

DZone, Inc. | www.dzone.com

Agile Adoption:
Reducing Cost

By Gemba Systems

About this agile adoption refcard

A
g

il
e

 A
d

o
p

ti
o

n

w

w
w

.d
zo

n
e.

co
m

G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#54

Faster, better, cheaper. That’s what we must do to survive. The
Time to Market Refcard (a companion in this series) addresses
faster, the Quality Refcard addresses better, and this Refcard
addresses cheaper. This is about building the system for less.

Some of the costs of software development are associated
with man hours needed to build the system, others with cost
of maintenance over time, and yet others include hardware as
well as software platform costs. Practices that educe any or all
of these costs without sacrificing quality reduce the overall cost
of the system.

Then there is the Pareto principle – a.k.a. the 80/20 rule. This
rule suggests that roughly 20% of the software system is used
80% of the time. This is also backed up by research that is
even more dramatic [figure with usage]. Practices that help the
team build only what is needed in a prioritized manner reduce
the cost and still deliver the most important business value to
the customer (the part she uses).

Figure 1 Practices that help reduce the cost of building software.

Four Strategies to reduce cost

You will be able to use this Refcard to get 50,000 ft view of
what will be involved to reduce the cost of developing your
systems.

Software development is complex and often very complicated.
It is HARD. This is not some new revelation, in fact Fred Brooks
in the well known paper, “No Silver Bullet.”, states:

 The essence of a software entity is a construct of interlocking concepts ...

 I believe the hard part of building software to be the specification,
 design, and testing of this conceptual construct, not the labor of
 representing it and testing the fidelity of the representation.

There are four major strategies that can help you reduce the
cost of building and maintaining your software

Maintain the Theory of the Code
One way to look at software development is
‘theory building’. That is, programs are theories
– models of the world mapped onto software – in
the head of the individuals of the development
team. Great teams have a shared understanding
of how the software system represents the

world. Therefore they know where to modify the code when
a requirement change occurs, they know exactly where to go
hunting for a bug that has been found, and they communicate
well with each other about the world and the software.

Conversely, a team that does not have a shared ‘theory’ make
communication mistakes all the time. The customer may say
something that the business analyst misunderstands because
she has a different world view. She may, in turn, have a
different understanding than the developers, so the software
ends up addressing a different problem or, after several trials,
errors and frustrations, the right problem but very awkwardly.
Software where the theory of the team does not match, or even
worse, the theory is now lost because the original software
team is long-gone, is very expensive to maintain.

Building a shared theory of the world-to-software-mapping is a
human process that is best done face-to-face by trial and error
and with significant time.

Build Less
It has been shown that we build many more
features than are actually used. In fact,
we can see in Figure 2, only about 20%
of functionality we build is used often or
always. More than 60% of all functionality
built in software is rarely or never used!

Backlog

Done StateSelf-Organizing
Team

Automated
Acceptance Tests

Retrospective

Continuous
Integration

Iteration

Simple Design

Refactoring

Evocative
Document

Less Effective

More Effective Evolutionary
Design

Cross-Functional
Team

Reduce Cost

Automated
Developer Tests

CONTENTS INCLUDE:
n	 About this Agile Adoption Refcard
n	 Four Strategies to Reduce Cost
n	 The Practices
n	 How to adopt Agile Practices Successfully
n	 Whats Next
n	 References and more...

n 	Authoritative content
n 	Designed for developers
n 	Written by top experts
n 	Latest tools & technologies
n	 Hot tips & examples
n 	Bonus content online
n 	New issue every 1-2 weeks

Subscribe Now for FREE!
Refcardz.com

Get More Refcardz
(They’re free!)

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com

 tech facts at your fingertips

DZone, Inc. | www.dzone.com

2
Agile Adoption

One way to reduce the cost of software is to find a way not
to build the unused functionality. There are several Agile
practices that help you get to that point.

19 %
Rarely
Used

45 %
Never
Used

16 %
Sometimes

Used

13 %
Often Used

7 %
Always
Used

Functionality Usage
Figure 2: Most functionality built is never used.

Pay Less for Bug Fixes
Typically, anywhere between 60%-90% of software
cost goes into the maintenance phase. That is,
most of our money goes into keeping the software
alive and useful for our clients after the initial
build. Practices that help us reduce the cost of
software maintenance will significantly affect the
overall cost of the software product or system.

Pay Less for Changes
The only thing constant in today’s software market is change.
If we can embrace change, plan for it, and reduce its cost

Easy to
understand

Reduces Easier to
find & fix

Easier to
change

Figure 3: Maintain the theory of the code helps reducing the cost of making design
changes and fixing bugs. Building less enables better understanding and helps to
understand the theory of the code for a change because there is less to change

when it eventually happens we can make significant savings.
One of the strongest points of Agile
development is that its practices
enable you to roll with the punches
and change your software as the
business world changes.

The four strategies above: maintain the theory of the code,
build less, paying less for maintenance and being able to react
to change are not independent.

The practices

Simple Design

Refactoring

Evolutionary Design

Automated
Developer Tests

Evolutionary Design

Evolutionary design is the simple design practice done
continuously. Start off with a simple design and change that
design only when a new requirement cannot be met by the
existing design.

Evolutionary design reduces the cost by focusing on always
building less. This, in turn, directly affects the cost of change
drastically.

You are on a development team practicing automated developer
tests, refactoring, and simple design. That’s it, because this is
one of those things that is applicable to all types of development
projects. The context is especially a match if the technology used
technologies is new to a large part of the team.

Definition

If a decision between coding a design for today’s requirements
and a general design to accommodate for tomorrow’s
requirements needs to be made, the former is a simple design.
Simple design meets the requirements for the current iteration
and no more.Definition

Simple Design

Simple Design

RefactoringAutomated
Developer Tests

http://www.refcardz.com
http://www.dzone.com

 tech facts at your fingertips

DZone, Inc. | www.dzone.com

3
Agile Adoption

Simple design reduces cost because you build less code to meet
the requirements and you maintain less code afterwards. Simple
designs are easier to build, understand, and maintain.

Simple design should only be used when your team also is writing
automated developer tests and refactoring. A simple design is
fine as long as you can change it to meet future requirements.

Refactoring

The practice of Refactoring code changes the structure (i.e., the
design) of the code while maintaining its behavioe.

Costs are reduced because continuous refactoring keeps the
design from degrading over time, ensuring that the code is easy
to understand, maintain, and change.

You are on a development team that is practicing automated
developer tests. You are currently working on a requirement that
is not well-supported by the current design. Or you may have just
completed a task (with its tests of course) and want to change the
design for a cleaner solution before checking in your code to the
source repository.

Definition

Automated developer tests are a set of tests that are written
and maintained by developers to reduce the cost of finding
and fixing defects—thereby improving code quality—and to
enable the change of the design as requirements are addressed
incrementally.

Automated developer tests reduce the cost of software
development by creating a safety-net of tests that catch bugs
early and enabling the incremental change of design. Beware,
however, that automated developer tests take time to build and
require discipline.

You are on a development team that has decided to adopt
iterations and simple design and will need to evolve your design
as new requirements are taken into consideration. Or you are on
a distributed team. The lack of both face-to-face communication
and constant feedback is causing an increase in bugs and a
slowdown in development.

Definition

Automated Developer Tests

Refactoring

Automated
Developer Tests

Collective Code
Ownership

{required in a team
environment}

Evocative Document

Evocative documents are documents that evoke memories,
conversations, and situations that are shared by those who wrote
the document. They are more meaningful and representative of a
team’s understanding of the system than traditional documents.

Evocative documents help by accurately representing the
team’s internal model of the software and allowing that model
to be handed down from master to apprentice. The better
understanding of the system over time also reduces the
maintenance cost of the system over time because appropriate
changes reduce the deterioration of the software.

Current documentation isn’t working – as a document is passed
from one person to another much of the context and value is
lost, and as a result, the maintenance team’s understanding of
the codebase constantly deteriorates. This is resulting in the
calcification of your software system.

Definition

Automated Acceptance Tests

Automated acceptance tests are tests written at the beginning of
the iteration that answer the question: “what will this requirement
look like when it is done?”. This means that you start with failing
tests at the beginning of each iteration and a requirement is only
done when that test passes.

This practice builds a regression suite of tests in an incremental
manner and catches errors, miscommunications, and ambiguities
very early on. This, in turn, reduces the amount of work that is
thrown away and therefore enables building less. The tests also
catch bugs and act as a safety-net during change.

You are on a development project with an onsite customer
who is willing and able to participate more fully as part of the
development team. Your team is also willing to make difficult
changes to any existing code. You are willing to pay the price of a
steep learning curve.

Definition

Automated
Acceptance Tests

Customer Part of
Team

The remaining practices also help reduce the cost of software
development. Because of the limited size of the refcard, we will
only summarize them below.

Backlog A backlog is a prioritized list of requirements that enable a team to
build less by making sure they always work on the most important
items first and help the team understand the theory of the code
when used as an evocative document that shows a larger picture of
the system.

Iteration An iteration is a time-box where the team builds what is on the
backlog and is a potential release and therefore enables building
less.

Done State The done state is a definition agreed upon by the entire team of
what constitutes the completion of a requirement. The closer the
done state is to deployable software, the better it is because it
forces the team to resolve all hidden issues early and thus reduces
cost.

Cross-functional Team The cross-functional team is one that has the necessary expertise
among its members to take a requirement from its initial concept to
a fully deployed and tested piece of software within one iteration.
A requirement can be taken off of the backlog, elaborated and
developed, tested, deployed.

http://www.refcardz.com
http://www.dzone.com

 tech facts at your fingertips

DZone, Inc. | www.dzone.com

4
Agile Adoption

Self-organizing Team A self-organizing team is in charge of its own fate. Management
gives the team goals to achieve and the team members are
responsible for driving towards those goals and achieving them. A
self-organizing team recognizes and responds to changes in their
environment and in their knowledge as they learn. A self-organizing
team is frequently a cross functional team as well.

Retrospective The Retrospective is a meeting held at the end of a major cycle -
iteration or release - to gather and analyze data about that cycle
and decide on future actions to improve the team’s environment
and process. A retrospective is about evaluating the people, their
interactions, and the tools they use.

Continuous Integration Continuous integration reduces the total time it takes to build a
software system by catching errors early and often. Errors caught
early cost significantly less to fix when caught later. It leverages both
automated acceptance tests and automated developer tests to give
frequent feedback to the team and to pay a much smaller price for
fixing a defect.

User Story A user story is an evocative document for requirements. A user
story is a very high level description of the requirement to be
built –it usually fits on a 3 x 5 index card – and is a “promise for a
conversation” later between the person carrying out the Customer
Part of Team practice and the implementers.

How to adopt Agile practices successfully

To successfully adopt Agile practices let’s start by answering
the question “which ones first?” Once we have a general
idea of how to choose the first practices there are other
considerations.

Become “Well-Oiled” First
One way to look at software development is to see it as
problem solving for business. When considering a problem to
solve there are two fundamental actions that must be taken:

 • Solving the right problem. This is IT/Business alignment.
 • Solving the problem right. This is technical expertise.

Intuitively it would seem that we must focus on solving the
right problem first because, no matter how well we execute
our solution to the problem, if it is the wrong problem then our
solution is worthless. This, unfortunately, is the wrong way to
go. Research shows in Figure 3, that focusing on alignment
first is actually more costly and less effective than doing
nothing. It also shows that being “well-oiled”, that is focusing
on technical ability first, is much more effective and a good

11% 7%

74% 8%

+13

-14 -6

+35

+0

-2 -15

+11

“Alignment Trap” “IT-Enabled Growth”

“Maintenance Zone” “Well-Oiled IT”

EffectivenessLess Effective Highly Effective

Alignment

Highly Aligned

Less Aligned

% of Respondents
(n=504) IT Spending 3-Year Sales

Compound
Annual
Growth Rate

Differences in Percentage
compared to overall averages

Note: Based on 504 responses from 452 companies
Source: Bain Analysis

Figure 4: The Alignment Trap (from Avoiding the Alignment Trap in Information
Technology, Shpilberg, D. et al, MIT Sloan Management Review, Fall 20078.)

stepping-stone to reaching the state where both issues are
addressed.

This is supported anecdotally by increasing reports of failed
Agile projects that do not deliver on promised results. They
adopt many of the soft practices such as Iteration, but steer
away from the technically difficult practices such as Automated
Developer Tests, Refactoring, and Done State. They never
reach the “well-oiled” state.

So the lesson here is make sure that on your journey to adopt
Agile practices that improve time to market (or any other
business value for that matter), your team will need to become
“well-oiled” to see significant, sustained improvement. And
that means you should plan on adopting the difficult technical
practices for sustainability.

Know What You Don’t Know
The Dreyfus Model of Skill Acquisition, is a useful way to
look at how we learn skills – such as learning Agile practices
necessary to reduce cost. It is not the only model of learning,
but it is consistent, has been effective, and works well for our
purposes. This model states that there are levels that one goes
through as they learn a skill and that your level for different
skills can and will be different. Depending on the level you are
at, you have different needs and abilities. An understanding of
this model is not crucial to learning a skill; after all, we’ve been
learning long before this model existed. However, being aware
of this model can help us and our team(s) learn effectively.

So let’s take a closer look at the different skill levels in the
Dreyfus Model:

Novice

Advanced beginner

Competent

Proficient

Expert No longer needs rules; works intuitively.

Sees big picture; can begin addressing problems
for the organization , not just the team.

Has experience with real problems;
no longer struggles with basic rules.

Can start using advice in context .

Needs step-by-step instructions .

Figure 5: The Dreyfus Model for skill acquisition. One starts as a novice and through
ecperience and learning advances towards expertise.

How can the Dreyfus Model help in an organization that is
adopting agile methods? First, we must realize that this model
is per skill, so we are not competent in everything. Secondly,
if agile is new to us, which it probably is, then we are novices
or advanced beginners; we need to search for rules and not
break them until we have enough experience under our belts.
Moreover, since everything really does depend on context,
and we are not qualified to deal with context as novices
and advanced beginners, we had better get access to some
people who are experts or at least proficient to help guide us
in choosing the right agile practices for our particular context.
Finally, we’d better find it in ourselves to be humble and
know what we don’t know to keep from derailing the possible
benefits of this new method. And we need to be patient with
ourselves and with our colleagues. Learning new skills will take
time, and that is OK.

Choosing a Practice to Adopt
Choosing a practice comes down to finding the highest value
practice that will fit into your context. Figure 1 will guide you

http://www.refcardz.com
http://www.dzone.com

 tech facts at your fingertips

DZone, Inc. | www.dzone.com

5
Agile Adoption

in determining which practices are most effective in decreasing
your time to market and will also give you an understanding
of the dependencies. The other parts in this section, How to
Adopt Agile Practices Successfully?, discuss other ideas that
can help you refine your choices. Armed with this information:

Does this practice’s
context match your

environment?

Learn about practice
and adopt

Evaluate progress
towards business goal

Business goal still
not satisfiedBusiness goal met

Get next practice from
top of list

Set specific business
goal

Figure 5: Steps for choosing and implementing practices.

What Next?

This Refcard is a quick introduction to Agile practices that
can help you reduce the cost of building and maintaining
your software and an introduction of how you to choose the
practices for your organizational context. It is only a starting
point. If you choose to embark on an Agile adoption initiative,
your next step is to educate yourself and get as much help as
you can afford. Books and user groups are a beginning. If you
can, find an expert to join your team(s). Remember, if you are
new to Agile, then you are a novice or advanced beginner and
are not capable of making an informed decision about tailoring
practices to your context.

References

Astels, David. 2003. Test-driven development: a practical guide.
Upper Saddle River, NJ: Prentice Hall.

x x

Avery, Christopher, Teamwork is an Individual Skill, San Francisco:
Berrett-Koehler Publishers, Inc., 2001

x

Bain, Scott L., 2008, Emergent Design, Boston, MA: Pearson
Education

x x x x

Beck, Kent. 2003. Test-driven development by example. Boston, MA:
Pearson Education.

x x

Beck, K. and Andres, C., Extreme Programming Explained: Embrace
Change (second edition), Boston: Addison-Wesley, 2005

x x x x x x x x

Cockburn, A., Agile Software Development: The Cooperative Game
(2nd Edition), Addison-Wesley Professional, 2006.

x

Cohn, M., Agile Estimating and Planning, Prentice Hall, 2005. x x

Crispin, L. and Gregory, J., Agile Testing: A Practical Guide for Testers
and Agile Teams

x

Derby, E., and Larson, D., Agile Retrospectives: Making Good Teams
Great, Raliegh: Pragmatic Bookshelf, 2006.

x x

Duvall, Paul, Matyas, Steve, and Glover, Andrew. (2006). Continuous
Integration: Improving Software Quality and Reducing Risk. Boston:
Addison-Wesley.

x

Elssamadisy, A., Agile Adoption Patterns: A Roadmap to
Organizational Success, Boston: Pearson Education, 2008

x x x x x x x x x x x x x x

Feathers, Michael. 2005. Working effectively with legacy code. Upper
Saddle River, NJ: Prentice Hall.

x x

Jeffries, Ron. “Running Tested Features.”
http://www.xprogramming.com/xpmag/jatRtsMetric.htm

x

Jeffries, Ron. 2004. Extreme programming adventures in C#.
Redmond, WA: Microsoft Press.

x x

Kerth, N., Project Retropsectives: A Handbook for Team Reviews, NY:
Dorset House Publishing Company, 2001.

x

Kerievsky, Joshua. “Don’t Just Break Software, Make Software.”
http://www.industriallogic.com/papers/storytest.pdf

x

Larman, C., Agile and Iterative Development: A Manager’s Guide,
Boston: Addison-Wesley, 2004

x x

Larman, C., and Vodde, B., Scaling Lean and Agile Development,
Boston: Addison-Wesley, 2009

x x x

Massol, Vincent. 2004. Junit in action. Greenwich, CT: Manning
Publications.

x x

http://www.refcardz.com
http://www.dzone.com

Design Patterns

By Jason McDonald

CONTENTS INCLUDE:

n	 Chain of Responsibility

n	 Command

n	 Interpreter

n	 Iterator

n	 Mediator

n	 Observer

n	 Template Method and more...

DZone, Inc. | w
ww.dzone.com

D
es

ig
n

Pa
tt

er
ns

 w

w
w

.d
zo

ne
.c

om

 G
et

 M
o

re
 R

ef
ca

rz
!

V
is

it
 r

ef
ca

rd
z.

co
m

#8

Brought to you by...

Inspired

by the

GoF

Bestseller

This Design Patterns refcard provides a quick reference to the

original 23 Gang of Four (GoF) design patterns, as listed in

the book Design Patterns: Elements of Reusable Object-

Oriented Software. Each pattern includes class diagrams,

explanation, usage information, and a real world example.

Chain of Responsibility
, continued

Object Scope: Deals with object relationships that can

be changed at runtime.

Class S
cope: Deals with class relationships that can be

changed at compile time.

C Abstract Factory

S Adapter

S Bridge

C Builder

B Chain of

Responsibility

B Command

S Composite

S Decorator

S Facade

C Factory Method

S Flyweight

B Interpreter

B Iterator

B Mediator

B Memento

C Prototype

S Proxy

B Observer

C Singleton

B State

B Strategy

B Template Method

B Visito
r

ABOUT DESIGN PATTERNS

Creational Patterns: U
sed to construct objects such

that they can be decoupled from their im
plementing

system.

Structural Patterns: U
sed to form large object

structures between many disparate objects.

Behavioral Patterns: U
sed to manage algorithms,

relationships, and responsibilitie
s between objects.

CHAIN OF RESPONSIBILITY

 O
bject Behavioral

COMMAND

 O

bject Behavioral

successor

Client

<<interface>>

Handler

+handlerequest()

ConcreteHandler 1

+handlerequest()

ConcreteHandler 2

+handlerequest()

Purpose
Gives more than one object an opportunity to handle a request by linking

receiving objects together.

Use

When

n
	Multiple objects may handle a request and the handler doesn’t have to

 be a specific object.

n
	A set of objects should be able to handle a request with the handler

 determined at runtime.

n
	A request not being handled is an acceptable potential outcome.

Example
Exception handling in some languages implements this pattern. When an

exception is thrown in a method the runtime checks to see if th
e method

has a mechanism to handle the exception or if it
 should be passed up the

call stack. When passed up the call stack the process repeats until code to

handle the exception is encountered or until th
ere are no more parent

objects to hand the request to.

Receiver

Invoker

Command

+execute()

Client
ConcreteCommand

+execute()

Purpose
Encapsulates a request allowing it to

 be treated as an object. This allows

the request to be handled in traditionally object based relationships such

as queuing and callbacks.

Use

When

n
	You need callback functionality.

n
	Requests need to be handled at variant tim

es or in variant orders.

n
	A history of requests is needed.

n
	The invoker should be decoupled from the object handling the invocation.

Example
Job queues are widely used to facilitate the asynchronous processing

of algorithms. By utilizing the command pattern the functionality to be

executed can be given to a job queue for processing without any need

for the queue to have knowledge of the actual implementation it is

invoking. The command object that is enqueued implements its particular

algorithm within the confines of the interface the queue is expecting.

Upcoming Titles
JavaFX
JSF 2.0
Maven
Drupal
Java Performance Tuning

Most Popular
Spring Configuration
jQuery Selectors
Windows Powershell
Dependency Injection with EJB 3
Netbeans IDE JavaEditor

“Exactly what busy developers need:
simple, short, and to the point.”

James Ward, Adobe Systems

Download Now

Refcardz.com

Professional Cheat Sheets You Can Trust

 tech facts at your fingertips

DZone, Inc.
2222 Sedwick Rd Suite 101
Durham, NC 27713
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2009 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher. Reference: Soa Governance, Todd Biske, Packt Publishing October 2008

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to

more than 3.3 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheatsheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

6
Agile Adoption

ISBN-13: 978-1-934238-58-5
ISBN-10: 1-934238-58-9

9 781934 238585

50795

Meszaros, XUnit Test Patterns: Refactoring Test Code, Boston:
Addison-Wesley, 2007

x x

Mugridge, R., and W. Cunningham. 2005. Fit for Developing
Software: Framework for Integrated Tests. Upper Saddle River, NJ:
Pearson Education.

x

Poppendieck, M., and Poppendieck, T., Implementing Lean Software
Development, Addison-Wesley Professional, 2006.

x

Rainsberger, J.B. 2004. Junit recipes: Practical methods for
programmer testing. Greenwich, CT: Manning Publications.

x x

Schwaber, K., and Beedle, M., Agile Software Development with
Scrum, Upper Saddle River, New Jersey: Prentice Hall, 2001.

x x x x

Senge, P., The Fifth Discipline: The Art and Practice of The Learning
Organization, NY: Currency 2006.

x

Surowiecki, J., The Wisdom of Crowds, NY: Anchor, 2005. x

RECOMMENDED BOOKABOUT Gemba Systems

Gemba Systems is comprised of a group of seasoned practitioners
who are experts at Lean & Agile Development as well as crafting
effective learning experiences. Whether the method is Scrum, Extreme
Programming, Lean Development or others - Gemba Systems helps
individuals and teams to learn and adopt better product development
practices. Gemba Systems has taught better development techniques
- including lean thinking, Scrum and Agile Methods - to thousands of
developers in dozens of companies around the globe. To learn more visit
http://us.gembasystems.com/

Agile Adoption Patterns will help you
whether you’re planning your first agile
project, trying to improve your next project,
or evangelizing agility throughout your
organization. This actionable advice is
designed to work with any agile method,
from XP and Scrum to Crystal Clear and
Lean. The practical insights will make you
more effective in any agile project role: as
leader, developer, architect, or customer.

BUY NOW
books.dzone.com/books/agile-adoption-patterns

http://refcardz.com
http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://books.dzone.com/books/agile-adoption-patterns

