

DZone, Inc. | www.dzone.com

By Stefan Edlich and Eric Falsken

About db4o and object databases

Note The current version of db4o at the time of this
writing is version 7.8.

d
b

4
o

 f
o

r
.N

E
T

 w
w

w
.d

zo
n

e.
co

m

G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#53

db4o is the open source object database that enables
developers to store and retrieve any application object with
one line of code.

The Object Database (ODB) arrived in the software industry
with the advent of object oriented languages. The ODB is
primarily used as an application specific database in either
extreme scale systems or embedded systems where typical
DBA activities are automated.

If you are familiar with object-relational mapping (ORM) tools,
then you are already an object database expert because many
of the APIs and query languages are comparable. You will even
find db4o both familiar and yet simpler to use as ORM tools as
there is no requirement for XML mapping, annotations or IDs.

db4o was introduced in 2000 with a focus on performance,
compactness, zero administration, simplicity and (the most
important of all) native object persistence. Developers were
finally able to combine the power of a full database engine
with plain undecorated objects.

CONTENTS INCLUDE:
n	 About db4o and Object Databases
n	 Getting Started
n	 Basic Database Operations
n	 Queries
n	 Dealing with Object Activation
n	 Hot Tips and more...

Getting Started

db4o comes distributed as a few native .NET assemblies. Only
Db4objects.Db4o.dll is required for basic db4o operation.
Use the Visual Studio “Add Reference” command to add
the necessary assemblies. Then use the Solution Explorer to
locate the new reference, right-click and open the properties
window to ensure that “Copy Local” is set to true for each
db4o assembly. This will copy the necessary db4o libraries to
your application’s bin folder automatically when compiling your
project.

Required Environment
Developing with db4o requires only the .NET SDK version 2.0
or better. (3.5 suggested)

Visual Studio 2008 or better is suggested for the best
experience, but any .NET IDE will do. Microsoft Visual Studio

2008 Express editions are available for free download from
Microsoft.

Running db4o requires only the .NET Framework to be
installed. Some hosting environments, such as shared website
hosting providers, do not allow code to run with full trust.
When the environment is configured to run with reduced trust,
all basic database operations require at least ReflectPermission
(MemberAccess and ReflectionEmit) for the classes and types
being persisted.

Required Libraries per Database Feature
Depending on the features your application requires, reference
and distribute these assemblies when you distribute your
application:

Run-time Optimization of LINQ, NQ, and TA requires
the Mono.Cecil.dll and Cecil.FlowAnalysis.dll
assemblies. Optimization can also be done at build-
time using Db4oTool.exe. (see db4o Reference
Documentation for usage)

Note

ObjectManager for Debugging
Included in the db4o distribution you’ll find the installer for
ObjectManager Enterprise (OME) which, once installed, will
integrate into your Visual Studio Environment and allow you
to open and inspect, query, and edit (value types only) object
instances stored in your database file.

Getting Started with db4o:
Persisting .NET Object Data

(Required for all Installations) Db4objects.Db4o.dll

Client-Server Db4objects.Db4o.CS.dll

LINQ Db4objects.Db4o.Linq.dll

Native Queries Db4objects.Db4o.NativeQueries.dll

Transparent Activation Db4objects.Db4o.Instrumentation.dll

Note Running db4o from the GAC is not supported.

Brought to you by...

the Database for Objects

OEM
Jump Start

ISVs and VARs Get a $36,000 OEM
Jump Start Package for Free!

www.versant.com

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com
http://www.microsoft.com/Express/default.aspx
http://www.versant.com
http://www.versant.com

DZone, Inc. | www.dzone.com

2
db4o for .NET

Create or Open a Database File
IObjectContainer container = Db4oFactory.OpenFile([filename]);

While a db4o database file is open, it is locked and cannot be
accessed by another application at the same time.

It’s important to know that db4o works best if you
open the database file when you start working with
data, and close the db when all posible operations
are completed.

Hot
Tip

In traditional relational databases, it’s common to open a
connection, get/update data, close connection, and then
perform your operation. Because db4o uses the native object
(or referential) identity, it’s better to open the database or
connection when your application begins, do all your work,
then close the database when your program is shutting down.
You’ll see why when we get to updating an object with our
changes.

Starting a db4o Server
By default, the db4o server runs in-process within your
application. To start a db4o server, place this code into your
application:

IObjectServer server =
 Db4oFactory.OpenServer([filename], [port]);
server.GrantAccess([user], [password]);

To shut down the server:
server.Close();

The port parameter specifies the network port number.
Acceptable values are any number above 1024 which are not
already in use.

Using Port 0 for your server creates an “Embedded”
server which will not be available remotely. This is
useful for multi-threaded operations or web-server
style environments where you wish to handle
parallel operations in a single process.

Hot
Tip

The GrantAccess() method must be called for each username/
password combination. It is not required at all for embedded
servers.

// In-Process mode (embedded server)
IObjectContainer client = server.OpenClient();

// Client/Server mode (remote server)
IObjectContainer client =
 Db4oFactory.OpenClient([serverAddress], [port], [user],
[password]);

To close the client connection to the server:

client.Close();

Storing an Object
db.Store(anObject);
db.Commit()

Just one line of code is all it takes. All of an object’s properties
and child objects will be stored.

db.Store(anObject);
db.Commit();

Updating an Object

Looks familiar? You can use the same Store(object) command
to update an object. One difference, however, is that db4o will
(for performance reasons) not automatically check child objects
for changes.

By default, db4o will NOT descend into child objects.
Store() must be called for each modified object
unless you change the default UpdateDepth (see
the UpdateDepth parameter in the Configuration
section, below) or configure cascading update for
the persisted class.

Hot
Tip

There is one more thing to be aware of: db4o uses an object’s
native identity (referential identity) to identify an object
and map it to the stored instance of the object. This means
that there is only ever 1 instance of an object in memory for
each stored instance of the object. (per ObjectContainer or
connection) This is important when dealing with class instances
that may come from ASP.NET ViewState, Web Services, Interop,
or any other serialized source of object data.

Avoid Confusion: Always make sure that the object
you are trying to update or delete was previously
stored or retrieved in the database. Calling Store()
with 2 User objects both with an ID of “jack” will
result in 2 separate instances. However, if you
retrieve the user, and modify the first instance, then
store it again, you will have only 1 updated instance
in the database.

Hot
Tip

Deleting an Object
db.Delete(anObject);
db.Commit();

Database Transactions
Whenever you start making changes to your database (using
the Store() and Delete() commands) you are automatically in

IObjectContainer db =
 Db4oFactory.OpenFile([filename]), ([config]);
try{
 // Store a few Person objects
 db.Store(new Person(“Petra”));
 db.Store(new Person(“Gallad”));
 // Retrieve the Person
 var results = db.Query<Person>(x => x.Name == “Petra”);
 Person p = result.First();
 // Update the Person
 p.Name = “Peter”;
 db.Store(p);
 // Delete the person
 db.Delete(p);
 // Don’t forget to commit!
 db.Commit();
}
catch{
 db.Rollback();
}
finally{
 // Close the db cleanly
 db.Close();
}

Basic Database Operations

A Complete Example

Connecting to a db4o Server
After starting a db4o server instance, use either of the
commands below to open a db4o client connection:

You didn’t think it was any harder than that, did you? Like
updates, db4o will not automatically delete child objects
unless you configure cascading deletes for your object will
remain in memory until the objects are refreshed or garbage
collected.

http://www.dzone.com
http://www.refcardz.com
http://www.versant.com

DZone, Inc. | www.dzone.com

3
db4o for .NET

Closing a database cleanly will automatically call Commit()
for you, so any uncommitted transactions are committed
automatically.

If the database is not closed cleanly, or if the application
crashes at any time and uncommitted (or incomplete)
transactions are discarded.

Queries

Query by Example (QBE)
QBE lets you pass db4o an example object. db4o will search
and return all objects which match the object you specify. To
do this, db4o will reflect all of the properties of the object and
assemble all non-default property values into a single query
expression.

Useful for beginners: QBE queries are not able to
use advanced boolean constraints (AND, OR, NOT)
and cannot constrain on default values (zero, empty
strings, null). QBE queries also cannot query for
value ranges (greater than, less than) or string-
based expressions (contains, starts with). So QBE
can be used only to retrieve exact-value matches.

Hot
Tip

Here’s an example QBE query that will contain all Customer
objects with “Lee” as their Surname:

Customer proto = new Customer ()
 {Surname = “Lee”};
IObjectSet result = db.Get(proto);

Native Queries (NQ)
Like any query language, Native Queries are capable of
expressing complex parameterized constraints, however NQ
also have the benefit of being 100% compiler checked and can
be refactored using common code refactoring tools. NQ can
do all this because they are expressed as native .NET code
rather than as strings (like SQL statements)

Developers are encouraged to use the Native Query
interfaces when working with db4o.

Hot
Tip

// NQ Lambda Expression (.NET 3.5 syntax)
var result = db.Query<type>(
 o => [boolean expression]);

// NQ Anonymous Method (.NET 2.0 syntax)
IList<type> result = db.Query<type>(
 delegate(type o){
 return [boolean expression];
 });

Native Query Examples

// Query all instances of a type.
IList<User> result = db.Query<User>();

// Query Users by Name.
IList<User> result = db.Query<User>(u => u.Name == “Joe”);

// Query Users with at least 10 orders
IList<User> result = db.Query<user>(u => u.Orders.Count >= 10);

// Complex Query
IList<User> result = db.Query<User>(
 u => u.Name.StartsWith(“Bob”)
 && (u.Country == “Canada” | |
 u.Country == “USA”);

Sorting Native Queries
Native Query results can be sorted by using an IComparer or a
comparison delegate. Here is the query syntax:

IList<User> result = db.Query<User>([predicate],[comparer]);

And here’s an example:

// All users with “Smith” in their name
// sorted by name
IList<User> result = db.Query<User>(
 u => u.Name.Contains(“Smith”),
 (u1, u2) => u1.Name.CompareTo(u2.Name)
);

LINQ Queries
LINQ was introduced by Microsoft .NET Framework version
3.5 (also called C# 3.0) in November 2007. To enable the
use of LINQ queries, you’ll need to add a reference to
the Db4objects.Db4o.LINQ.dll assembly and import the
Db4objects.Db4o.LINQ namespace. (with a using statement)

A full description of LINQ syntax will not fit in this document.
You can find the URL to Microsoft’s LINQ reference in the
Resources section at the end.

LINQ Queries have all the benefit of compiler checking and
automated code refactorability that Native Queries have,
but are expressed in syntax more familiar to SQL developers.
Here’s one quick and easy example that gets all of the
Customers with “Smith” in their name, and sorts the results by
name.

var results =
 from Customer c in db
 where c.Name.Contains(“Smith”)
 orderby c.Name descending
 select c;

With LINQ queries you can:
 • Use ORDERBY to sort the results.
 • Use JOIN expressions to filter one dataset based on the
 contents of another.
 • Use Aggregate Expressions to get the sum, min, max, or
 average values and GROUPBY to group the results.
 • Use Anonymous Types to get back only the fields you wish.
 • Use an expression to process, filter, or format the data as it
 is returned from the database.
 • Use LINQ extensions like First(), Any(), All(),

db.Commit();

Your changes will be permanently saved. If you wish to cancel
or roll back any uncommitted changes, use the Rollback()
method:

db.Rollback();

Useful for beginners: Rollback only undoes
uncommitted changes in the database. It will not
undo changes to any currently loaded objects.
So, when you call Rollback() you will not
see any difference to your objects. If concerned
about consistency, use the Refresh(object)
command to cause the objects to be refreshed with
stored database values.

Hot
Tip

an open transaction. To close the transaction, use the Commit()
method:

http://www.dzone.com
http://www.refcardz.com
http://www.versant.com

DZone, Inc. | www.dzone.com

4
db4o for .NET

IQuery query = db.Query();
query.Constrain(typof(Customer));
IConstraint c1 = query
 .Descend(“Name”)
 .Constrain(“Smith”);
IConstraint c2 = query
 .Descend(“Country”)
 .Constrain(“USA”);
c1.And(c2);
IObjectSet results = query.Execute();

Notice how each of the calls to Constrain() will return an
IConstraint? You can keep references to those constraints
and then use constraint keywords like And(), Or(), and Not()
to relate the constraints together, as we did at the end of that
example.

Note that the Descend() method returns an IQuery too. So
you could Descend() into an object, and then Execute() at a
deeper level to return only the matching child objects, like in
this example:

IQuery q1 = db.Query();
q1.Constrain(typeof(Customer)); // start with Customers
q1.Descend(“Name”)
 .Constrain(“Smith”);
IQuery q2 = q1.Descend(“Orders”); // constrain Orders
// Order totals greater than $100.
q2.Descend(“Total”)
 .Constrain(100)
 .Greater();
// Since we want to return Orders, execute q2 instead of q1
IObjectSet results = q2.Execute();

SODA Query Interfaces

IQuery Provides the location for constraining or selecting.

IConstraint Constrains the query results with the current IQuery node

SODA Query Keywords

Descend Move from one node to another.

OrderAscending Order the result ascending according to the current node.

OrderDescending Order the result descending according to the current node.

Execute Execute the query graph and return the objects at the current node.

SODA Constraint Keywords

And(IConstraint) Performs an AND (&&) comparison between 2 constraints.

Contains() For collection nodes, matches will contain the specified value.
For string values, behaves as Like().

Query Performance
 • If you are experiencing poor NQ performance, then you
 probably forgot to either enable run-time optimization
 of Native Queries (by including a reference to the
 assemblies listed in the “Required Libraries” section) or
 running Db4oTool.exe on your compiled assembly.

 • You can change the Query EvaluationMode configuration
 to control how and when a query should be evaluated.
 (See below in the Configuration section)

 • You can index fields to aid query evaluation. Indexing
 fields causes db4o to store the values of the field in
 a separate index lookup table in the db. As a result, when
 evaluating the query, db4o does not have to seek through
 all of the object data to resolve the query results. (See the
 Class-Specific Configuration Options below)

Indexing fields is a great way to increase query
performance, but each index table is one more
place where a field’s value is stored. Too many
indexed fields can cause poor insert performance.
The application developer should tune the number
of indexes with the desired Query and Insert
performance.

Hot
Tip

Dealing with object activation

When dealing with objects that may have relations to other
objects quite deep (think of the path of data from Customer to
Order to OrderItem to Product with relations to Address objects
for billing and shipping and then PO and payment transactions)
it would be quite expensive to have to pull all of that data into
memory from the DB if all you wanted was the Customer object.
Modern object databases use the idea of activation to control
the depth to which objects are instantiated and populated
when retrieved from the database.

The default ActivationDepth in db4o is 5.

A properly tuned activation depth is the best way
to optimize retrieval of data from a db4o database.
(See ActivationDepth in the Configuration section for
more ideas)

Hot
Tip

With an ActivationDepth of 5, objects will be populated up to
5 levels deep. Properties of the 5th descendant object will have
their values left as default or null.

Before using SODA Queries, you must import the
Db4objects.Db4o.Query Namespace. (with a using
statement)

Hot
Tip

In this example, we’re querying for all of the customers named
“Smith”.

IQuery query = db.Query();
query.Constrain(typeof(Customer));
query.Descend(“Name”).Constrain(“Smith”);
IObjectSet results = query.Execute();

And in this more complicated example, we’ll use a compound
constraint:

 Single(), and ElementAt() to access or constrain the
 result set.

SODA Queries
SODA query expressions are a standard that was present in
all but the earliest versions of db4o. Using combinations of
SODA query and constraint keywords, you can build up what is
called a query “graph”. A graph is a network of objects which
represent a segment of data.

EndsWith(bool) For strings, matches will end with the supplied value.
Optionally case sensitive.

Equal() Combine with Smaller and Greater to include the specified value.
(e.g. >= or <=)

Greater() Matching values will be greater than or larger than the supplied value.

Identity() Matching values will be the same object instance as the supplied
value. (referential equality).

Like() For strings, matching values will contain the supplied value anywhere
within the match.

Not() Performs a negation comparison. Matching values will NOT equal
the supplied value. Added to any other constraint keyword, this will
reverse the result.

Or(IConstraint) Performs an OR (||) comparison between 2 constraints.

Smaller() Matching values will be smaller or less than the specified value.

StartsWith(bool) For strings, matches will start with the supplied value.
Optionally case sensitive.

http://www.dzone.com
http://www.refcardz.com
http://www.versant.com

DZone, Inc. | www.dzone.com

5
db4o for .NET

The IConfiguration object must be passed in the call to open
the db4o file, server, or client connection.

Query EvaluationMode
This property controls when and how much of a query is
executed.

IConfiguration config =
 Db4oFactory.NewConfiguration();
config.Queries().EvaluationMode([mode]);

Query EvaluationMode Values

Immediate (Best when queries must be deterministic or execute as quickly as possible.)
A list of object ID matches is generated completely when the query is
executed and held in memory

Lazy (Best for limited resource environments.)
An iterator is created against the best index found. Accessing the results
will simply iterate through the index until no further matches are found.
The result set can be influenced by subsequent transactions in the current
context or by other clients causing possible concurrency errors.
Almost no memory is needed to hold the result set.
Accessing the Count or Length properties will cause full evaluation.

Snapshot (Best for servers and concurrent environments.)
Same as Lazy, however the iterator is created against a snapshot of the
index. This avoids possible concurrency issues of Lazy evaluation. Since
the index snapshot is held in memory, the memory required varies greatly
depending on what is being queried.

(All Values) Object data is activated as the users accesses each object in the result set.
The currently stored state is used when activating field data, not the object
state at the time of query execution. The above values affect only the state
of field indexes and when the evaluation is performed. Regardless of when
it is run, query constraints against non-indexed data are always performed
on the currently stored object state.

Global UpdateDepth
We said earlier that when calling Store() to update an object
graph, that db4o will not (by default) descend into child
objects to detect changes to the graph. If you know that you’ll
be often changing child properties, or when changing a parent
object often results in changes to child objects, then you may
want to change the UpdateDepth.

IConfiguration config =
Db4oFactory.NewConfiguration();
config.UpdateDepth([depth]);

The default value 1 means db4o will not descend into child
objects when updating stored object instances.

Setting the UpdateDepth to int.MaxValue will cause db4o to
descend as deeply as possible to look for changes.

Setting the UpdateDepth too aggressively can cause
poor db4o update performance. Higher values
should be used to debug UpdateDepth-related
issues only.

Hot
Tip

Global ActivationDepth
As explained in the section on Dealing with Object Activation,
the ActivationDepth controls how much data is loaded when
an object is retrieved from the database.

Iconfiguration config =
 Db4oFactory.NewConfiguration();
config.ActivationDepth([depth]);

The default value of 5 is a good balance for most applications,
but developers should balance this against the weight of their
classes and their access patterns.

Setting the ActivationDepth to int.MaxValue will cause all
related objects to be instantiated as deeply as possible,
restoring the entire object graph to memory.

Setting the ActivationDepth to 0 will cause nothing to be
activated. The object returned will have none of its values
loaded. You can then call the Activate(object, depth) method
to manually activate the object as described above.

Setting the ActivationDepth too aggressively can
cause poor db4o query performance and high
memory usage. Higher values should be used to
debug ActivationDepth-related issues only.

Hot
Tip

Transparent Activation (TA)
The Db4oTool.exe tool found in the distribution bin folder
can be used to instrument your classes to perform activation
on-demand transparently as you navigate between object
references. When accessing a child object, db4o can
automatically activate the child object from the database if it is
not yet already activated.

Transparent Activation must be enabled in the configuration
when opening a db4o database and your compiled assembly
must be instrumented by Db4oTool.exe as part of the build (as
an MSBuild task) or post-build by running the tool manually.

Using Db4oTool.exe is not complicated, but is beyond
the scope of this DZone Refcard. You can find complete
instructions in the db4o reference documentation.

Cascading Operations, callbacks and
class-specific configuration

The global UpdateDepth and ActivationDepth configurations
are good for general testing. But oftentimes, you will want to
configure specific behaviors per-class-type, or per-field. (e.g.
field indexing)

IConfiguration config =
Db4oFactory.NewConfiguration();
//Get the class-specific canfiguration
IObjectClass objectClassConfig =
 config.ObjectClass([typeName]);
//Get a field-specific configuration
IObjectField objectFieldConfig =
 objectClassConfig.ObjectField([fieldName]);

// Usually shortened to one line. e.g. config.
objectClass(typeof(Customer)).ObjectField (“Name”).Indexed(true);

db.Activate([unactivatedObject], [depth]);

Objects can also be manually de-activated:

db.Deactivate([activatedObject], [depth]);

Fine-grained activation depth can be configured per class. (see
ActivationDepth in the Configuration section below) Activation
can also be managed transparently using Transparent
Activation. (see below)

Configuration

For all but the simplest db4o use cases, you’ll probably want to
specify one or more configuration settings when opening your
db4o database:

IConfiguration config =
Db4oFactory.NewConfiguration();
// Set configuration properties here
IObjectContainer db= Db4oFactory.OpenFile([config], [filename]);

If you encounter an object that is not yet activated, you can
pass it to db4o for manual (late) activation:

Setting the UpdateDepth to 0 will prevent any changes from
being saved to the database.

http://www.dzone.com
http://www.refcardz.com
http://www.versant.com

Design Patterns

By Jason McDonald

CONTENTS INCLUDE:

n	 Chain of Responsibility

n	 Command

n	 Interpreter

n	 Iterator

n	 Mediator

n	 Observer

n	 Template Method and more...

DZone, Inc. | w
ww.dzone.com

D
es

ig
n

Pa
tt

er
ns

 w

w
w

.d
zo

ne
.c

om

 G
et

 M
o

re
 R

ef
ca

rz
!

V
is

it
 r

ef
ca

rd
z.

co
m

#8

Brought to you by...

Inspired

by the

GoF

Bestseller

This Design Patterns refcard provides a quick reference to the

original 23 Gang of Four (GoF) design patterns, as listed in

the book Design Patterns: Elements of Reusable Object-

Oriented Software. Each pattern includes class diagrams,

explanation, usage information, and a real world example.

Chain of Responsibility
, continued

Object Scope: Deals with object relationships that can

be changed at runtime.

Class S
cope: Deals with class relationships that can be

changed at compile time.

C Abstract Factory

S Adapter

S Bridge

C Builder

B Chain of

Responsibility

B Command

S Composite

S Decorator

S Facade

C Factory Method

S Flyweight

B Interpreter

B Iterator

B Mediator

B Memento

C Prototype

S Proxy

B Observer

C Singleton

B State

B Strategy

B Template Method

B Visito
r

ABOUT DESIGN PATTERNS

Creational Patterns: U
sed to construct objects such

that they can be decoupled from their im
plementing

system.

Structural Patterns: U
sed to form large object

structures between many disparate objects.

Behavioral Patterns: U
sed to manage algorithms,

relationships, and responsibilitie
s between objects.

CHAIN OF RESPONSIBILITY

 O
bject Behavioral

COMMAND

 O

bject Behavioral

successor

Client

<<interface>>

Handler

+handlerequest()

ConcreteHandler 1

+handlerequest()

ConcreteHandler 2

+handlerequest()

Purpose
Gives more than one object an opportunity to handle a request by linking

receiving objects together.

Use

When

n
	Multiple objects may handle a request and the handler doesn’t have to

 be a specific object.

n
	A set of objects should be able to handle a request with the handler

 determined at runtime.

n
	A request not being handled is an acceptable potential outcome.

Example
Exception handling in some languages implements this pattern. When an

exception is thrown in a method the runtime checks to see if th
e method

has a mechanism to handle the exception or if it
 should be passed up the

call stack. When passed up the call stack the process repeats until code to

handle the exception is encountered or until th
ere are no more parent

objects to hand the request to.

Receiver

Invoker

Command

+execute()

Client
ConcreteCommand

+execute()

Purpose
Encapsulates a request allowing it to

 be treated as an object. This allows

the request to be handled in traditionally object based relationships such

as queuing and callbacks.

Use

When

n
	You need callback functionality.

n
	Requests need to be handled at variant tim

es or in variant orders.

n
	A history of requests is needed.

n
	The invoker should be decoupled from the object handling the invocation.

Example
Job queues are widely used to facilitate the asynchronous processing

of algorithms. By utilizing the command pattern the functionality to be

executed can be given to a job queue for processing without any need

for the queue to have knowledge of the actual implementation it is

invoking. The command object that is enqueued implements its particular

algorithm within the confines of the interface the queue is expecting.

Upcoming Titles
JavaFX
JSF 2.0
Maven
Drupal
Java Performance Tuning
Eclipse RCP
ASP.NET MVC Framework

Most Popular
Spring Configuration
jQuery Selectors
Windows Powershell
Dependency Injection with EJB 3
Netbeans IDE JavaEditor
Getting Started with Eclipse
Very First Steps in Flex

“Exactly what busy developers need:
simple, short, and to the point.”

James Ward, Adobe Systems

Download Now

Refcardz.com

Professional Cheat Sheets You Can Trust

DZone, Inc.
2222 Sedwick Rd Suite 101
Durham, NC 27713
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2009 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher. Reference: The Definitive Guide to db4o, Stefan Edlich, Henrik Horning, Reidar Horning, Jim Paterson, APress,
June 2006

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to

more than 3.3 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheatsheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

6
db4o for .NET

A full description of Class-specific and field-specific
configuration settings can be found in the db4o reference
documentation.

db4o also allows you to specify event handlers when an
object is retrieved, activated, deleted, etc. These events
can be handled globally using the EventRegistryFactory
or individually within your classes using any of the
IObjectCallbacks methods like objectOnActivate,
objectOnDelete, and objectOnNew. These handlers are great for
selectively activating, refreshing, or cascading db operations.

Lastly, setting the Transient attribute on your class’s field
members will prevent db4o from storing the values of those
fields. When read from the DB, these members will always be
left at their default (null) values, useful for remote connections,
non- native data (interop) and temporary state.

db4o Homepage http://www.db4o.com

db4o Community Forum http://developer.db4o.com

db4o Downloads http://download.db4o.com

db4o Bug Tracker http://tracker.db4o.com

db4o Source Code Repository https://source.db4o.com/db4o/ (https only)

db4o Reference Documentation http://docs.db4o.com

db4o Community Projects http://projects.db4o.com

LINQ General Programming Guide http://msdn.microsoft.com/en-us/library/bb397912.aspx

Versant Corporation http://www.versant.com

Versant Corporation supports the db4o team and open source community. Versant is a public
company (NASDAQ:VSNT) and develops the Versant Object Database technology for users of
.NET, C++ and Java who require a database capable of supporting extreme scale systems.

db4o Resources

RECOMMENDED BookABOUT the Author

Eric Falsken is a longtime web and embedded software
developer. He wrote his first of many websites in 1995,
and went on to e-commerce, enterprise and internet
media before shifting his focus to embeded device
software, where he found his love of object databases
and db4o. Eric has been a member of the db4o team
since 2006, and enjoys travel adventuring, meeting new
people, and looking at beautiful code.

Prof. Dr. Stefan Edlich is a senior lecturer at Beuth
University of Technology Berlin (App.Sc.) with a focus on
Object Databases, Software-Engineering and E-Learning.
He sold his first commercial software in 1986 and has a 26
year software development experience. Furthermore he is
the author of ten IT books he wrote for Apress, OReilly,
Spektrum / Elsevier, and other publishers. In 2008 he
set up the the worlds First International Conference on
Object Databases (ICOODB.org) which is continued 2009
at ETH-Zürich.

The Definitive Guide to db4o is the first book to
comprehensively cover this project in detail. You will
learn about all relevant topics, including installing
and configuring db4o, querying and managing
objects, performing transactions, and replicating
data. To aid newcomers to the topic, early chapters
cover object database fundamentals, as well as
technical considerations and migration strategies.
The book is complete with numerous C# and
Java examples, so you’ll be able to follow along
regardless of your chosen language.

ISBN-13: 978-1-934238-56-1
ISBN-10: 1-934238-56-2

9 781934 238561

50795

BUY NOW
books.dzone.com/books/definitive-db4o

http://refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.refcardz.com
http://refcardz.dzone.com/books/definitive-db4o
http://www.versant.com

