

IntelliJ IDEA
By Hamlet D’Arcy

CONTENTS INCLUDE:

n	 About IntelliJ IDEA
 n	 Getting Yourself Oriented
n	 Finding What You Need
n	 Running and Debugging Your Project
n	 Write Less Code
n	 Hot Tips and more...

DZone, Inc. | www.dzone.com

Software developers know the importance of using the best tool
for the job. Often this means choosing a world-class integrated
development environment (IDE), which JetBrains’ IntelliJ IDEA
certainly is. But the best developers don’t just have the right tools,
they are experts in those tools. This is a guide to becoming
that expert. The basics of navigating and understanding the
IDE are covered; but this guide is really about unlocking all
the powerful features of the tool and helping you be more
productive.

The three most important elements of the IDE are the Editor
pane (a), where your code is shown, the Project pane (b), where
your project’s contents are shown, and the Structure pane (c),
where the details of the open object are shown.
Editor Pane: Shows the currently active file, with recently viewed
files in the tab bar. IntelliJ IDEA shows the most recently used
files in the tabs, and there is seldom a need to manually close
tabs. If the maximum number of tabs is reached, then the oldest
tab is closed when a new tab is opened. Also, there is seldom
a need to save a file; file saving is performed automatically in
the background. The IDE supports syntax highlighting for many
languages, but is also language aware and shows syntax errors
as they occur.
Navigate faster by learning these commands:

Edit faster by learning these commands:

ABOUT INTELLIJ IDEA

Getting Yourself Oriented

In
te

ll
iJ

 I
D

E
A

 8
.1

 w

w
w

.d
zo

n
e.

co
m

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

Back Ctrl+Alt+Left Move back to the last cursor position

Forward Ctrl+Alt+Right Move forward to the next cursor position

Next Tab Alt+Right Activate tab to the right of the active one

Previous Tab Alt+Left Activate tab to the left of the active one

Goto Line Ctrl+G Go to a specific line in the active file

Goto Last Edit
Location

Ctrl+Shift+Backspace Go to the position of the last edit

Move Statement Up Ctrl+Shift+Up Moves the current code block up in the file

Move Statement
Down

Ctrl+Shift+
Down

Moves the current code block down in the
file

Copy/Paste Line Ctrl+C /
Ctrl+V

When nothing is selected, copy, cut, and
paste operate on the entire line

Clipboard Stacking Ctrl+Shift+V When copying text, the IDE remembers your
previous copies. Use Ctrl+Shift+V to show
the clipboard history dialog and paste from
a previous copy instead of the most recent
clipboard contents

Select/Unselect Word
at Caret

Ctrl+W /
Ctrl+Shift+W

Selects and unselects the word at the caret.
Quickly select or unselect the word, statement,
block, and method by repeating this action.
Experiment to learn how this works differently
depending on where your cursor starts

Toggle Bookmark F11 Sets or removes a bookmark on the current
line, which shows as black in both the left
and right gutter

Comment/
Uncomment

Ctrl+/ Comments out current selection, or removes
comments from current selection. This
is supported across many languages

Column Mode Ctrl+Shift+
Insert

Column mode allows you to select a
rectangular fragment of code. Effectively
using this can greatly speed up bulk edits on
structured data like SQL or csv files

Hot
Tip

Toolbar icons are shown throughout this guide, but
you’ll be much faster if you learn the key bindings.
The mouse is slow: stop using it! IntelliJ IDEA key
bindings have received praise over the years, and

many believe they are simply better than other IDE’s default
bindings. If you’re switching from another tool, consider learn-
ing the new bindings rather than loading an alternate key
map. The KeyPromoter plugin can help you with this.

#52

ab

c

Brought to you by...

Updated for
IntelliJ IDEA 8.1

IntelliJ IDEA 8.1
2

DZone, Inc. | www.dzone.com

Getting Yourself Oriented, continued

Project Pane: Shows the contents of the current project, allow-
ing you to view the project as files, packages, or scopes (more
about this later). Objects in the project view visually indicate
their type with an icon (which also appears on the editor tabs).

Find objects faster by learning what the icons mean:

IntelliJ IDEA sets itself apart by offering incredibly advanced
ways to find objects and files within large projects. Mastering
the act of finding what you need is key to faster development.

The navigation bar is a useful alternative to the Project pane.
This horizontal bar provides breadcrumb style navigation
based on the active file. To navigate to a different package,
simply click the + to expand a node higher up in the tree. The
navigation bar can be a faster alternative to the Project pane.

You can also use Alt+Home to quickly open the navigation bar
from the current editor pane.

Navigating a single class is done through the Structure pane
(described earlier) and the file structure popup.

File Structure Popup: (Ctrl+F12) allows quick navigation to
methods, fields, and properties. Use the Up/Down arrows to
select an entry, or (better) use the search as you type field. Just
start typing to narrow the list down. The field provides wildcard
and camel case matching. Selecting an entry scrolls the active
file to that entry’s declaration.

Navigating large object oriented codebases is greatly simplified
by learning these commands:

Finding usages is an important feature of any IDE. Being Java
aware, IntelliJ IDEA offers more intelligent searching than
simple string matching.

Highlight Usages in File (Ctrl+Shift+F7) takes the current
mouse selection and highlights all occurrences of that element
in the file. The Editor pane and the right gutter provide visual
keys to where the occurrences appear. Use F3 and Shift+F3 to
jump to the next and previous occurrence.

Structure Pane: Shows the structure of the active file, including
methods, properties, and inner classes. Leaving this pane open
helps you quickly locate the desired point within a class. Make
this pane more useful by tweaking the configuration options:

Properly configuring the Project pane makes it more effective:

→

Autoscroll to source Show properties

Autoscroll from source Show inherited

Sort by visibility Show fields

Sort alphabetically Show non-public

Group Methods by defining type

Hot
Tip

IntelliJ IDEA provides almost endless

amounts of configuration through the Settings

(Ctrl+Alt+S) window. Use the

search box to quickly find what you need. Just start typing

what the option might be called and the window will highlight

to show which buttons lead to a panel containing that key-

word. Wildcards work too!

Finding What You Need

Goto Class Ctrl+N Provides dialog for finding classes. Accepts wildcards,
camel case, and package prefixes. For example,
“BOS” matches BufferedOutputStream, “Str*Buff”
matches StringBuffer, and “java.lang.I” matches all
objects starting with “I” in the java.lang package.
Use Up/Down error to select the class, and Shift+Up/
Down or Ctrl+Click to perform multiple selections.

Goto File Ctrl+Shift+N Provides a similar dialog for finding files that are not
classes. For example, “*spring*xml” matches any
xml files with the word “spring” in the name, and
“*Test.groovy” matches any test case implemented
in Groovy.

Autoscroll to Source When an object or method is clicked in the Project
pane, that item is opened in the Editor pane.

Autoscroll from Source When an item is opened in the Editor pane,
that item is scrolled to in the Project pane

Show structure Shows the Structure pane (explained next) as a
window nested within the Project pane

Show/Hide Members Shows the methods and properties of objects
within the Project pane

Sort by type Sorts the Java classes by type from the most
abstract to the most concrete

Class Class with main()
(indicated by green triangle)

Interface public

Abstract Class protected

Enumeration package

Exception private

Annotation Read Only (indicated by lock)

Test Case (indicated by red and
green triangles)

Not in version control (object
name appears in red)

Final Class (Indicated by pin) In version control (object name
appears black, or blue if edited)

Ctrl+B /
Middle Click

Go to declaration. Navigates to the declaration of the selected
instance or type.

Ctrl+Alt+B Go to implementers or overriders of the selected method. Clicking
the icon in the left gutter performs the same action

Ctrl+U Go to the parent of the selected method or type. Clicking the
icon in the left gutter performs the same action

Ctrl+Mouse
Over

Shows the declaration of a local variable or field in a popup window

Ctrl+H Opens the Type Hierarchy pane for the active class. This pane
explores the super and subclasses of the current object with a
variety of different views

Ctrl+Shift+H Opens the Method Hierarchy pane for the active method. This pane
explores the definitions and implementations of the current method.

F4 Jump to Source. Many tool windows display objects within project.
Used from a tool window, F4 universally opens the element from
the tool in the editor. If you’re in the Ant, Hierarchy, or Find window,
then F4 will open the selection in the editor pane.

3

DZone, Inc. | www.dzone.com

IntelliJ IDEA 8.1

Finding Documentation
There are many ways to find documentation on objects within
your project and dependencies. Master these commands to
get the information you need without leaving the IDE:

Running and debugging the project is an essential part of any
IDE. The easiest way to run an application is to right click the
object within the Editor pane and select Run. This works for
classes with main() and test cases. You can also right click the
object and do the same thing in the Project pane. To run tests
in an entire package simply right click the package.

Manage run targets by using the Run/Debug configurations
window, adding any VM parameters or advanced settings
you may need. Open the window by clicking Edit Configura-
tions within the toolbar's dropdown.

Common run targets can be saved here for future runs.

Running an entry point will display the Run pane. This pane pro-
vides diagnostics on the running process. Get the information
you need from running processes by learning to use the pane:

Scopes
Often, you only want to search a subset of your project, for in-
stance just the test or production source. IntelliJ IDEA provides
Scopes to create smaller filesets used in searching, replacing,
and inspections. Some default scopes are “Project Production
Files”, “Project Test Files”, and “Changed Files”. Fine tune your
searching by defining your own scope, perhaps based on a set of
packages. Scopes can also be helpful to speed up searches on
large projects. Here are the steps to define a scope:

	 1.	 Open Settings (Ctrl+Alt+S) and select Scopes

	 2.	 Click to create a new scope

	 3.	 Select a package to include from the project browser. Use
			 include and include recursively to broaden the fileset, and 	
			 exclude and exclude recursively to narrow the fileset

	 4.	 Save. New Scope is now available for many operations

Search Structurally (Ctrl+Shift+S) and Replace Structurally
(Ctrl+Shift+M) allows searching (and replacing) references
using patterns. Again, this is Java aware and done structurally,
and is not just text string search and replace. This very rich
feature is best explained with an example. Here are the steps
to find any factory methods within the project (ie, methods
whose name starts with “create”):

n	 Open Search Structurally (Ctrl+Shift+S)
n	 Click “Copy the existing template” and select method 	
	 calls, which is $Instance$.$MethodCall$($Parameter$)
n	 Click “Edit variables” and select MethodCall
n	 For the MethodCall variable, enter “create.*” in the
	 Text / Regular Expression. This is the regular expression
	 for the word create followed by any number of other
	 characters
n	 Click “Find” to open the Find pane showing all the
	 factory methods

Finding What You Need, continued

Show Usages Popup (Ctrl+Alt+F7) takes the current mouse
selection and searches the project for any references made to
the field or type. Results appear in an in-editor popup window.

Show Usages in Find Panel (Alt+F7) behaves the same as
the Show Usages Popup, except that results are displayed in
the Find pane. Learning to operate the Find pane with the
keyboard helps you move faster to the intended object.

Rerun the last find

Shift+Esc Close the Find pane

Ctrl+NumPad + Expand all the nodes in the list

Ctrl+NumPad - Collapse all the nodes in the list

Ctrl+Alt+Up Navigate to the previous occurrence

Ctrl+Alt+Down Navigate to the next occurrence

Ctrl+E Recent Find Usages dialog. Quickly jump to a past
search result.

Hot
Tip

Turn on Scroll to Source in the Find pane and use
Ctrl+Alt+Up and Ctrl+Alt+Down to quickly cycle
through the usages in the main editor window.

Hot
Tip

Is an option you need buried deep in the menu
system? Use Ctrl+Shift+A to bring up the Ac-
tion finder. Type the name of the action you’re
looking for and IntelliJ IDEA searches the key-

map, menus, and toolbars for the item you need to invoke.
Wildcards and camelCase works, of course

Ctrl+P Parameter Info. Displays quick information on the parameter types
(and overloading options) of a method call when the caret is within
the parenthesis of a method declaration

Ctrl+Q Quick Documentation Lookup. Displays Javadoc in a popup for the
item at the caret

Ctrl+Shift+I Quick Definition. Displays the source code for the item at the caret

Shift+F1 External Javadoc. Opens an external browser to the Javadoc for
the item at the caret. May require setting Javadoc locations within
Settings (Ctrl+Alt+S) Project Settings (1)

Running and Debugging Your Project

Ctrl+F5 Run the last target

Pause execution

Ctrl+F2 Stop execution

Ctrl+Break Dump Thread information to a new window or clipboard

Ctrl+Alt+Up Move Up Stack Trace, opening the Editor pane to the
exception location

Ctrl+Alt+Down Move Down Stack Trace, opening the Editor pane to the
exception location

4

DZone, Inc. | www.dzone.com

IntelliJ IDEA 8.1

Running and Debugging Your Project, continued

When debugging an application, the IDE provides a variety
of ways to set breakpoints and watchpoints. The easiest is
to click the left gutter of the line or method on which you
want a breakpoint. More advanced breakpoints are available
through the Breakpoints window (Ctrl+Shift+F8).

Once stopped on a breakpoint, the Debug pane will open.
This pane provides features common to all debuggers, as
well as more advanced, uncommon actions.

Code Coverage: IntelliJ IDEA offers code coverage statistics
using the EMMA or IntelliJ IDEA toolkit. Enable tracking in
the Code Coverage tab of the Run/Debug Configurations
window. The built in runner provides more accurate
branching coverage when tracing is enabled. Results appear
in several places:

Code Coverage Data (Ctrl+Alt+F6) displays a list of previous
runs, and selecting an entry shows the coverage data for that run.
You can use this to compare coverage between subsequent runs.

Once in the debugger, several panels provide different views
of the application state. The Frames Panel shows the current
stack frames on the selected thread, and you can navigate
quickly between frames and threads. The Variables Panel
shows any variables currently in scope. And the Watches
Panel shows expanded information on selected variables.
When entering variables to watch, autocompletion and
smart-type both work.

Expression Evaluation (Alt+F8) allows quick execution of
code snippets or blocks. From this window you can reference
any in-scope variable of the application. It works a bit like a
REPL window open with the current breakpoint’s environment,
and is most useful in code fragment mode, where you can
evaluate multi-line statements.

Typing less to produce more is a feature of any modern IDE.
IntelliJ IDEA provides top tier code completion support, as well
as many other code generation, file template, and refactoring
features.

Code Completion: Leveraging code completion is essential
to productivity:

Code Generation: Letting the IDE infer the code you need to cre-
ate and drop in the appropriate template can be a huge time saver.

Write Less Code

Line Break on the specified line of code

Exception Break when the specified exception is thrown

Method Break when the specified method is called

Field Break when the specified field instance is accessed or changed

Package Coverage Project pane shows % class and % line coverage
per package

Class Coverage Project pane shows % class and % line coverage
per class

Line Coverage Editor pane left gutter shows red for uncovered line,
green for covered line

Ctrl+Space Basic. Completes the names of in-scope classes,
methods, fields and keywords. Also complete paths,
when appropriate

Ctrl+Shift+Space Smart Type. Displays a suggestion list where the
type of the object required can be inferred from the
code, such as in the right hand side of assignments,
return statements, and method call parameters

Ctrl+Alt+Space Class Name. Completes the names of classes and
interfaces. Accepts camel case matching on input

Ctrl+Shift+Enter Complete Statement. Adds closing punctuation and
moves cursor to next line

Alt+Slash Expand Word. Cycles through suggested word
choices, highlighting the prototype in the editor

Ctrl+O Override Methods... quickly specify a parent method
to override and create a stub implementation

Ctrl+I Implement Methods... quickly specify a parent
method to implement and create a stub

Code->Delegate Methods... Delegate Methods... creates adapter classes by
delegating method calls to member fields. A small
wizard guides you through the delegation

Ctrl+Alt+T Surround With... surrounds the current selection with
a variety of code wrappers, like if/else, for, try/catch,
synchronized, Runnable, and more

Hot
Tip

Control what not to step into in Settings
(Ctrl+Alt+S) Debugger (G). Exclude certain library
classes using the “Do not step into” list, skip
simple getters, skip constructors, and more.

FYI Confused by all the options? Just start using
them and let muscle memory take over. It works.

Hot
Tip

Under certain circumstances, code coverage
may make your automated tests fail because
instrumented bytecode is different than normal
bytecode (I’ve seen this happen when remote

CORBA interfaces were invoked). If this happens then simply
exclude the affected classes from code coverage within the
Run/Debug Configurations window.

Hot
Tip

Drop Frame within the debugger pops the current
stack frame and puts control back out to the calling
method, resetting any local variables. This is very
useful to repeatedly step through a function, but

be warned: field mutations or global state changes will remain.

Alt+F10 Show Execution Point

F8 Step Over

F7 Step Into

Shift+F7 Smart Step Into. Pick which method to step into when
multiple calls exist on one line.

Alt+Shift+F7 Force Step Into

Shift+F8 Step Out

Drop Frame

Ctrl+Alt+Up Previous Stack Frame

Ctrl+Alt+Down Next Stack Frame

Alt+F9 Run to Cursor

5

DZone, Inc. | www.dzone.com

IntelliJ IDEA 8.1

Write Less Code, continued

Generate (Alt+Insert) provides its own set of powerful options
for code generation:

Live Templates are fragments of commonly occurring code,
which can be inserted into the active file in a variety of ways.
Learning the live templates will save you many, many keystrokes.
A full list is available in Settings (Ctrl+Alt+S) Live Templates.

To insert a live template, press Ctrl+J followed by the
following keys:

Surround with Live Template (Ctrl+Alt+J) will surround the
current selection with a block of code. Some of the useful
surrounds are:

Live Template in Multiple Languages: Many live templates
exist for languages other than Java. JSP, XML, Spring definitions,
and more all exist. Here are some examples of templates from
other platforms and toolsets:

Constructor Select any of your object’s fields from a list to create a constructor with
the proper parameters and body

Getter Select a field from a list to create an accessor method

Setter Select a non-final field from a list to create a mutator method

equals() /
hashCode()

Provides a dialog to automatically create equals() and hashCode()
methods based on your object’s fields

sb Creates an XML based Spring bean definition

sbf Creates an XML based Spring bean definition instantiated by a factory
method (many more Spring intentions exist, too)

itws Generate Axis web service invocation (many more flavors of web
services supported, too)

CD Surround with CDATA section

T Surround with <tag></tag>

B Surround with { }

R Surround with Runnable

C Surround with Callable

psf public static final thr throw new

itar Iterate elements of an
array

sout Prints a string to
System.out

itco Iterate elements of
collection

soutm Prints the current class
and method name to
System.out

ritar Iterate elements of array
in reverse order

soutv Prints the value of a
variable to System.out

toar Stores members of
Collection in Array

psvm main() method
declaration

Hot
Tip

Logging live templates are very useful, but many
projects use log4J or Commons Logging instead
of System.out. Replace the System.out calls with
your framework within Settings (Ctrl+Alt+S) Live
Templates.

Hot
Tip

Use the existing surrounds templates to create your
own, like surround with SwingUtilities.invokeLater()
or new Thread().start()

Hot
Tip

Ctrl+Shift+J will join two lines together, which is a
sort of shorthand for inline variable.

Hot
Tip

The free keymap from JetBrains provides a larger
list of live templates. Post the keymap next to your
monitor to learn the live templates quickly.

Refactoring: IntelliJ IDEA offers excellent refactoring sup-
port. Refactoring is aware of comments, reflection, Spring, AOP,
JSP, and more. When the refactoring features are unsure
on the safety of a refactoring, a preview mode is invoked so
that you can verify the changes. Refactoring works on more
than just Java code too: many refactorings exists for XML files
as well as other languages. Learning the refactoring tools
(and reading the refactoring literature, for that matter) is
well worth your time. Here are some of the more common
refactorings:

Rename Shift+F6 Renames a package, class, method, field or
variable

Move F6 Moves an entity

Change Signature Ctrl+F6 Change the method or class name,
parameters, return type, and more

Extract Method Ctrl+Alt+M Moves the current selection to a new
method, replacing duplicates if found

Inline Ctrl+Alt+N Takes a method, variable, or inner class and
replaces usages with a unique definition

Introduce Variable Ctrl+Alt+V Moves the selected expression into a local
variable

Introduce Field Ctrl+Alt+F Moves the selected local variable into a field,
prompting you for how initialization should
occur

Introduce Constant Ctrl+Alt+C Moves the selected variable or field into a
static final field, replacing duplicates if found

Introduce Parameter Ctrl+Alt+P Moves the selected local variable into a
parameter argument, updating any callers
in the process

Extract Interface Moves a set of methods from the object onto
an interface, updating callers to reference
the interface if possible

Pull Member Up Move a method from a subclass up to an
interface or parent class

Encapsulate Fields Provides getter and/or setters for the
selected field

The IDE’s features aren’t just about writing code faster, they are
also about coding more accurately. Understanding the inten-
tions, inspections, and analysis tools are key to keeping code high
quality.
Intentions: Keeps code clean by flagging potential problems in
the Editor pane as they occur, and then offers an automated
solution. An available intention is signaled by a lightbulb ap-
pearing in the left gutter, and the suggested fix can be applied
by pressing Alt+Enter. There are several types of intentions:

n	 “Create from usage” intentions allow you to use new objects
	 and methods without defining them first. Need a new method? 	
	 Just call it from code; IntelliJ IDEA will prompt you to create it,
	 inferring the parameter and result types. This works for classes,
	 interfaces, fields, and variables. If the missing reference is in 	
	 all capital letters, then it will even create a constant for you.

Improve Your Project’s Quality

→

6

DZone, Inc. | www.dzone.com

IntelliJ IDEA 8.1

Improve Your Project’s Quality, continued

n	 “Quick fix” intentions find common mistakes and makes 	
	 context-based suggestions on how to fix them. Examples of 	
	 issues flagged with a quick fix are assigning a value to the 	
	 wrong type or calling a private method.

n	 “Micro-refactorings” fix code that compiles but could be 	
	 improved. Examples are removing an unneeded variable and 	
	 inverting an if condition.

Some of the intentions or fixes might violate your coding
standard. Luckily, they can all be configured within Settings
(Ctrl+Alt+S) Intentions.

Intentions and Quick Fixes are indicated by different icons in
the left gutter, but in practice there is little need to differentiate
between the two:

Inspections: Keeps code clean by detecting inconsistencies,
dead code, probable bugs, and much, much more. The near-1000
default inspections can do a lot to enforce common idioms and
catch simple bugs across the project. There are way too many
inspections to list, but here are examples to provide a flavor of
what inspections can do:
n	 Flag infinite recursion or malformed regular expression
n	 Catch error handling issues like continue within finally block 	
	 or unused catch parameter
n	 Find threading issues like await() outside a loop or non-thread 	
	 safe access
n	 Error on Javadoc issues like missing tags or invalid links

Inspections work with many languages and tools beyond the Java
language, like Spring, JSF, Struts, XML, JavaScript, Groovy, and
many others. The inspection set is highly configurable through
Settings (Ctrl+Alt+S) Errors. Each inspection can carry its own set
of options, and most can be shown as warnings or errors within
the IDE. When an inspection violation is shown in the right gutter,
Alt+Enter triggers the suggestions to be shown.

Some inspections appear within the Editor pane, while others
appear within the Inspection pane when they are run as a batch.
To run inspections for a scope, go to Analyze Inspect Code in
the menu.

Inspection settings can be configured and shared across the
team. An “IDE” inspection profile is saved within the user’s
$HOME directory, but a “Project” profile is saved within the
IDEA project file. This means a shared, version controlled project
file can be created which contains the team’s inspections.

Code Analysis: Provides several different views of dependen-
cies and duplicates within your project. These tools help you
modularize your code and find areas of potential reuse. All of
the following features are available from the Analyze menu.

Hot
Tip

By default, IDEA uses a great set of inspections, but
many more options are not turned on by default.
Check out http://hamletdarcy.blogspot.com/
2008/04/10-best-idea-inspections-youre-not.html

to see some non-default inspections you might want to use.

Dependencies Left: Your packages. Right: Packages your code depends on

Backward
Dependencies

Left: Your packages. Right: Packages that depend on your
code. Bottom: Line by line usages

Cyclic Dependencies Left: All of your packages that have a cyclic dependency. Right:
The objects that form the cycle. Bottom: Line by line usages

View History See revision history for active file with check-in comments

View
Differences

Launch the side-by-side file comparison window. Merge changes from
one file to another, accept non conflicting changes, and more

Annotate Show the user ID of the last person to touch each line in the left gutter

.ipr Contains project info like module paths, compiler settings, and library locations.
This should be in version control

.iml Used in a multi-module project, each module is described by an .iml file. This
should be in version control

.iws Contains workspace and personal settings. This should not be in version control

IntelliJ IDEA includes many features that allow team members
to collaborate effectively.

Version Control (VC) integration exists for Subversion,
Git, CVS, Perforce, StarTeam, Visual SourceSafe, TFS, and
ClearCase. When enabled, local changes appear as a blue bar
in the left gutter:

Clicking the blue bar displays some VC options, including a
quick line diff (displayed), a rollback of the line changes, or a full
file diff in the IntelliJ IDEA Diff Viewer. More VC options are
available from the menu or by right-clicking the active editor:

Local History can be used even if you don’t have version control.
The IDE keeps track of saves and changes to files, allowing you
to rollback to previous versions if desired. Older versions can
also be labeled, making it easy to find previous save points.

Shared Project: The project file can be put in version control,
keeping all environments up to date as changes are made.
Use this guide to the project files to determine what files need
to be shared:

Work as a Team

Intention available

Quick Fix available

The Dependency Viewer provides a split tree-view of your project
with a list panel at the bottom. From here you can navigate the
dependencies or mark certain undesirable dependencies as illegal.
Which analysis feature chosen determines what the Viewer displays:

Not all analysis tools report to the Dependency Viewer, however.
Module Dependencies uses a separate panel to display
dependencies across all the included modules within the project.
This is useful for multi-module projects. Dependency Matrix
launches the Dependency Structure Matrix in a separate window.
This tool helps you visualize module and class dependencies
across the project using a colored matrix.

Locate Duplicates: Finds suspected copy and pastes within
your project or desired scope. Use this to find and consolidate
duplicate modules or statements. The results are displayed in
the Duplicates pane, which ranks the copy/paste violations
and allows you to extract methods on the duplicates by simply
clicking the Eliminate duplicates icon ().

 Design PatternsBy Jason McDonald

CONTENTS INCLUDE:
n	 Chain of Responsibility

n	 Commandn	 Interpretern	 Iterator
n	 Mediator

n	 Observer
n	 Template Method and more...

DZone, Inc. | www.dzone.com

D
e

si
g

n
 P

at
te

rn
s

w

w
w

.d
zo

n
e.

co
m

 G

e
t

M
o

re
 R

e
fc

ar
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#8

Brought to you by...

Inspired by the
GoF Bestseller

This Design Patterns refcard provides a quick reference to the

original 23 Gang of Four (GoF) design patterns, as listed in

the book Design Patterns: Elements of Reusable Object-

Oriented Software. Each pattern includes class diagrams,

explanation, usage information, and a real world example.

Chain of Responsibility, continued

Object Scope: Deals with object relationships that can

be changed at runtime.Class Scope: Deals with class relationships that can be

changed at compile time.C Abstract Factory
S Adapter

S Bridge
C Builder

B Chain of Responsibility
B Command

S Composite

S Decorator
S Facade

C Factory Method
S Flyweight

B Interpreter
B Iterator

B Mediator
B Memento

C Prototype
S Proxy

B Observer
C Singleton

B State
B Strategy

B Template MethodB Visitor

ABOUT DESIGN PATTERNS

Creational Patterns: Used to construct objects such

that they can be decoupled from their implementing

system.
Structural Patterns: Used to form large object

structures between many disparate objects.

Behavioral Patterns: Used to manage algorithms,

relationships, and responsibilities between objects.

CHAIN OF RESPONSIBILITY Object Behavioral

COMMAND
 Object Behavioral

successorClient <<interface>>Handler
+handlerequest()

ConcreteHandler 1+handlerequest() ConcreteHandler 2+handlerequest()
Purpose Gives more than one object an opportunity to handle a request by linking

receiving objects together.

Use
When

n	Multiple objects may handle a request and the handler doesn’t have to

 be a specific object.n	A set of objects should be able to handle a request with the handler

 determined at runtime.
n	A request not being handled is an acceptable potential outcome.

Example Exception handling in some languages implements this pattern. When an

exception is thrown in a method the runtime checks to see if the method

has a mechanism to handle the exception or if it should be passed up the

call stack. When passed up the call stack the process repeats until code to

handle the exception is encountered or until there are no more parent

objects to hand the request to.

Receiver

Invoker

Command+execute()

Client

ConcreteCommand+execute()

Purpose Encapsulates a request allowing it to be treated as an object. This allows

the request to be handled in traditionally object based relationships such

as queuing and callbacks.
Use
When

n	You need callback functionality.

n	Requests need to be handled at variant times or in variant orders.

n	A history of requests is needed.

n	The invoker should be decoupled from the object handling the invocation.

Example Job queues are widely used to facilitate the asynchronous processing

of algorithms. By utilizing the command pattern the functionality to be

executed can be given to a job queue for processing without any need

for the queue to have knowledge of the actual implementation it is

invoking. The command object that is enqueued implements its particular

algorithm within the confines of the interface the queue is expecting.

Upcoming Titles
JavaFX
JSF 2.0
Maven
Drupal
Java Performance Tuning
Eclipse RCP
ASP.NET MVC Framework

Most Popular
Spring Configuration
jQuery Selectors
Windows Powershell
Dependency Injection with EJB 3
Netbeans IDE JavaEditor
Getting Started with Eclipse
Very First Steps in Flex

“Exactly what busy developers need:
simple, short, and to the point.”

James Ward, Adobe Systems

Download Now

Refcardz.com

Professional Cheat Sheets You Can Trust

IntelliJ IDEA 8.1
7

DZone, Inc.
2222 Sedwick Rd Suite 101
Durham, NC 27713
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2009 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher.

Version 1.1

$7
.9

5

ABOUT THE AUTHOR

For new users, IntelliJ IDEA in Action is a
logically organized and clearly expressed
introduction to a big subject. For veterans,
it is also an invaluable guide to the expert
techniques they need to know to draw a lot
more power out of this incredible tool. You
get a broad overview and deep under-
standing of the features in IntelliJ IDEA.

RECOMMENDED BOOK

BUY NOW
books.dzone.com/books/intellij-idea

IntelliJ IDEA 8 ships with a data source editor and JDBC
console. Once configured with a JDBC or SQL data source, the

Work With the Database

Work as a Team, continued
File Templates: Shared file templates provide a common start-
ing point for frequently typed code. Templates exist, and can
be changed, for creating new classes, interfaces, and enumera-
tions. Templates for includes, like a copyright notice, can also
be stored and shared, as well as code templates, like default
catch statements and method bodies. Modify the file templates
in Settings (Ctrl+Alt+S) File Templates.

Ant Integration: Many projects use Ant as a common build
script, and IntelliJ IDEA offers integration with it. Features
include syntax highlighting, code completion, and refactorings.
Several inspections and intention settings are also available. Use
the Ant Build Window to run one or several Ant targets. For larger
projects with many targets, use the filter targets feature to hide
uncommon targets. The Maven build system is also supported.

DZone communities deliver over 6 million pages each month to

more than 2.7 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheatsheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

Hamlet D’Arcy
Hamlet D’Arcy has been writing software for over a decade,
and has spent considerable time coding in Groovy, Java, and
C++. He’s passionate about learning new languages and dif-
ferent ways to think about problems, and recently he’s been
discovering the joys of both F# and Scheme. He’s an active
member and speaker at the Groovy Users of Minnesota and
the Object Technology User Group, and is involved with

several open source projects including the Groovy language and the IDEA Jet-
Groovy plugin. He blogs regularly at http://hamletdarcy.blogspot.com, tweets
as HamletDRC, and can be contacted at hamletdrc@gmail.com.

console is a great environment for working with the database,
providig SQL syntax completion, error and syntax highlighting,
and completion of the table and column names. Middle click
entities like table names or columns to navigate to their defini-
tion in the DDL view, and run the entire script (Ctrl+Enter) or
snippits (Ctrl+Shift+Enter) using the controls provided. The
results pane can be copied to the clipboard as comma sepa-
rated values. You can also use parameters within the scripts,
which are variables marked with the @, #, $, or ? characters.
Any parameters found are displayed in the parameters Pane,
and from there they can be edited without modifying the SQL
source script.

Endless tweaking awaits

A massive amount of configuration options are available in
Settings (Ctrl+Alt+S). Beyond that, you may wish to experiment
with different plugins. Plugins are installed and managed using
Settings (Ctrl+Alt+S) Plugins. Many plugins exist, adding features
like Scala, Ruby, or web framework support. JetBrains holds
plugin contests annually, so check the site periodically.

ISBN-13: 978-1-934238-55-4
ISBN-10: 1-934238-55-4

9 781934 238554

50795

