

DZone, Inc. | www.dzone.com

By Mike Keith

G
e

tt
in

g
 S

ta
rt

e
d

 w
it

h
 J

PA
 2

.0

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#127

CONTENTS INCLUDE:
n	 Whats New in JPA 2.0
n	 JDBC Properties
n	 Access Mode
n	 Mappings
n	 Shared Cache
n	 Additional API and more...

Getting Started with
 JPA 2.0

DZone, Inc. | www.dzone.com

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#49
B

IR
T

 3
.7

 R
e

p
o

rt
 D

e
si

g
n

By Michael Williams

WHAT IS BIRT?

Eclipse Business Intelligence and Reporting Tools (BIRT) is an open-
source, Eclipse-based reporting system that integrates with your Java
EE application to produce compelling reports. BIRT is the only top-level
Eclipse project focused on business intelligence. BIRT provides core
reporting features such as report layout, data access, and scripting. This
Refcard provides an overview of the BIRT components, focusing on a few
key capabilities of the BIRT Designer, BIRT Runtime APIs, and BIRT Web
Viewer. This information should be interesting to report designers as well
as to developers or architects involved in integrating BIRT reports into
applications.

Design and Runtime Components
BIRT has two main components: a report designer based on Eclipse and
a runtime component that you can add to your application. The charting
engine within BIRT can also be used by itself, allowing you to add charts
to your application.

Getting BIRT
Open-source BIRT can be downloaded from http://download.eclipse.
org/birt/downloads or http://www.birt-exchange.org. There are several
different packages containing BIRT depending on your needs.

BIRT All-In-One
Download

The fastest way to get started designing BIRT reports on
Windows. Includes everything you need to start designing BIRT
Reports, including the full Eclipse SDK.

BIRT Framework This download allows you to add the BIRT plug-in to your exist-
ing Eclipse environment. (Make sure you check the dependen-
cies and update those, too.)

BIRT POJO Runtime Deployment components of the BIRT project including a com-
mand line example, API examples, and example web viewer.

BIRT Web Tools
Integration

Contains the plug-ins required to use the BIRT Web Project
Wizard and the BIRT Viewer JSP tag library.

Hot
Tip

You can also get BIRT into your existing Eclipse environment through
the Eclipse Update Manager (http://wiki.eclipse.org/BIRT_Update_Site_
URL). Be sure to also select the Data Tools Project when using this
approach.

BIRT REPORT DESIGNER

The BIRT report designer is an easy-to-use visual report development tool
that meets a comprehensive range of reporting requirements. The report
designer includes task-specific editors, builders, and wizards that make it
easy to create reports that can be integrated into web applications. The
BIRT report designer supports:

 1. Component-based model for reuse
 2. Ease of use features
 3. Support for a wide range of reports, layouts, and formatting
 4. Programmatic control
 5. Data access across multiple data sources

BIRT File Types
Design File (*.rpt-
design)

An XML file that contains the data connection information,
report layout, and instructions. Created when making a report
in the BIRT Designer.

Template File (*.rpt-
template)

Ensures all reports you create start with some common ele-
ments, such as a company header or predefined styles. The
starting point for a BIRT report.

CONTENTS INCLUDE:
n	 What is BIRT?
n	 	BIRT Report Designer
n	 Styles
n	 Report Deployment Options
n	 Web Viewer
n	 and More!

BIRT 3.7 Report Design
 Eclipse-Based BI and Big Data Visualization

brought to you by...

Updated for

BIRT 3.7!

2 BIRT 3.7

DZone, Inc. | www.dzone.com

Library File (*.rptli-
brary)

Stores commonly used report elements, such as a company
logo, so they are managed in one place for all reports.

Report Document
(*.rptdocument)

The completed report including layout instructions and data.
Can be transformed into final report output, such as HTML,
PDF, and XLS.

Data Sources
BIRT supports a variety of data sources and can be extended to support
any data to which you have access. In addition to the list below, BIRT
also ships with a connection to the Classic Models sample database and
also includes a Joint Data Set, which allows you to join data across data
sources.

Flat File Data Source Supports tab, comma, semicolon, and pipe delimited data

JDBC Data Source Supports connections to relational databases

Scripted Data Source Allows you to implement custom logic, communicate with Java
objects, or get access to data within your application.

Web Services Data
Source

Supports connections to a web service. A wizard helps you
point at a service through a WSDL and select the data

XML Data Source Supports data from XML

Hive/Hadoop Data
Source

Allows access to Hadoop data through Hive using Hive Query
Language (HQL)

Additional Data
Sources

BIRT has been extended by both the open source community
and within commercial products allowing additional data con-
nections to POJOs, Amazon RDS, LDAP, LinkedIn, Facebook,
Excel, MongoDB, GitHub, and Spring Beans

Palette of Report Items
Use to include static (or localized) text within a report.
Typically for report titles, column headers, or any other
report text.

Use to include richly formatted text to your report,
including the ability to integrate HTML formatting with
your dynamic data.

Use to integrate your static text with dynamic or
conditional data.

Use to include data from your connection in the report.

Use to include images from various embedded
sources or dynamic locations.

Use to define the layout of a report. Can be nested
within other grids to support complex layouts.

Use to display Data elements from your data source
that repeat and creates a new report row for each data
set row. Can contain multiple levels of grouping.

Use to display repeating data elements within your
report and has support for multiple columns and
multiple levels of grouping.

Use to add rich interactive charting to your BIRT
report.

Use to display grouped and dynamic data by both the
row and column level.

Use to build totals for tables and groups. Includes
over 30 built-in functions like COUNT, SUM, MAX,
MIN, AVE, RUNNINGSUM, COUNTDISTINCT, and
RANK.

Additional Report Items BIRT has been extended by both the open source
community and within commercial products providing
additional report items such as Google Translate item,
HTML5 charts, Flash gadgets/objects, and interactive
HTML buttons.

Chart Types
Bar Sub-Types:

Side-by-Side

Stacked

Percent Stacked

Dimensions:

2D, 2D w/ Depth.

and 3D

Line Sub-Types:

Overlay

Stacked

Percent Stacked

Dimensions:

2D and 3D

Area Sub-Types:

Overlay

Stacked

Percent Stacked

Dimensions:

2D, 2D w. Depth,

and 3D

Pie Sub-Types:

Standard

Dimensions:

2D and 2D w. Depth

Meter Sub-Types:

Standard

Superimposed

Dimensions:

2D

Scatter Sub-Types:

Standard

Dimensions:

2D

Stock Sub-Types:

Candlestick

Bar-Stick

Dimensions:

2D

Bubble Sub-Types:

Standard

Dimensions:

2D

Difference Sub-Types:

Standard

Dimensions:

2D

Gantt Sub-Types:

Standard

Dimensions:

2D

Tube Sub-Types:

Side-by-Side

Stacked

Dimensions:

2D, 2D w. Depth,

and 3D

Cone Sub-Types:

Side-by-Side

Stacked

Percent Stacked

Dimensions:

2D, 2D w. Depth,

and 3D

Pyramid Sub-Types:

Side-by-Side

Stacked

Percent Stacked

Dimensions:

2D, 2D w. Depth,

and 3D

Radar Sub-Types:

Standard

Spider

Bullseye

Dimensions:

2D

Additional Chart

TYpes

BIRT has been extended by both the open

source community and within commercial

products providing additional chart types

such as heat maps, segment charts, HTML 5

charts, Flash Charts, and Flash Maps.

Hot
Tip

Creating your First Report

1. Create a new Report Project from the category of Business
Intelligence of Reporting Tools. Change to the Report Design
perspective.

2. File -> New ->Report. Select the template called My First Report,
which launches a cheat sheet containing a step-by-step tutorial
assisting you with connecting to data sources, creating data sets,
and laying out your report.

Localization
BIRT supports internationalization of report data including support for
bidirectional text. BIRT also supports the localization of static report
elements within a report allowing you to replace report labels, table
headers, and chart titles with localized text. BIRT allows the use of

3 BIRT 3.7

DZone, Inc. | www.dzone.com

multiple resource files with name/value pairs and a *.properties file
extension. For example, a file called MyLocalizedText_de.properties can
include a line that says “welcomeMessage=Willkommen”. To use these
files within a BIRT report:

Assign resource files to
entire report

Report -> Properties -> Resources -> Resource Files

Assign individual keys to
a label

Label -> Properties -> Localization -> Text key

Styles
Reports designed with the BIRT report designer can be richly formatted
with styles that match your existing web application.

Built-In Styles Built-in styles can be shared in a report library for manag-
ing style across multiple reports.

CSS style sheet BIRT can import CSS files at design time or reference exist-
ing CSS files at run time.

Below are some examples of CSS styles:

.table-header {
 background : #93BE95;
 border-bottom : double;
 border-top : solid;
 border-top-width : thin;
 border-color : #483D8B;
 font-family : sans-serif;
 font-size : x-small;
 font-weight : bold;
 color : #FFFFE0;
}

.table-detail {
 background : #DFECDF;
 font-family : sans-serif;
 font-size : x-small;
 color : #426E44;
}

.table-footer {
 background : #93BE95;
 border-top : double;
 border-bottom : solid;
 border-bottom-width : thin;
 border-color : #483D8B;
 font-family : sans-serif;
 font-size : x-small;
 font-weight : bold;
 color : #FFFFE0;
}

.crosstab-detail {
 background : #DFECDF;
 font-family : sans-serif;
 font-size : x-small;
 color : #426E44;
}

.crosstab-header {
 background : #5B975B;
 font-family : sans-serif;
 font-size : small;
 font-weight : bold;
 color : #FFFFE0;
}

.crosstab-cell {
 border-top : solid;
 border-top-width : thin;
 border-bottom : solid;
 border-bottom-width : thin;
 border-left : solid;
 border-left-width : thin;
 border-right : solid;
 border-right-width : thin;
 border-color : #294429;
}

To see style examples, visit http://www.birt-exchange.org/org/devshare
and enter keyword “style”.

Customization with Expressions, Scripting and Events
BIRT includes out-of-the-box functionality that is available through
drag-and-drop or by setting some properties,. BIRT also supports more
advanced customizations through expressions, scripting, and events. The
expression builder in BIRT allows you to do conditional report processing
just about anywhere you need to instead of hard coding values. For
example, the expression below will display the shipped date for orders
that have already shipped; otherwise, it will display the order date.

if (dataSetRow[“STATUS”] == “Shipped”) {
 dataSetRow[“SHIPPEDDATE”];
} else {
 dataSetRow[“ORDERDATE”];
}

Scripting of a BIRT report can be done in either JavaScript or Java
depending on your skill set and needs. Scripting allows you to circumvent
the traditional event processing of the BIRT report. You can add scripting
to report object, data source, and data element event types. Each of these
event types has several events that you can overwrite.

For example, you can use scripting to navigate your Java objects and add
them to a BIRT Data Set.

favoritesClass = new Packages.SimpleClass();
favorites = favoritesClass.readData();
…
var favrow = favorites.get(currentrow);

var Customer = favrow[0];
var Favorite = favrow[1];
var Color = favrow[2];

row[“Customer”]=Customer;
row[“Favorite”]=Favorite;
row[“Color”]=Color;

Use scripting to change bar colors on a chart based on plotted data.

if (dph.getOrthogonalValue() < 1000) {
 fill.set(255,0,0); //red
} else if (dph.getOrthogonalValue() < 5000) {
 fill.set(255,255,0); //yellow
} else {
 fill.set(0,255,0); //green
}

Use scripting to add or drop a report table based on a user parameter.

if (params[“showOrders”] == false){
reportContext.getDesignHandle().findElement(“ordersTable”).drop();
}

Or use scripting to include dynamic images that are based on the report
data.

if (row[“CREDITLIMIT”] <= 0) {
“down.jpg”
} else {
“up.jpg”
}

You can also use scripting within a text box using the <value-of> tag for
generation time evaluation or with the <viewtime-value-of> tag for render
time evaluation.

<value-of>
if (row[“myField”] > 0) {
“positive”
} else {
“negative”
}
</value-of>

<viewtime-value-of>
vars[“Group_Page”]
</viewtime-value-of>

Or use html <script> tags to create client-side script, like creating a
function to hide a certain table that will be called by an html button.

<script>
function hidetable(tblbtn,tblname){
var mytable=document.getElementById(tblname);
var hide=true;
if(mytable.style.display == ‘none’){
 hide=false;
}

if(hide){
document.getElementById(tblbtn).value=”+”;
 mytable.style.display=’none’;
}else{
document.getElementById(tblbtn).value=”-”;
 mytable.style.display=’’;
}
}
</script>

For more scripting examples, visit http://www.birt-exchange.org/org/
devshare and enter keyword “scripting”.

4 BIRT 3.7

DZone, Inc. | www.dzone.com

REPORT DEPLOYMENT OPTIONS

Once you create your report design, there are several different ways to
generate the report output. Obviously, you can run these reports directly
from the BIRT Designer, but you can also run BIRT reports from the
command line, generate BIRT reports from your Java application using
the BIRT APIs, integrate and customize the example web viewer, or deploy
your reports within commercial business intelligence servers.

APIs
BIRT supplies several APIs and an example Java EE application for
generating and viewing reports. The major APIs are the Design Engine
API(DE API), Report Engine API(RE API) and the Chart Engine API (CE
API). In addition to the APIs, BIRT supports scripting using either Java or
JavaScript within report designs.

Design Engine API(DE
API)

Use the Design Engine API (DE API) to create a custom report
designer tool, or to explore or modify BIRT report designs. The
BIRT Designer uses this API. You can call this API within a BIRT
script to modify the currently running report design.

Report Engine API(RE
API)

Use the Report Engine API to run BIRT reports directly from
Java code or to create a custom web application front end
for BIRT.

Chart Engine API (CE
API)

Use the Chart Engine API to create and render charts apart
from BIRT

To see API examples, visit http://www.birt-exchange.org/org/devshare and
enter keyword “API”.

BIRT Report Engine Tasks
There are several tasks supplied by the Report Engine API that can be
used to generate report output. A few key tasks are listed below.

IRunAndRenderTask Use this task to run a report and create the output directly to
one of the supported output formats. This task does not create
a report document.

IRunTask Use this task to run a report and generate a report document,
which is saved to disk.

IRenderTask Use this task to render a report document created in the
IRunTask to a specific output (eg, HTML, PDF, etc.) This class
renders the report based on the supplied page range, page
number or all if no page is specified.

IGetParameterDefini-
tionTask

Use this task to create your own parameter GUI and to obtain
information about parameters, including their default values.

IDataExtractionTask Use this task to extract data from a report document. The BIRT
viewer uses this class to extract report data into CSV format.

BIRT Report Engine Example
static void executeReport() throws EngineException
{
 IReportEngine engine=null;
 EngineConfig config = null;

try{
 // start up Platform
 config = new EngineConfig();
 config.setLogConfig(“C:\\BIRT_version\\logs”, java.util.logging.Level.
FINEST);
 Platform.startup(config);

 // create new Report Engine
 IReportEngineFactory factory = (IReportEngineFactory) Platform.
createFactoryObject(IReportEngineFactory.EXTENSION_REPORT_ENGINE_FACTORY);
 engine = factory.createReportEngine(config);

 // open the report design
 IReportRunnable design = null;
 design = engine.openReportDesign(“C:\\BIRT_version\\designs\\param.
rptdesign”);

 // create RunandRender Task
 IRunAndRenderTask task = engine.createRunAndRenderTask(design);

 // pass necessary parameters
 task.setParameterValue(“ordParam”, (new Integer(10101)));
 task.validateParameters();

 // set render options including output type
 PDFRenderOption options = new PDFRenderOption();
 options.setOutputFileName(“my_report.pdf”);
 options.setOutputFormat(“pdf”);

 task.setRenderOption(options);

 // run task

 task.run();
 task.close();
 engine.destroy();
}
catch(Exception ex){
 ex.printStackTrace();
}
finally
{
 Platform.shutdown();

}

Hot
Tip

Platform startup and shutdown should only occur at the beginning
and the end of the application, respectively. Also, be sure to get the
jars from the reportengine/lib directory in the runtime download
added to the classpath/buildpath.

Web Viewer
The BIRT WebViewer is an example application that illustrates generating
and rendering BIRT report output in a web application. This viewer
demonstrates report pagination, an integrated table of contents, report
export to several formats, and printing to local and server-side printers.

The BIRT Web Viewer can be used in a variety of ways:

Stand-alone (Example
Viewer)

Use as a pre-built web application, for running and viewing
static reports, that doesn’t require security.

Modify Viewer source Use as a starter web application that you can customize to your
fit within your environment.

RCP application Use as a plug-in for your existing RCP application.

Integrated with existing
web application

The viewer can be integrated with URLs or BIRT JSP tag library.

The BIRT Web Viewer consists of two main Servlets, the ViewerServlet and
the BirtEngineServlet. These Servlets handle three mappings: (/frameset, /
run, and /preview).

/frameset Renders the report in the full AJAX viewer, complete with
toolbar, navigation bar, and table of contents features. This
mapping also generates an intermediate report document
from the report design file to support the AJAX-based
features. For example, http://localhost:8080/viewer/frame-
set?__report=myreport.rptdesign&parm1=value.

/run Runs and renders the report but does not create a report docu-
ment. This mapping does not supply HTML pagination, TOC or
toolbar features, but does use the AJAX framework to collect
parameters, support report cancelling and retrieve the report
output in HTML format. For example, http://localhost:8080/
viewer/run?__report=myreport.rptdesign&parm1=value.

5 BIRT 3.7

DZone, Inc. | www.dzone.com

/preview Runs and renders the report but does not generate a report
document, although an existing report document can be used;
in this case, just the render operation occurs. The output from
the run and render operation is sent directly to the browser.
For example, http://localhost:8080/viewer/preview?__
report=myreport.rptdesign&parm1=value.

Viewer URL Parameters
Below are a few of the key URL parameters available for the viewer. These
parameters can be used along with the Servlet mappings, such as run,
frameset, and preview, listed in the Web Viewer section.

Attribute Description

__id Unique identifier for the viewer.

__title Sets the report title.

__showtitle Determines if the report title is shown in the frameset viewer.

Defaults to true. Valid values are true and false.

__toolbar Determines if the report toolbar is shown in the frameset viewer.

Defaults to true. Valid values are true and false.

__navigationbar Determines if the navigation bar is shown in the frameset
viewer. Defaults to true. Valid values are true and false.

__parameterpage Determines if the parameter page is displayed. By default, the
frameset, run, and preview mappings automatically determines
if the parameter page is required. This setting overrides this
behavior. Valid values are true and false.

__report Sets the name of the report design to process. This setting can
be an absolute path or relative to the working folder.

__document Sets the name for the rptdocument. The document is created
when the report engine separates run and render tasks, and is
used to support features like table of contents and pagination.
This setting can be an absolute path or relative to the working
folder.

__format Specifies the desired output format, such as pdf, html, doc,
ppt, or xls.

__locale Specifies the locale for the specific operation. Note that this
setting overrides the default locale.

__page Specifies page to render.

__pagerange Specifies page range to render such as 1-4,7.

__bookmark Specifies a bookmark in the report to load. The viewer auto-
matically loads the appropriate page.

Viewer Web.xml settings
The BIRT Web Viewer has several configuration options. These
settings can be configured by modifying the web.xml file located in the
WebViewerExample/WEB-INF folder. Below are a few of the key settings
available for the viewer.

Attribute Description

BIRT_VIEWER_LOCALE This sets the default locale for the Web Viewer.

BIRT_VIEWER_WORK-
ING_FOLDER

This is the default location for report designs. If the report
design specified in a URL parameter is relative, this path is pre-
pended to the report name.

BIRT_VIEWER_DOCU-

MENT_FOLDER

If the __document parameter is not used, a report document is

generated in this location. If this setting is left blank, the default

value, webapp/documents, is used. If the__document URL

parameter is used and the value is relative, the report document is

created in the working folder.

BIRT_VIEWER_IM-

AGE_DIR

Specifies the default location to store temporary images gener-

ated by the report engine. If this setting is left blank, the default

location of webapp/report/images is used.

BIRT_VIEWER_LOG_
DIR

Specifies the default location to store report engine log files.
If this setting is left blank, the default location of webapp/logs
is used.

BIRT_VIEWER_LOG_
LEVEL

Sets the report engine log level. Valid values are:

OFF, SEVERE, WARN-
ING, INFO, CONFIG,
FINE, FINER, and
FINEST.

Sets the name of the report design to process. This setting can
be an absolute path or relative to the working folder.

URL_REPORT_PATH_
POLICY

Allows the developer to control what value can be used in
the __report URL parameter. Valid values are all, domain, and
none.

BIRT_RESOURCE_
PATH

This setting specifies the resource path used by report engine.
The resource path is used to search for libraries, images, and
properties files used by a report. If this setting is left blank,
resources are searched for in the same directory as the report.

BIRT_VIEWER_MAX_
ROWS

Specifies the maximum number of rows to retrieve from a
dataset.

BIRT_VIEWER_PRINT_
SERVERSIDE

This setting specifies whether server side printing is supported.
If set to OFF, the toolbar icon used for server side printing is
removed automatically. Valid values are ON and OFF.

__pagerange Specifies page range to render such as 1-4,7.

__bookmark Specifies a bookmark in the report to load. The viewer auto-
matically loads the appropriate page.

Viewer JSP Tag Library
The BIRT Web Viewer includes a set of tags to make it easy to integrate
BIRT reports into browser pages. These tags are available from the BIRT
Web Tools Integration download. Below are a few of the key JSP tags and
a description of their usage.

Attribute Description

BIRT_VIEWER_LOCALE This sets the default locale for the Web Viewer.

BIRT_VIEWER_WORK-
ING_FOLDER

This is the default location for report designs. If the report
design specified in a URL parameter is relative, this path is pre-
pended to the report name.

BIRT_VIEWER_DOCU-

MENT_FOLDER

If the __document parameter is not used, a report document is

generated in this location. If this setting is left blank, the default

value, webapp/documents, is used. If the__document URL

parameter is used and the value is relative, the report document is

created in the working folder.

BIRT_VIEWER_IM-

AGE_DIR

Specifies the default location to store temporary images gener-

ated by the report engine. If this setting is left blank, the default

location of webapp/report/images is used.

BIRT_VIEWER_LOG_
DIR

Specifies the default location to store report engine log files.
If this setting is left blank, the default location of webapp/logs
is used.

Simple Viewer JSP Tag Example
<%@ taglib uri=”/birt.tld” prefix=”birt” %>
…
<birt:viewer
id=”birtViewer” pattern=”preview”
reportDesign=”TopNPercent.rptdesign”
height=”600” width=”800”
format=”html”
title=”My Viewer Tag”
isHostPage=”false”
showTitle=”true” showToolBar=”true”
showNavigationBar=”true”
showParameterPage=”true”>
</birt:viewer>

Interactive Viewer JavaScript Example
(for BIRT Designs deployed on BIRT iServer)
<html> <head>
<script type=”text/javascript” language=”JavaScript” src=”http://
localhost:8900/iPortal/jsapi”></script>
</head>
<body onload=”init();”>
<div id=”myDivContainer” style=”border-width: 1px; border-style: solid;”></
div>
<script type=”text/javascript” language=”JavaScript”>
var myViewer;
function init(){
actuate.load(“viewer”);
actuate.initialize(“http://localhost:8080/iPortal”, null, null, null,
createViewer);
}
function createViewer(){
myViewer = new actuate.Viewer(“myDivContainer”);
myViewer.setReportName(“/Dashboard/QuickReport.rptdesign”);
myViewer.submit();
}
</script>
</body> </html>

BIRT Report Output Formats
In addition to delivering paginated report content to a web browser, BIRT
also supports several other output formats. These formats listed below are

6 BIRT 3.7

DZone, Inc.
150 Preston Executive Dr.
Suite 200
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2011 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise,
without prior written permission of the publisher.

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to
more than 3.3 million software developers, architects and decision
makers. DZone offers something for everyone, including news,
tutorials, cheat sheets, blogs, feature articles, source code and more.
“DZone is a developer’s dream,” says PC Magazine.

RECOMMENDED BOOK

support by both the Report Engine API as well as the BIRT Web Viewer.

Paginated HTML output An example web viewer is included with BIRT allowing for on-

demand paginated web output.

Paginated HTML output An example web viewer is included with BIRT allowing for on-

demand paginated web output.

Microsoft Office Word, Excel, and Powerpoint.

HTML Suitable for creating HTML pages of report data deployable
to any server.

PDF Adobe PDF output suitable for emailing or printing.

Postscript Output can be directed to a printer that supports postscript.

Open Document Text, Spreadsheet, and Presentation.

BIRT Extension Points
The APIs in BIRT define extension points that let the developer add
custom functionality to the BIRT framework. These extensions can be in
the form of custom data sources, report items, chart types, output formats,
and functions. Once implemented, these custom extensions will show
along with the built-in types. For example, you can create a custom report
item, like a rotated text label, that will show up in the BIRT Palette along
with the existing items. Below are some of the “more common” extension
points.

Data Sources BIRT supports the Open Data Access (ODA) architecture, which
means it can be extended to support custom data sources.

Functions BIRT allows you to create custom functions that extend those
available in BIRT Expressions.

Report Items Report Items can be extended, allowing you to create your
own custom report item.

Chart Types Additional chart types can be added to BIRT as plug-ins.

Output Emitters BIRT can be extended to include your own custom output
type. For example, a simple CSV emitter exists and can be
added to BIRT.

Additional BIRT Resources
Eclipse BIRT Project
Site

http://www.eclipse.org/birt

BIRT Exchange Com-
munity Site

http://www.birt-exchange.org

Submitting/Searching
BIRT Bugs

https://bugs.eclipse.org/bugs/enter_bug.
cgi?product=BIRT

Online BIRT Documen-
tation

http://www.birt-exchange.com/modules/
documentation/

By Paul M. Duvall

ABOUT CONTINUOUS INTEGRATION

 G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#84

Continuous Integration:

Patterns and Anti-Patterns

CONTENTS INCLUDE:

■ About Continuous Integration

■ Build Software at Every Change

■ Patterns and Anti-patterns

■ Version Control

■ Build Management

■ Build Practices and more...

Continuous Integration (CI) is the process of building software

with every change committed to a project’s version control

repository.

CI can be explained via patterns (i.e., a solution to a problem

in a particular context) and anti-patterns (i.e., ineffective

approaches sometimes used to “fi x” the particular problem)

associated with the process. Anti-patterns are solutions that

appear to be benefi cial, but, in the end, they tend to produce

adverse effects. They are not necessarily bad practices, but can

produce unintended results when compared to implementing

the pattern.

Continuous Integration

While the conventional use of the term Continuous Integration

efers to the “build and test” cycle, this Refcard

expands on the notion of CI to include concepts such as

Aldon®

Change. Collaborate. Comply.

Pattern

Description

Private Workspace
Develop software in a Private Workspace to isolate changes

Repository

Commit all fi les to a version-control repository

Mainline

Develop on a mainline to minimize merging and to manage

active code lines

Codeline Policy

Developing software within a system that utilizes multiple

codelines

Task-Level Commit
Organize source code changes by task-oriented units of work

and submit changes as a Task Level Commit

Label Build

Label the build with unique name

Automated Build

Automate all activities to build software from source without

manual confi guration

Minimal Dependencies
Reduce pre-installed tool dependencies to the bare minimum

Binary Integrity

For each tagged deployment, use the same deployment

package (e.g. WAR or EAR) in each target environment

Dependency Management Centralize all dependent libraries

Template Verifi er

Create a single template fi le that all target environment

properties are based on

Staged Builds

Run remote builds into different target environments

Private Build

Perform a Private Build before committing changes to the

Repository

Integration Build

Perform an Integration Build periodically, continually, etc.

Send automated feedback from CI server to development team

ors as soon as they occur

Generate developer documentation with builds based on

brought to you by...

By Andy Harris

HTML BASICS

e.
co

m

G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#64

Core HTMLHTML and XHTML are the foundation of all web development.

HTML is used as the graphical user interface in client-side

programs written in JavaScript. Server-side languages like PHP

and Java also receive data from web pages and use HTML

as the output mechanism. The emerging Ajax technologies

likewise use HTML and XHTML as their visual engine. HTML

was once a very loosely-defi ned language with very little

standardization, but as it has become more important, the

need for standards has become more apparent. Regardless of

whether you choose to write HTML or XHTML, understanding

the current standards will help you provide a solid foundation

that will simplify all your other web coding. Fortunately HTML

and XHTML are actually simpler than they used to be, because

much of the functionality has moved to CSS.

common elements
Every page (HTML or XHTML shares certain elements in

common.) All are essentially plain text

extension. HTML fi les should not be cr

processor

CONTENTS INCLUDE:
■ HTML Basics■ HTML vs XHTML

■ Validation■ Useful Open Source Tools

■ Page Structure Elements
■ Key Structural Elements and more...

The src attribute describes where the image fi le can be found,

and the alt attribute describes alternate text that is displayed if

the image is unavailable.Nested tagsTags can be (and frequently are) nested inside each other. Tags

cannot overlap, so <a> is not legal, but <a></

b> is fi ne.

HTML VS XHTMLHTML has been around for some time. While it has done its

job admirably, that job has expanded far more than anybody

expected. Early HTML had very limited layout support.

Browser manufacturers added many competing standar

web developers came up with clever workar

result is a lack of standar
The latest web standar

Browse our collection of over Free Cheat Sheets
Upcoming Refcardz

By Daniel Rubio

ABOUT CLOUD COMPUTING

 C
lo

u
d

 C
o

m
p

u
ti

n
g

w

w
w

.d
zo

n
e.

co
m

 G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#82

Getting Started with
Cloud Computing

CONTENTS INCLUDE:
■ About Cloud Computing
■ Usage Scenarios
■ Underlying Concepts
■ Cost
■ Data Tier Technologies
■ Platform Management and more...

Web applications have always been deployed on servers
connected to what is now deemed the ‘cloud’.

However, the demands and technology used on such servers
has changed substantially in recent years, especially with
the entrance of service providers like Amazon, Google and
Microsoft.

These companies have long deployed web applications
that adapt and scale to large user bases, making them
knowledgeable in many aspects related to cloud computing.

This Refcard will introduce to you to cloud computing, with an
emphasis on these providers, so you can better understand
what it is a cloud computing platform can offer your web
applications.

USAGE SCENARIOS

Pay only what you consume
Web application deployment until a few years ago was similar
to most phone services: plans with alloted resources, with an
incurred cost whether such resources were consumed or not.

Cloud computing as it’s known today has changed this.
The various resources consumed by web applications (e.g.
bandwidth, memory, CPU) are tallied on a per-unit basis
(starting from zero) by all major cloud computing platforms.

also minimizes the need to make design changes to support
one time events.

Automated growth & scalable technologies
Having the capability to support one time events, cloud
computing platforms also facilitate the gradual growth curves
faced by web applications.

Large scale growth scenarios involving specialized equipment
(e.g. load balancers and clusters) are all but abstracted away by
relying on a cloud computing platform’s technology.

In addition, several cloud computing platforms support data
tier technologies that exceed the precedent set by Relational
Database Systems (RDBMS): Map Reduce, web service APIs,
etc. Some platforms support large scale RDBMS deployments.

CLOUD COMPUTING PLATFORMS AND
UNDERLYING CONCEPTS

Amazon EC2: Industry standard software and virtualization
Amazon’s cloud computing platform is heavily based on
industry standard software and virtualization technology.

Virtualization allows a physical piece of hardware to be
utilized by multiple operating systems. This allows resources
(e.g. bandwidth, memory, CPU) to be allocated exclusively to
individual operating system instances.

As a user of Amazon’s EC2 cloud computing platform, you are
assigned an operating system in the same way as on all hosting

Michael Williams graduated from The University
of Kansas with a degree in computer engineering.
Currently, he works as a BIRT Evangelist at Actuate,
where he has been working with BIRT for the past 4
years. One of his roles is to provide technical content
for the BIRT Exchange website, in the form of, DevShare
articles, monitoring the forums, and maintaining a blog.

Other roles include putting together the BIRT Report newsletter,
attending software conferences as a technical presence at the BIRT-
Exchange booth, and the occasional speaking session.
http://www.birt-exchange.org

BIRT: A Field Guide

More than ten million people have downloaded
BIRT (Business Intelligence and Reporting Tools)
from the Eclipse web site, and more than one million
developers are estimated to be using BIRT. Built on
the open source Eclipse platform, BIRT is a powerful
report development system that provides an end-

to-end solution–from creating and deploying reports to integrating
report capabilities in enterprise applications.

ABOUT THE AUTHOR

150

Scala Collections
JavaFX 2.0
Web Sockets
Data Warehousing

	Button1:
	Button2:

