exchange) {
 // query a data store to find the best match of the
 // endpoint and return the destination(s) in the
 // header exchange.getIn()
 // .setHeader(“destinations”, list);
 }
}

Spring DSL <route>
 <from uri=”jms:queue:order”/>
 <process ref=”myDynamicRouter”/>
 <recipientList>
 <header>destinations</destinations>
 </recipientList>
</route>

Annotation
DSL

public class MyDynamicRouter {
 @Consume(uri = “jms:queue:order”)
 @RecipientList
 public List<String> route(@XPath(“/customer/id”)
String customerId, @Header(“location”) String location,
Document body) {
 // query data store, find best match for the
 //endpoint and return destination (s)
 }
}

Dynamic Router

Annotation
DSL,
continued

TIP: Notice how we used Bean Parameter Binding to bind the parameters to
the route method based on an @XPath expression on the XML payload of the
JMS message. This allows us to extract the customer id as a string parameter.
@Header wil bind a JMS property with the key location. Document is the XML
payload of the JMS message.

TIP: Camel uses its strong type converter feature to convert the payload to the
type of the method parameter. We could use String and Camel will convert
the body to a String instead. You can register your own type converters as well
using the @Converter annotation at the class and method level.

How do we route a message to a list of statically or dynamically specified
recipients?

Problem How can we route messages based on a static or dynamic list of
destinations?

Solution Define a channel for each recipient. Then use a Recipient List to inspect an
incoming message, determine the list of desired recipients and forward the
message to all channels associated with the recipients in the list.

Camel Camel supports the static Recipient List using the multicast node, and the
dynamic Recipient List using the recipientList node.

Java DSL Static
In this route we route to a static list of two recipients, that will receive a copy
of the same message simultaneously.

from(“jms:queue:inbox”)
 .multicast().to(“file://backup”, “seda:inbox”);

Dynamic
In this route we route to a dynamic list of recipients defined in the message
header [mails] containing a list of recipients as endpoint URLs. The bean
processMails is used to add the header[mails] to the message.

from(“seda:confirmMails”).beanRef(processMails)
 .recipientList(“destinations”);

And in the process mails bean we use @Headers Bean Parameter Binding to
provide a java.util.Map to store the recipients.

public void confirm(@Headers Map headers, @Body String
body} {
 String[] recipients = ...
 headers.put(“destinations”, recipients);
}

Spring DSL Static
<route>
 <from uri=”jms:queue:inbox/>
 <multicast>
 <to uri=”file://backup”/>
 <to uri=”seda:inbox”/>
 </multicast>
</route>

Dynamic
In this example we invoke a method call on a Bean to provide the dynamic
list of recipients.

<route>
 <from uri=”jms:queue:inbox/>
 <recipientList>
 <method bean=”myDynamicRouter” method=”route”/>
 </recipientList>
</route>

<bean id=”myDynamicRouter”
 class=”com.mycompany.MyDynamicRouter”/>

public class myDynamicRouter {
 public String[] route(String body) {
 return new String[] { “file://backup”, }
 }
}

Annotation
DSL

In the CustomerService class we annoate the whereTo method with
@RecipientList, and return a single destination based on the customer id.
Notice the flexibility of Camel as it can adapt accordingly to how you define
what your methods are returning: a single element, a list, an iterator, etc.

public class CustomerService {
 @RecipientList
 public String whereTo(@Header(“customerId”) id) {
 return “jms:queue:customer:” + id;
 }
}
And then we can route to the bean and it will act as a dynamic recipient list.

from(“jms:queue:inbox”)
 .bean(CustomerService.class, “whereTo”);

Recipient List

Widget
Quote

Gadget
Quote

Widget
Quote

Message
Filter

Widget
Quote

Widget
Quote

A

B

C

Input Channel

Dynamic Router Output Channel

Output Channel

Output Channel

Control Channel

Message Router

Dynamic
Rule Base

A

B

C

D
Recipient

List

Recipient Channel

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

4
Enterprise Integration Patterns

How can we process a message if it contains multiple elements, each of which
may have to be processed in a different way?

Problem How can we split a single message into pieces to be routed individually?

Solution Use a Splitter to break out the composite message into a series of individual
messages, each containing data related to one item.

Camel Camel has support for Splitter using the split node.

Java DSL In this route we consume files from the inbox folder. Each file is then split into
a new message. We use a tokenizer to split the file content line by line based
on line breaks.
from(“file://inbox”)
 .split(body().tokenize(“\n”))
 .to(“seda:orderLines”);

TIP: Camel also supports splitting streams using the streaming node. We can
split the stream by using a comma:

.split(body().tokenize(“,”)).streaming().to(“seda:parts”);

TIP: In the routes above each individual split message will be executed in
sequence. Camel also supports parallel execution using the parallelProcessing
node.

.split(body().tokenize(“,”)).streaming()
 .parallelProcessing().to(“seda:parts”);

Spring DSL In this route we use XPath to split XML payloads received on the JMS order
queue.
<route>
 <from uri=”jms:queue:order”/>
 <split>
 <xpath>/invoice/lineItems</xpath>
 <to uri=”seda:processOrderLine”/>
 </split>
</route>

And in this route we split the messages using a regular expression
<route>
 <from uri=”jms:queue:order”/>
 <split>
 <tokenizer token=”([A-Z|0-9]*);” regex=”true”/>
 <to uri=”seda:processOrderLine”/>
 </split>
</route>

TIP: Split evaluates an org.apahce.camel.Expression to provide
something that is iterable to produce each individual new message. This allows
you to provide any kind of expression such as a Bean invoked as a method call.
 <split>
 <method bean=”mySplitter” method=”splitMe”/>
 <to uri=”seda:processOrderLine”/>
 </split>

 <bean id=”mySplitter” class=”com.mycompany.MySplitter”/>

public List splitMe(String body) {
 // split using java code and return a List
 List parts = ...
 return parts;
}

Splitter

Aggregator
How do we combine the results of individual, but related messages so that they
can be processed as a whole?

Problem How do we combine multiple messages into a single combined message?

Solution Use a stateful filter, an Aggregator, to collect and store individual messages until it
receives a complete set of related messages to be published.

Camel Camel has support for the Aggregator using the aggregate node. Camel uses a
stateful batch processor that is capable of aggregating related messaged into a
single combined message. A correlation expression is used to determine which
messages should be aggregated. An aggregation strategy is used to combine
aggregated messages into the result message. Camel’s aggregator also supports
a completion predicate allowing you to signal when the aggregation is complete.
Camel also supports other completion signals based on timeout and/or a number
of messages already aggregated.

Java
DSL

Stock quote example
We want to update a website every five minutes with the latest stock quotes. The
quotes are received on a JMS topic. As we can receive multiple quotes for the
same stock within this time period we only want to keep the last one as its the
most up to date. We can do this with the aggregator:

from(“jms:topic:stock:quote”)
 .aggregate().xpath(“/quote/@symbol”)
 .batchTimeout(5 * 60 * 1000).to(“seda:quotes”);

As the correlation expression we use XPath to fetch the stock symbol from the
message body. As the aggregation strategy we use the default provided by
Camel that picks the latest message, and thus also the most up to date. The time
period is set as a timeout value in milliseconds.

Loan broker example
We aggregate responses from various banks for their quote for a given loan
request. We want to pick the bank with the best quote (the cheapest loan),
therefore we need to base our aggregation strategy to pick the best quote.

from(“jms:topic:loan:quote”)
 .aggregate().header(“loanId”)
 .aggregationStrategy(bestQuote)
 .completionPredicate(header(Exchange.AGGREGATED_SIZE)
 .isGreaterThan(2))
 .to(“seda:bestLoanQuote”);

We use a completion predicate that signals when we have received more than 2
quotes for a given loan, giving us at least 3 quotes to pick among. The following
shows the code snippet for the aggregation strategy we must implement to pick
the best quote:

public class BestQuoteStrategy implements
 AggregationStrategy {
 public Exchange aggregate(Exchange oldExchange,
 Exchange newExchange) {
 double oldQuote = oldExchange.getIn().getBody(Double.
class);
 double newQuote = newExchange.getIn().getBody(Double.
class);
 // return the “winner” that has the lowest quote
 return newQuote < oldQuote ? newExchange : oldExchange;
 }
}

Spring
DSL

Loan Broker Example
<route>
 <from uri=”jms:topic:loan:qoute”/>
 <aggregate strategyRef=”bestQuote”>
 <correlationExpression>
 <header>loanId</header>
 </correlationExpression>
 <completionPredicate>
 <simple>${header.CamelAggregatedSize} > 2</simple>
 </completionPredicate>
 </aggregate>
 <to uri=”seda:bestLoanQuote”/>
</route>

<bean id=”bestQuote”
 class=”com.mycompany.BestQuoteStrategy”/>

TIP: We use the simple language to declare the completion predicate. Simple
is a basic language that supports a primitive set of operators. ${header.
CamelAggregatedSize} will fetch a header holding the number of messages
aggregated.

TIP: If the completed predicate is more complex we can use a method call to
invoke a Bean so we can do the evaluation in pure Java code:

<completionPredicate>
 <method bean=”quoteService” method=”isComplete”/>
</compledtionPrediacate>

public boolean isComplete(@Header(Exchange.AGGREGATED_SIZE)
 int count, String body) {
 return body.equals(“STOP”);
}

Notice how we can use Bean Binding Parameter to get hold of the aggregation
size as a parameter, instead of looking it up in the message.

Resequencer
How can we get a stream of related but out-of-sequence messages back into the
correct order?

Problem How do we ensure ordering of messages?

Solution Use a stateful filter, a Resequencer, to collect and reorder messages so that they
can be published in a specified order.

Camel Camel has support for the Resequencer using the resequence node. Camel uses
a stateful batch processor that is capable of reordering related messages. Camel

New Order Splitter
Order
Item 1

Order
Item 2

Order
Item 3

Inventory
Item 1

Inventory
Item 2

Inventory
Item 3

Aggregator Inventory
Order

Resequencer

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

5
Enterprise Integration Patterns

Camel,
continued

supports two resequencing algorithms:

- batch = collects messages into a batch, sorts the messages and publish the
messages
- stream = re-orders, continuously, message streams based on detection of gaps
between messages.

Batch is similar to the aggregator but with sorting. Stream is the traditional
Resequencer pattern with gap detection. Stream requires usage of number
(longs) as sequencer numbers, enforced by the gap detection, as it must be able
to compute if gaps exist. A gap is detected if a number in a series is missing, e.g.
3, 4, 6 with number 5 missing. Camel will back off the messages until number 5
arrives.

Java DSL Batch:
We want to process received stock quotes, once a minute, ordered by their stock
symbol. We use XPath as the expression to select the stock symbol, as the value
used for sorting.

from(“jms:topic:stock:quote”)
 .resequence().xpath(“/quote/@symbol”)
 .timeout(60 * 1000)
 .to(“seda:quotes”);

Camel will default the order to ascending. You can provide your own comparison
for sorting if needed.

Stream:
Suppose we continuously poll a file directory for inventory updates, and its
important they are processed in sequence by their inventory id. To do this we
enable streaming and use one hour as the timeout.

from(“file://inventory”)
 .resequence().xpath(“/inventory/@id”)
 .stream().timeout(60 * 60 * 1000)
 .to(“seda:inventoryUpdates”);

Spring
DSL

Batch:
<route>
 <from uri=”jms:topic:stock:quote”/>
 <resequence>
 <xpath>/quote/@symbol</xpath>
 <batch-config batchTimeout=”60000”/>
 </resequence>
 <to uri=”seda:quotes”/>
</route>

Stream:
<route>
 <from uri=”file://inventory”/>
 <resequence>
 <xpath>/inventory/@id</xpath>
 <stream-config timeout=”3600000”/>
 </resequence>
 <to uri=”seda:quotes”/>
</route>

Notice that you can enable streaming by specifying <stream-config> instead
of <batch-config>.

What will the messaging system do with a message it cannot deliver?

Problem The messaging system cannot deliver a message

Solution When a message cannot be delivered it should be moved to a Dead Letter
Channel

Camel Camel has extensive support for Dead Letter Channel by its error handler and
exception clauses. Error handler supports redelivery policies to decide how many
times to try redelivering a message, before moving it to a Dead Letter Channel.

The default Dead Letter Channel will log the message at ERROR level and
perform up to 6 redeliveries using a one second delay before each retry.

Error handler has two scopes: global and per route

TIP: See Exception Clause in the Camel documentation for selective interception
of thrown exception. This allows you to route certain exceptions differently or even
reset the failure by marking it as handled.

TIP: DeadLetterChannel supports processing the message before it gets
redelivered using onRedelivery. This allows you to alter the message beforehand
(i.e. to set any custom headers).

Dead Letter Channel

Java
DSL

Global scope
errorHandler(deadLetterChannel(“jms:queue:error”)
 .maximumRedeliveries(3));

from(...)

Route scope
from(“jms:queue:event”)
 .errorHandler(deadLetterChannel()
 .maximumRedeliveries(5))
 .multicast().to(“log:event”, “seda:handleEvent”);

In this route we override the global scope to use up to five redeliveries, where
as the global only has three. You can of course also set a different error queue
destination:

deadLetterChannel(“log:badEvent”).maximumRedeliveries(5)

Spring
DSL

The error handler is configured very differently in the Java DSL vs. the Spring DSL.
The Spring DSL relies more on standard Spring bean configuration whereas the
Java DSL uses fluent builders.

Global scope
The Global scope error handler is configured using the errorHandlerRef attribute
on the camelContext tag.
<camelContext errorHandlerRef=”myDeadLetterChannel”>
 ...
</camelContext>

Route scope
Route scoped is configured using the errorHandlerRef attribute on the route tag.
<route errorHandlerRef=”myDeadLetterChannel”>
 ...
</route>

For both the error handler itself is configured using a regular Spring bean
<bean id=”myDeadLetterChannel” class=”org.apache.camel.
builder.DeadLetterChannelBuilder”>
 <property name=”deadLetterUri” value=”jms:queue:error”/>
 <property name=”redeliveryPolicy”
 ref=”myRedeliveryPolicy”/>
</bean>

<bean id=”myRedeliverPolicy”
 class=”org.apache.camel.processor.RedeliverPolicy”>
 <property name=”maximumRedeliveries” value=”5”/>
 <property name=”delay” value=”5000”/>
</bean>

How do you inspect messages that travel on a point-to-point channel?

Problem How do you tap messages while they are routed?

Solution Insert a Wire Tap into the channel, that publishes each incoming message to the
main channel as well as to a secondary channel.

Camel Camel has support for Wire Tap using the wireTap node, that supports two
modes: traditional and new message. The traditional mode sends a copy of the
original message, as opposed to sending a new message. All messages are sent
as Event Message and runs in parallel with the original message.

Java
DSL

Traditional
The route uses the traditional mode to send a copy of the original message to the
seda tapped queue, while the original message is routed to its destination, the
process order bean.

from(“jms:queue:order”)
 .wireTap(“seda:tappedOrder”)
 .to(“bean:processOrder”);

New message
In this route we tap the high priority orders and send a new message containing
a body with the from part of the order. Tip: As Camel uses an Expression for
evaluation you can use other functions than xpath, for instance to send a fixed
String you can use constant.

from(“jms:queue:order”)
 .choice()
 .when(“/order/priority = ‘high’”)
 .wireTap(“seda:from”, xpath(“/order/from”))
 .to(“bean:processHighOrder”);
 .otherwise()
 .to(“bean:processOrder”);

Wire Tap

Source Destination

Sender Message Channel

Reroute Delivery

Delivery Fails

Intended
Receiver

Dead
Message

Dead Letter
Channel

http://www.dzone.com
http://www.refcardz.com

Design Patterns

By Jason McDonald

CONTENTS INCLUDE:

n	 Chain of Responsibility

n	 Command

n	 Interpreter

n	 Iterator

n	 Mediator

n	 Observer

n	 Template Method and more...

DZone, Inc. | w
ww.dzone.com

D
es

ig
n

Pa
tt

er
ns

 w

w
w

.d
zo

ne
.c

om

 G
et

 M
o

re
 R

ef
ca

rz
!

V
is

it
 r

ef
ca

rd
z.

co
m

#8

Brought to you by...

Inspired

by the

GoF

Bestseller

This Design Patterns refcard provides a quick reference to the

original 23 Gang of Four (GoF) design patterns, as listed in

the book Design Patterns: Elements of Reusable Object-

Oriented Software. Each pattern includes class diagrams,

explanation, usage information, and a real world example.

Chain of Responsibility
, continued

Object Scope: Deals with object relationships that can

be changed at runtime.

Class S
cope: Deals with class relationships that can be

changed at compile time.

C Abstract Factory

S Adapter

S Bridge

C Builder

B Chain of

Responsibility

B Command

S Composite

S Decorator

S Facade

C Factory Method

S Flyweight

B Interpreter

B Iterator

B Mediator

B Memento

C Prototype

S Proxy

B Observer

C Singleton

B State

B Strategy

B Template Method

B Visito
r

ABOUT DESIGN PATTERNS

Creational Patterns: U
sed to construct objects such

that they can be decoupled from their im
plementing

system.

Structural Patterns: U
sed to form large object

structures between many disparate objects.

Behavioral Patterns: U
sed to manage algorithms,

relationships, and responsibilitie
s between objects.

CHAIN OF RESPONSIBILITY

 O
bject Behavioral

COMMAND

 O

bject Behavioral

successor

Client

<<interface>>

Handler

+handlerequest()

ConcreteHandler 1

+handlerequest()

ConcreteHandler 2

+handlerequest()

Purpose
Gives more than one object an opportunity to handle a request by linking

receiving objects together.

Use

When

n
	Multiple objects may handle a request and the handler doesn’t have to

 be a specific object.

n
	A set of objects should be able to handle a request with the handler

 determined at runtime.

n
	A request not being handled is an acceptable potential outcome.

Example
Exception handling in some languages implements this pattern. When an

exception is thrown in a method the runtime checks to see if th
e method

has a mechanism to handle the exception or if it
 should be passed up the

call stack. When passed up the call stack the process repeats until code to

handle the exception is encountered or until th
ere are no more parent

objects to hand the request to.

Receiver

Invoker

Command

+execute()

Client
ConcreteCommand

+execute()

Purpose
Encapsulates a request allowing it to

 be treated as an object. This allows

the request to be handled in traditionally object based relationships such

as queuing and callbacks.

Use

When

n
	You need callback functionality.

n
	Requests need to be handled at variant tim

es or in variant orders.

n
	A history of requests is needed.

n
	The invoker should be decoupled from the object handling the invocation.

Example
Job queues are widely used to facilitate the asynchronous processing

of algorithms. By utilizing the command pattern the functionality to be

executed can be given to a job queue for processing without any need

for the queue to have knowledge of the actual implementation it is

invoking. The command object that is enqueued implements its particular

algorithm within the confines of the interface the queue is expecting.

upcoming titles
RichFaces
Agile Software Development
BIRT
JSF 2.0
Adobe AIR
BPM&BPMN
Flex 3 Components

most popular
Spring Configuration
jQuery Selectors
Windows Powershell
Dependency Injection with EJB 3
Netbeans IDE JavaEditor
Getting Started with Eclipse
Very First Steps in Flex

“Exactly what busy developers need:
simple, short, and to the point.”

James Ward, Adobe Systems

Download Now

Refcardz.com

Professional Cheat Sheets You Can Trust

DZone, Inc.
1251 NW Maynard
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2009 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher. Reference: Enterprise Integration Patterns, Gregor Hohpe, Addison-Wesley, 2003

Version 1.0

$7
.9

5

DZone communities deliver over 4 million pages each month to

more than 2 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheatsheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

6
Enterprise Integration Patterns

rECommEnDED booKAbout thE Author

Spring
DSL

Traditional
<route>
 <from uri=”jms:queue:order”/>
 <wireTap uri=”seda:tappedOrder”/>
 <to uri=”bean:processOrder”/>
</route>

New Message
<route>
 <choice>
 <when>
 <xpath>/order/priority = ‘high’</xpath>
 <wireTap uri=”seda:from”>
 <body><xpath>/order/from</xpath></body>
 </wireTap>
 <to uri=”bean:processHighOrder”/>
 </when>
 <otherwise>
 <to uri=”bean:processOrder”/>
 </otherwise>
 </choice>
</route>

ConCLusion

The twelve patterns in this Refcard cover the most used
patterns in the integration space, together with two of the
most complex such as the Aggregator and the Dead Letter
Channel. In the second part of this series we will take a further
look at common patterns and transations.

Get More Information
Camel Website

 http://camel.apache.org

The home of the Apache Camel project. Find downloads,
tutorials, examples, getting started guides, issue tracker,
roadmap, mailing lists, irc chat rooms, and how to get
help.

FuseSource Website

http://fusesource.com

The home of the FuseSource company, the professional
company behind Apache Camel with enterprise offerings,
support, consulting and training.

About Author

http://davsclaus.blogspot.com

The personal blog of the author of this reference card.

Claus Ibsen is a passionate open-source
enthusiast who specializes in the integration
space. As an engineer in the Progress FUSE
open source team he works full time on
Apache Camel, FUSE Mediation Router
(based on Apache Camel) and related
projects. Claus is very active in the Apache

Camel and FUSE communities, writing blogs, twittering,
assisting on the forums irc channels and is driving the
Apache Camel roadmap.

ISBN-13: 978-1-934238-50-9
ISBN-10: 1-934238-50-3

9 781934 238509

50795

Utilizing years of practical experience,
seasoned experts Gregor Hohpe and
Bobby Woolf show how asynchronous
messaging has proven to be the best
strategy for enterprise integration
success. However, building and deploying
messaging solutions presents a number
of problems for developers. Enterprise
Integration Patterns provides an
invaluable catalog of sixty-five patterns,

with real-world solutions that demonstrate the formidable of
messaging and help you to design effective messaging solutions
for your enterprise.

buY noW
books.dzone.com/books/enterprise-integration-patterns

About progrEss fusE

FUSE products are standards-based, open source
enterprise integration tools based on Apache SOA
projects, and are productized and supported by the
people who wrote the code.

http://refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.refcardz.com
http://books.dzone.com/books/enterprise-integration-patterns
http://camel.apache.org
http://fusesource.com
http://davsclaus.blogspot.com

