

DZone, Inc. | www.dzone.com

Flex & Spring Integration
By Jon Rose and James Ward

ABOUT Adobe Flex

CONTENTS INCLUDE:
n	 About Adobe® Flex®
n	 About Spring
n	 Why Adobe Flex and Spring
n	 Integrating Adobe Flex and Spring
n	 User Authentication
n	 Hot Tips and more...

F
le

x
&

 S
p

ri
n

g
 I

n
te

g
ra

ti
o

n

w

w
w

.d
zo

n
e.

co
m

G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#48

The Spring Framework is one of the most popular ways to
build enterprise Java applications. Unlike traditional Java
EE development, Spring provides developers a full featured
“lightweight container,” that makes applications easy to
test and develop. Although Spring is best known for its
dependency injection features, it also provides features for
implementing typical server-side enterprise applications, such
as declarative security and transaction management.

ABOUT Spring

Adobe Flex has strong ties to Java, which include an Eclipse-
based IDE and BlazeDS, its open source server-based Java
remoting and web messaging technology. In addition, most
enterprise projects that use Flex build on a Java back end.
With Flex and Java so often married together, it is only natural
to want to integrate Flex with Spring-based Java back ends.
Beyond greenfield development, many organizations want
to revamp or replace the user interface of existing enterprise
Spring applications using Flex. In late 2008, the Spring
community recognized these cases and began working on the
Spring BlazeDS Integration project to add support for Flex
development with Java and Spring.

By default BlazeDS creates instances of server-side Java
objects and uses them to fulfill remote object requests. This
approach doesn’t work with Spring, as the framework is
built around injecting the service beans through the Spring
container. The Spring integration with BlazeDS allows you
to configure Spring beans as BlazeDS destinations for use as
remote objects in Flex.

WHy Flex and Spring?

Integrating Flex and spring

This Refcard assumes that you are already familiar with
Spring and Flex. If you need an introduction or refresher to
either, check out the Very First Steps in Flex and/or Spring
Configuration DZone Refcardz.

To use BlazeDS, the server-side application could be any Java
application that deploys as a WAR file. This Refcard uses the
Eclipse IDE to create and edit the Java project. This Refcard
walks you through the following steps:
 • Set up a server-side Java project with BlazeDS and the
 Spring Framework
 • Configure the Java project with a basic Spring bean for
 use in BlazeDS
 • Write Flex application to use the Spring/BlazeDS service

BlazeDS provides simple two-way communication
with Java back-ends. Adobe Flash Player supports a
serialization protocol called AMF that alleviates the
bottlenecks of text-based protocols and provides a
simpler way to communicate with servers. AMF is
a binary protocol for exchanging data that can be
used over HTTP in place of text-based protocols that
transmit XML. Applications using AMF can eliminate
an unnecessary data abstraction layer and
communicate more efficiently with servers. To see
a demonstration of the performance advantages of
AMF, see the Census RIA Benchmark at:
http://www.jamesward.org/census.The specification
for AMF is publicly available, and numerous implem-
entations of AMF exist in a variety of technologies
including Java, .Net, PHP, Python, and Ruby.

Hot
Tip

Adobe Flex Software is a popular framework for building Rich
Internet Applications (RIAs). The Flex framework is used to
create SWF files that run inside Flash® Player. The framework
was built for use by developers and follows traditional
application development paradigms rather than the timeline-
based development found in the Flash Professional authoring
tools. Applications are built using the Flex Builder IDE™ - an
Eclipse-based development environment. ActionScript® 3
is used to access data and build user interface components
for web and desktop applications that run inside Flash Player
or Adobe AIR® Software. The Flex Framework also uses
a declarative XML language called MXML to simplify Flex
development and layout.

Brought to you by...

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com
http://library.dzone.com/assets/request/sponsored_link/9223
http://library.dzone.com/assets/request/sponsored_link/9223
http://www.jamesward.org/census

DZone, Inc. | www.dzone.com

2
Flex & Spring Integration

Hot
Tip

 The open source BlazeDS project includes a Java
implementation of AMF that is used for remotely
communicating with server-side Java objects as
well as for a publish/subscribe messaging system.
The BlazeDS remoting technology allows developers
to easily call methods on Plain Old Java Objects
(POJOs), Spring services, or EJBs. Developers can
use the messaging system to send messages from
the client to the server, or from the server to the
client. BlazeDS can also be linked to other messaging
systems such as JMS or ActiveMQ. Because the
remoting and messaging technologies use AMF over
HTTP, they gain the performance benefits of AMF
as well as the simplicity of fewer data abstraction
layers. BlazeDS works with a wide range of Java-
based application servers, including Tomcat,
WebSphere, WebLogic, JBoss, and ColdFusion.

To follow along with this tutorial you will need:
 • Eclipse 3.4 for Java EE Developers:
 http://www.eclipse.org/downloads/
 • Flex® Builder 3 installed as a plugin for Eclipse:
 http://www.adobe.com/go/flex_trial
 • Tomcat 6: http://tomcat.apache.org/
 • BlazeDS (Binary Distribution):http://opensource.adobe
 .com/wiki/display/blazeds/BlazeDS/
 • Spring Framework 3.0 M2:
 http://www.springsource.org/download
 • Spring BlazeDS Integration (spring-flex-1.0.0.M2-with-
 dependencies.zip):
 http://www.springsource.org/spring-flex
 • ANTLR 3.0.1 (do NOT use a newer version):
 http://www.antlr.org/download.html

First, set up the server-side Java web project in Eclipse by
creating a web application from the blazeds.war file (found
inside the blazeds zip file).

 • Import the Blazeds.war file to create the project:
 - Choose File > Import
 - Select the WAR file option. Specify the location of the
 blazeds.war file. For the name of the web project,
 type dzone-server
 - Click Finish

Now you can create a server that will run the application:

 • Select File > New > Other
 • Select Server > Server
 • Click Next
 • Select Apache > Tomcat v6.0Server
 • Click Next
 • Specify the location where Tomcat is installed and select
 the JRE (version 5 or higher) to use
 • Click Next
 • Select dzone-server in the Available Projects list
 • Click Add to add it to the Configured Projects list
 • Click Finish

Next, in the dzone-server project create the basic Java classes
to be used by BlazeDS and Spring:

Listings 1, 2, and 3 are very basic Java classes that you’ll use
as examples for this tutorial. In a real-world application, the
service implementation would likely connect to one or more
enterprise services for data, such as a relational database. In
this case, it simply returns a hard-coded set of entities as an
ArrayList.

The basic Java web project with the BlazeDS dependencies is
now complete.

Next, configure the Java project with a basic Spring bean for
the MyService interface:
 • Copy the Spring libraries, the Spring BlazeDS Integration
 Library, and the ANTLR library to the project dzone-
 server/WebContent/WEB-INF/lib directory
 • Create a basic Spring Configuration File:
 - Right Click WebContent/WEB-INF and then choose
 New > File

Listing 1: Java entity to be passed between Java and Flex

import java.util.List;

public interface MyService {

 public List<MyEntity> getMyEntities();
}

Listing 2: Java Service Interface

import java.util.ArrayList;
import java.util.List;
public class MyServiceImpl implements MyService {
 public List<MyEntity> getMyEntities() {
 List<MyEntity> list = new ArrayList<MyEntity>();

 MyEntity entity = new MyEntity();
 entity.setFirstName(“Hello”);
 entity.setLastName(“World”);
 entity.setEmailAddress(“hello@world.com”);
 list.add(entity);

 MyEntity entity2 = new MyEntity();
 entity2.setFirstName(“Hello”);
 entity2.setLastName(“Space”);
 entity2.setEmailAddress(“hello@space.com”);
 list.add(entity2);

 MyEntity entity3 = new MyEntity();
 entity3.setFirstName(“Hello”);
 entity3.setLastName(“Neighbor”);
 entity3.setEmailAddress(“hello@neighbor.com”);
 list.add(entity3);

 return list;
 }
}

Listing 3: Java Example Service Implementation

public class MyEntity {
 private String firstName;
 private String lastName;
 private String emailAddress;

 public String getFirstName() {
 return firstName;
 }
 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }
 public String getLastName() {
 return lastName;
 }
 public void setLastName(String lastName) {
 this.lastName = lastName;
 }
 public String getEmailAddress() {
 return emailAddress;
 }
 public void setEmailAddress(String emailAddress) {
 this.emailAddress = emailAddress;
 }
}

http://www.dzone.com
http://www.refcardz.com
http://library.dzone.com/assets/request/sponsored_link/9223
http://opensource.adobe.com/wiki/display/blazeds/BlazeDS/
http://www.eclipse.org/downloads/
http://library.dzone.com/assets/request/sponsored_link/9223
http://tomcat.apache.org/
http://www.springsource.org/download
http://www.springsource.org/spring-flex
http://www.antlr.org/download.html

DZone, Inc. | www.dzone.com

3
Flex & Spring Integration

 - For the file name, type application-config.xml
 - Click Finish
 - Copy and paste the text from Listing 4 into the file

<?xml version=”1.0” encoding=”UTF-8”?>
<beans xmlns=”http://www.springframework.org/schema/beans”
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xsi:schemaLocation=”
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-2.5.xsd”>

 <!-- Spring Beans’s -->
 <bean id=”myService” class=”MyServiceImpl” />

</beans>

Listing 4: Basic Spring Configuration

<?xml version=”1.0” encoding=”UTF-8”?>
<web-app>
 <display-name>dzone-server</display-name>
 <servlet>
 <servlet-name>Spring MVC Dispatcher Servlet</servlet-name>
 <servlet-class>
 org.springframework.web.servlet.DispatcherServlet
 </servlet-class>
 <init-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>/WEB-INF/application-config.xml</param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <!-- Map /spring/* requests to the DispatcherServlet -->
 <servlet-mapping>
 <servlet-name>Spring MVC Dispatcher Servlet</servlet-name>
 <url-pattern>/spring/*</url-pattern>
 </servlet-mapping>
</web-app>

Listing 5: web.xml

The web.xml contents in Listing 5 create a servlet filter from
Spring that will process all BlazeDS requests at:
http://localhost:8080/dzone-server/spring
This will be the base URL for accessing the BlazeDS endpoint.
Also, you should notice that this is a standard DispatcherServlet
for Spring.

Now that you have Spring wired into the Java web application,
you will update the basic Spring configuration from Listing 4 so
that it will work with BlazeDS. Add the highlighted section from
Listing 6 to your application-config.xml file.

<?xml version=”1.0” encoding=”UTF-8”?>
<beans xmlns=”http://www.springframework.org/schema/beans”
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xmlns:flex=”http://www.springframework.org/schema/flex”
 xsi:schemaLocation=”
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
 http://www.springframework.org/schema/flex
 http://www.springframework.org/schema/flex/spring-flex-1.0.xsd”>
 <!-- Spring Beans’s -->
 <bean id=”myService” class=”MyServiceImpl” />

 <!-- Simplest possible message broker -->
 <flex:message-broker />

Listing 6: Advanced Spring Configuration for BlazeDS

Listing 6 exposes the MyServiceImpl class as a BlazeDS
destination. First, the Flex® namespace is added to the
configuration. Note that the XSD will not be published
from Spring until the final 1.0 release, and until then you will
have to add it manually to your XML catalog. With the Flex
namespace added, the configuration uses the message-
broker tag to create the MessageBrokerFactoryBean. Since
there is no additional configuration information provided,
the MessageBroker will be created with “sensible defaults,”
assuming that the service-config.xml is in WEB-INF/flex/
services-config.xml. The remote-service tag creates a
destination from existing Spring beans.

Hot
Tip

In Spring BlazeDS Integration release 1.0.0M2,
the standard BlazeDS configuration file (services-
config.xml) is still used for configuration of the
communication channels.

Next, update the default BlazeDS services-config.xml file
(found in the WebContent/WEB-INF/flex folder) to reflect the
Spring URL defined in the web.xml file. Replace the contents
of the file with the code in Listing 7.

<?xml version=”1.0” encoding=”UTF-8”?>

<services-config>

 <services>
 <default-channels>
 <channel ref=”my-amf”/>
 </default-channels>
 </services>

 <channels>
 <channel-definition id=”my-amf”
 class=”mx.messaging.channels.AMFChannel”>
 <endpoint
url=”http://{server.name}:{server.port}/{context.root}/spring/
messagebroker/amf”
class=”flex.messaging.endpoints.AMFEndpoint”/>
 </channel-definition>
 <channel-definition id=”my-polling-amf”
 class=”mx.messaging.channels.AMFChannel”>
 <endpoint
url=”http://{server.name}:{server.port}/{context.root}/spring/
messagebroker/amfpolling”
class=”flex.messaging.endpoints.AMFEndpoint”/>
 <properties>
 <polling-enabled>true</polling-enabled>
 <polling-interval-seconds>4</polling-interval-seconds>
 </properties>
 </channel-definition>
 </channels>

</services-config>

Listing 7: Update channel definition in services-config.xml

Those familiar with Spring should recognize this as a basic
Spring configuration for creating a simple bean from the
MyServiceImpl class. Later in this tutorial you will be using this
bean through BlazeDS.

At this point, you have a basic Java web project with a default
BlazeDS configuration. Now, you’ll change the default BlazeDS
configuration to use the newly created Spring bean.

To begin configuring Spring BlazeDS Integration, update the
web.xml file by removing the default BlazeDS configuration and
replacing it with the code from Listing 5.

 <!-- exposes myService as BlazeDS destination -->
 <flex:remote-service ref=”myService” />
</beans>

Note that the endpoint URL for the my-amf and my-polling-amf
channels in Listing 7 include “spring” after the context.root
parameter. This is the only configuration change you need to
make in the BlazeDS default configuration files. All the remote
destinations are configured in the Spring application-config.
xml file.

You are now done configuring the server-side Spring / BlazeDS
Java application. You may want to start up the Tomcat server
to verify that your configuration is correct.

Now you can build the Flex application to use the Spring
service remotely. Follow these steps to create the Flex project:

http://www.dzone.com
http://www.refcardz.com
http://library.dzone.com/assets/request/sponsored_link/9223

DZone, Inc. | www.dzone.com

4
Flex & Spring Integration

 • Select File > New > Other
 • In the Select A Wizard dialog box, select Flex Project
 • In the New Flex Project box, type in a project name:
 dzone-flex
 • Use the default location (which will already be checked)
 • Select Web Application (Runs In Flash Player)
 • Select None as the Application Server Type
 • Click Next
 • Specify the Output folder to be the location of the dzone-
 server’s WebContent directory such as:
 C:\workspace\dzone-server\WebContent\
 • Click Finish

Your project will open in the MXML code editor and you’ll
see a file titled main.mxml. Open the file and add the Flex®
application code from Listing 8. This code accesses the
MyServiceImpl class in Java and returns the results to Flex.

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”
 creationComplete=”srv.getMyEntities()”>
 <mx:AMFChannel id=”myamf”
 uri=”/dzone-server/spring/messagebroker/amf”/>
 <mx:ChannelSet id=”channelSet” channels=”{[myamf]}”/>
 <mx:RemoteObject id=”srv”
 destination=”myService” channelSet=”{channelSet}”/>
 <mx:DataGrid dataProvider=”{srv.getMyEntities.lastResult}”/>

</mx:Application>

Listing 8: Final main.mxml source file for accessing the Spring service

The code in Listing 8 sets up the AMFChannel for accessing
the Spring service. Note that the destination “flexMyService”
is the same as the bean you defined in the application-config.
xml Spring configuration file. Also, you might have noticed
that none of the Flex code contains anything specific to Spring.
The Flex code doesn’t have to change, as the client code has
no knowledge of the fact that Spring is being used on the
server.

To get the dzone-server to update the deployed web
application you may need to right-click the dzone-server
project and select Refresh.

With all steps of the tutorial completed, you can start the
Tomcat server in Eclipse and access the application at the
following URL:
http://localhost:8080/dzone-server/main.html

To allow the Flex application to be launched in Run or Debug
mode from Eclipse:
 • Right-click the dzone-flex project
 • Select Properties, then Flex Build Path
 • For the Output Folder URL, type
 http://localhost:8080/dzone-server/
 • Click OK to update the project properties

 Now you can right-click the main.mxml file and select Run As
> Flex Application or Debug As > Flex Application.

The running application displays the data that was hard coded
in the MyServiceImpl Java class, as seen in Figure 1. Now you
have a complete sample application using Spring, BlazeDS,
and Flex

Figure 1: The running application

User Authentication

One of the benefits of using Spring is that it provides support
for many common enterprise requirements, including security.
In this section, you’ll expand on the basic application by using
Spring Security to protect the service channel with role-based
authentication.

To add security to the application you will need to download
the following dependencies:
 • Spring Security 2.0.4:
 http://www.springsource.org/download/
 • AOP Alliance:
 http://sourceforge.net/projects/aopalliance
 • AspectJ 1.6.3:
 http://www.eclipse.org/aspectj/downloads.php
 • CGLib 2.2:
 http://cglib.sourceforge.net/
 • ASM 3.1:
 http://asm.ow2.org/

Then add the following files to the WEB-INF/lib directory in the
dzone-server project:
 • cglib-2.2.jar
 • aspectjrt.jar (located in the aspectj.jar file)
 • asm-3.1.jar
 • asm-commons-3.1.jar
 • spring-security-acl-2.0.4.jar
 • spring-security-core-2.0.4.jar
 • spring-security-core-tiger-2.0.4.jar

<beans:beans xmlns=”http://www.springframework.org/schema/security”
 xmlns:beans=”http://www.springframework.org/schema/beans”
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xsi:schemaLocation=”
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
 http://www.springframework.org/schema/security
 http://www.springframework.org/schema/security/spring-security-
 2.0.4.xsd”>

 <http auto-config=”true” session-fixation-protection=”none”/>
 <authentication-provider>
 <user-service>
 <user name=”jeremy” password=”atlanta”
 authorities=”ROLE_USER, ROLE_ADMIN” />
 <user name=”keith” password=”melbourne”
 authorities=”ROLE_USER” />
 </user-service>
 </authentication-provider>
</beans:beans>

Listing 9: application-Context-security.xml Spring Security Configuration File

http://www.dzone.com
http://www.refcardz.com
http://library.dzone.com/assets/request/sponsored_link/9223

DZone, Inc. | www.dzone.com

5
Flex & Spring Integration

 <servlet>
 <servlet-name>Spring MVC Dispatcher Servlet</servlet-name>
 <servlet-class>org.springframework.web.servlet.DispatcherServlet</
 servlet-class>
 <init-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>
 /WEB-INF/application-config.xml
 /WEB-INF/applicationContext-security.xml
 </param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
 </servlet>

Listing 10: web.xml File with Security Configuration Added

At this point, you need to update the Spring configuration file
to secure the getMyEntities method on myService. To do this
update the application-config.xml file with the code in Listing 11.

<?xml version=”1.0” encoding=”UTF-8”?>
<beans xmlns=”http://www.springframework.org/schema/beans”
 xmlns:flex=”http://www.springframework.org/schema/flex”
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xmlns:security=”http://www.springframework.org/schema/security”
 xsi:schemaLocation=”
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
 http://www.springframework.org/schema/flex
 http://www.springframework.org/schema/flex/spring-flex-1.0.xsd
 http://www.springframework.org/schema/security
 http://www.springframework.org/schema/security/spring-security-
2.0.4.xsd
 “>
 <flex:message-broker>
 <flex:secured />
 </flex:message-broker>
 <bean id=”myService” class=”MyServiceImpl”>
 <flex:remote-service/>
 <security:intercept-methods>
 <security:protect method=”getMyEntities” access=”ROLE_USER” />
 </security:intercept-methods>
 </bean>
</beans>

Listing 11: Updated application-config.xml Spring configuration file

If you run the Flex® application at this point, the getMyEntities
service call will fail because the user is not authenticated.

Now that the server is configured to protect the service,
you will update the Flex application to require the user to
authenticate before loading data from the getMyEntities
service method. The updated code shown in Listing 12
presents users with a login form (See Figure 2) until they are

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”>

 <mx:Script>
 import mx.rpc.events.ResultEvent;
 import mx.rpc.events.FaultEvent;
 import mx.rpc.AsyncToken;
 import mx.rpc.AsyncResponder;

 private function login():void {
 var token:AsyncToken = channelSet.login(username.text, password.
text);
 token.addResponder(new AsyncResponder(loginResult, loginFault));
 }
 private function loginResult(event:ResultEvent,
token:AsyncToken):void {
 //get data
 srv.getMyEntities();
 //change state
 currentState = “userAuthenticated”;
 }
 private function loginFault(event:FaultEvent, token:AsyncToken):void
{
 invalidLogin = true;
 }

 </mx:Script>

 <mx:AMFChannel id=”myamf”
 uri=”/dzone-server/spring/messagebroker/amf”/>
 <mx:ChannelSet id=”channelSet” channels=”{[myamf]}”/>
 <mx:RemoteObject id=”srv”
 destination=”myService” channelSet=”{channelSet}”/>
 <mx:Boolean id=”invalidLogin”>false</mx:Boolean>
 <!-- Login Form -->
 <mx:Panel id=”loginPanel” title=”Login Form”>
 <mx:Label text=”Invalid username or password”
 includeInLayout=”{invalidLogin}” visible=”{invalidLogin}” />
 <mx:Form defaultButton=”{loginButton}”>
 <mx:FormItem width=”100%” label=”Username”>
 <mx:TextInput id=”username”/>
 </mx:FormItem>
 <mx:FormItem width=”100%” label=”Password”>
 <mx:TextInput id=”password” displayAsPassword=”true” />
 </mx:FormItem>
 </mx:Form>
 <mx:ControlBar>
 <mx:Button id=”loginButton” label=”Login” click=”login()”/>
 </mx:ControlBar>
 </mx:Panel>

 <mx:states>
 <mx:State name=”userAuthenticated”>
 <mx:RemoveChild target=”{loginPanel}” />
 <mx:AddChild>
 <mx:DataGrid dataProvider=”{srv.getMyEntities.lastResult}” />
 </mx:AddChild>
 </mx:State>
 </mx:states>

</mx:Application>

The Flex code in Listing 12 is very basic. It presents the user
with the loginPanel until loginResult() is invoked by a successful
login. The username and password parameters come from a
login form and are passed to the channelSet’s login() method.
On a successful login, the loginResult() handler function is
called, and the post-login logic is invoked. In this case, the
currentState is updated to userAuthenticated, which removes

Listing 12: Update Flex Application

The first step is to create a very basic Spring Security
configuration file. This example will use hard-coded
credentials, however in a real application a database or LDAP
server will likely be the source of the credentials. These
methods of authentication can be easily configured with Spring
Security. To learn more about Spring Security and how to add
more advanced configurations, see the project home page at:
http://static.springframework.org/spring-security/site/

To create a basic Spring Security Configuration File:
 • Right-click WebContent/WEB-INF and then choose New
 > File
 • For the file name, type applicationContext-security.xml
 • Click Finish
 • Copy the code from Listing 9 to the file

This configuration allows the user to authenticate through
the Blaze DZ channel. Add the security configuration to
the Spring configuration in the web.xml by updating the
contextConfigLocation param-value as shown in Listing 10.

successfully authenticated. Once the user is authenticated,
the view state is updated showing the DataGrid bound to the
service results, and the service method is called.
Update the main.mxml page with the code in Listing 12.
You can then run the application and login with one of the
hard-coded username and password combinations from the
applicationContext-security.xml configuration file.

http://www.dzone.com
http://www.refcardz.com
http://library.dzone.com/assets/request/sponsored_link/9223

 Design PatternsBy Jason McDonald

CONTENTS INCLUDE:

n	 Chain of Responsibility

n	 Commandn	 Interpretern	 Iteratorn	 Mediatorn	 Observern	 Template Method and more...

DZone, Inc. | www.dzone.com

D
es

ig
n

Pa
tt

er
ns

 w

w
w

.d
zo

ne
.c

o
m

 G

et
 M

o
re

 R
ef

ca
rz

!
V

is
it

 r
ef

ca
rd

z.
co

m

#8

Brought to you by...
Inspired by the GoF Bestseller

This Design Patterns refcard provides a quick reference to the

original 23 Gang of Four (GoF) design patterns, as listed in

the book Design Patterns: Elements of Reusable Object-

Oriented Software. Each pattern includes class diagrams,

explanation, usage information, and a real world example.

Chain of Responsibility, continued

Object Scope: Deals with object relationships that can

be changed at runtime.
Class Scope: Deals with class relationships that can be

changed at compile time.C Abstract FactoryS Adapter
S Bridge

C Builder
B Chain of

ResponsibilityB Command
S Composite

S DecoratorS Facade
C Factory MethodS Flyweight

B InterpreterB Iterator
B Mediator

B Memento

C Prototype
S Proxy

B Observer
C Singleton

B State
B Strategy

B Template MethodB Visitor

ABOUT DESIGN PATTERNS

Creational Patterns: Used to construct objects such

that they can be decoupled from their implementing

system.
Structural Patterns: Used to form large object

structures between many disparate objects.

Behavioral Patterns: Used to manage algorithms,

relationships, and responsibilities between objects.

CHAIN OF RESPONSIBILITY Object Behavioral

COMMAND
 Object Behavioral

successor
Client

<<interface>>Handler+handlerequest()
ConcreteHandler 1

+handlerequest() ConcreteHandler 2
+handlerequest()

Purpose
Gives more than one object an opportunity to handle a request by linking

receiving objects together.

Use
When n	Multiple objects may handle a request and the handler doesn’t have to

 be a specific object.
n	A set of objects should be able to handle a request with the handler

 determined at runtime.

n	A request not being handled is an acceptable potential outcome.

Example
Exception handling in some languages implements this pattern. When an

exception is thrown in a method the runtime checks to see if the method

has a mechanism to handle the exception or if it should be passed up the

call stack. When passed up the call stack the process repeats until code to

handle the exception is encountered or until there are no more parent

objects to hand the request to.

Receiver

Invoker

Command+execute()

Client

ConcreteCommand
+execute()

Purpose
Encapsulates a request allowing it to be treated as an object. This allows

the request to be handled in traditionally object based relationships such

as queuing and callbacks.

Use
When n	You need callback functionality.

n	Requests need to be handled at variant times or in variant orders.

n	A history of requests is needed.

n	The invoker should be decoupled from the object handling the invocation.

Example
Job queues are widely used to facilitate the asynchronous processing

of algorithms. By utilizing the command pattern the functionality to be

executed can be given to a job queue for processing without any need

for the queue to have knowledge of the actual implementation it is

invoking. The command object that is enqueued implements its particular

algorithm within the confines of the interface the queue is expecting.

Upcoming Titles
RichFaces
Agile Software Development
BIRT
JSF 2.0
Adobe AIR
BPM&BPMN
Flex 3 Components

Most Popular
Spring Configuration
jQuery Selectors
Windows Powershell
Dependency Injection with EJB 3
Netbeans IDE JavaEditor
Getting Started with Eclipse
Very First Steps in Flex

“Exactly what busy developers need:
simple, short, and to the point.”

James Ward, Adobe Systems

Download Now

Refcardz.com

Professional Cheat Sheets You Can Trust

DZone, Inc.
1251 NW Maynard
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2009 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher. Reference: First Steps in Flex, Bruce Eckel, James Ward,

Version 1.0

$7
.9

5

DZone communities deliver over 4 million pages each month to

more than 2 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheat sheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

ABOUT THE AUTHOR

6
Flex & Spring Integration

RECOMMENDED BOOK

Figure 2: Login Form

Now, you have a basic Flex®, Spring, and BlazeDS application
protected with authentication.

ISBN-13: 978-1-934238-51-6
ISBN-10: 1-934238-51-1

9 781934 238516

50795

Jon Rose is the Flex Practice Director for Gorilla
Logic, an enterprise software consulting company
located in Boulder, Colorado. He is an editor and
contributor to InfoQ.com, an enterprise software
community. Visit his website at: www.ectropic.com

Gorilla Logic, Inc. provides enterprise Flex and
Java consulting services tailored to businesses in all
industries. www.gorillalogic.com

James Ward is a Technical Evangelist for Flex at
Adobe. He travels the globe speaking at conferences
and teaching developers how to build better software
with Flex. Visit his websit at: www.jamesward.com

First Steps in Flex, co-authored by James, will give you
just enough information, and just the right information,
to get you started learning Flex--enough so that you
feel confident in taking you own steps once you finish

the book. For more information visit: http://www.firststepsinflex.com

the login form and adds the DataGrid bound to the service
call’s results. In addition, the getMyEntities service method is
called to load the data.

Conclusion

In this Refcard, you first created a Spring bean that was
exposed to the Flex client through BlazeDS using Spring
BlazeDS Integration. Next, you secured your service by
adding Spring Security, and basic Flex authentication. As
you can see, the new Spring BlazeDS Integration project
makes integrating Flex and Spring easy and straightforward.
The combination of the two technologies creates a powerful
platform for building robust RIAs. You can learn more about
integrating Flex and Spring on the Spring BlazeDS Integration
project site:

http://www.adobe.com/devnet/flex/flex_java.html

First Steps in Flex will take you through your first
steps on your way to becoming a powerful user
interface programmer.

We’ve gone to great lengths to show you the
world of Flex without burying you in information
you don’t need right now. At the same time,
we give pointers to places where you can go to
explore more.

First Steps in Flex is the ideal starting point for
any programmer who wants to quickly become
proficient in Flex 3.

BUY NOW
books.dzone.com/books/first-steps-flex

http://refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.refcardz.com
http://books.dzone.com/books/first-steps-flex
http://library.dzone.com/assets/request/sponsored_link/9223

