

DZone, Inc. | www.dzone.com

By Matthew McCullough

ABOUT APACHE MAVEN

Hot
Tip

All things Maven can be found at
http://maven.apache.org

A
p

ac
h

e
 M

av
e

n
 2

 w
w

w
.d

zo
n

e.
co

m

G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#55

Apache Maven 2

Maven is a comprehensive project information tool, whose
most common application is building Java code. Maven is
often considered an alternative to Ant, but as you’ll see in this
Refcard, it offers unparalleled software lifecycle management,
providing a cohesive suite of verification, compilation, testing,
packaging, reporting, and deployment plugins.

Maven is receiving renewed recognition in the emerging
development space for its convention over configuration
approach to builds. This Refcard aims to give JVM platform
developers a range of basic to advanced execution commands,
tips for debugging Mavenized builds, and a clear introduction
to the “Maven vocabulary”.

Interoperability and Extensibility
New Maven users are pleasantly surprised to find that Maven
offers easy-to-write custom build-supplementing plugins,
reuses any desired aspect of Ant, and can compile native
C, C++, and .NET code in addition to its strong support for
Java and JVM languages and platforms, such as Scala, JRuby,
Groovy and Grails.

CONTENTS INCLUDE:
n	 The MVN Command
n	 Project Object Model
n	 Dependencies
n	 Plugins
n	 Debugging
n	 Profiles and more...

THE MVN COMMAND

Maven supplies a Unix shell script and MSDOS batch file
named mvn and mvn.bat respectively. This command is used
to start all Maven builds. Optional parameters are supplied
in a space-delimited fashion. An example of cleaning and
packaging a project, then running it in a Jetty servlet container,
yet skipping the unit tests, reads as follows:

mvn clean package jetty:run –Dmaven.test.skip

PROJECT OBJECT MODEL

The world of Maven revolves around metadata files named
pom.xml. A file of this name exists at the root of every Maven
project and defines the plugins, paths and settings that
supplement the Maven defaults for your project.

Basic pom.xml Syntax
The smallest valid pom.xml, which inherits the default artifact
type of “jar”, reads as follows:

<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.ambientideas</groupId>
 <artifactId>barestbones</artifactId>
 <version>1.0-SNAPSHOT</version>
</project>

Super POM
The Super POM is a virtual pom.xml file that ships inside the
core Maven JARs, and provides numerous default settings. All
projects automatically inherit from the Super POM, much like
the Object super class in Java. Its contents can be viewed in
one of two ways:

View Super POM via SVN
Open the following SVN viewing URL in your web browser:
http://svn.apache.org/repos/asf/maven/components/branches/maven-
2.1.x/pom.xml

View Super POM via effective-pom
Run the following command in a directory that contains the
most minimal Maven project pom.xml, listed above.

mvn help:effective-pom

Multi-module Projects
Maven showcases exceptional support for componentization
via its concept of multi-module builds. Place sub-projects in
sub-folders beneath your top level project and reference each
with a module tag. To build all sub projects, just execute your
normal mvn command and goals from a prompt in the top-most
directory.

<project>
 <!-- ... -->
 <packaging>pom</packaging>
 <modules>
 <module>servlets</module>
 <module>ejbs</module>
 <module>ear</module>
 </modules>
</project>

n Authoritative content
n Designed for developers
n Written by top experts
n Latest tools & technologies
n Hot tips & examples
n Bonus content online
n New issue every 1-2 weeks

Subscribe Now for FREE!
Refcardz.com

Get More Refcardz
(They’re free!)

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

2
Apache Maven 2

Artifact Vector
Each Maven project produces an element, such as a JAR, WAR
or EAR, uniquely identified by a composite of fields known as
groupId, artifactId, packaging, version and scope. This vector
of fields uniquely distinguishes a Maven artifact from all others.

Many Maven reports and plugins print the details of a specific
artifact in this colon separated fashion:

groupid:artifactid:packaging:version:scope

An example of this output for the core Spring JAR would be:

org.springframework:spring:jar:2.5.6:compile

EXECUTION GROUPS

Maven divides execution into four nested hierarchies. From
most-encompassing to most-specific, they are: Lifecycle, Phase,
Plugin, and Goal.

Lifecycles, Phases, Plugins and Goals
Maven defines the concept of language-independent project
build flows that model the steps that all software goes through
during a compilation and deployment process.

Lifecycles represent a well-recognized flow of steps (Phases)
used in software assembly.

Each step in a lifecycle flow is called a phase. Zero or more
plugin goals are bound to a phase.

A plugin is a logical grouping and distribution (often a single
JAR) of related goals, such as JARing.

A goal, the most granular step in Maven, is a single executable
task within a plugin. For example, discrete goals in the jar
plugin include packaging the jar (jar:jar), signing the jar
(jar:sign), and verifying the signature (jar:sign-verify).

Executing a Phase or Goal
At the command prompt, either a phase or a plugin goal can
be requested. Multiple phases or goals can be specified and
are separated by spaces.

If you ask Maven to run a specific plugin goal, then only that
goal is run. This example runs two plugin goals: compilation of
code, then JARing the result, skipping over any intermediate
steps.

mvn compile:compile jar:jar

Conversely, if you ask Maven to execute a phase, all phases and
bound plugin goals up to that point in the lifecycle are also
executed. This example requests the deploy lifecycle phase,
which will also execute the verification, compilation, testing
and packaging phases.

mvn deploy

Online and Offline
During a build, Maven attempts to download any uncached
referenced artifacts and proceeds to cache them in the ~/.m2/
repository directory on Unix, or in the %USERPROFILE%/.m2/
repository directory on Windows.

To prepare for compiling offline, you can instruct Maven to
download all referenced artifacts from the Internet via the
command:

mvn dependency:go-offline

If all required artifacts and plugins have been cached in your
local repository, you can instruct Maven to run in offline mode
with a simple flag:

mvn <phase or goal> -o

Built-in Maven Lifecycles
Maven ships with three lifecycles; clean, default, and site.
Many of the phases within these three lifecycles are bound to a
sensible plugin goal.

The official lifecycle reference, which extensively
lists all the default bindings, can be found at
http://maven.apache.org/guides/introduction/
introduction-to-the-lifecycle.html

Hot
Tip

The clean lifecycle is simplistic in nature. It deletes all
generated and compiled artifacts in the output directory.

Clean Lifecycle

Lifecycle Phase Purpose

pre-clean

clean Remove all generated and compiled artifacts in preperation
for a fresh build.

post-clean

The default lifecycle defines the most commonly used phases
for building an application, ranging from compilation of the
code to installation of the completed artifacts, such as a JAR,
into a remote Maven repository.

Default Lifecycle

Lifecycle Phase Purpose

validate Cross check that all elements necessary for the build are
correct and present.

initialize Set up and bootstrap the build process.

generate-sources Generate dynamic source code

process-sources Filter, sed and copy source code

generate-resources Generate dynamic resources

process-resources Filter, sed and copy resources files.

compile Compile the primary or mixed language source files.

process-classes Augment compiled classes, such as for code-coverage
instrumentation.

generate-test-sources Generate dynamic unit test source code.

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

3
Apache Maven 2

process-test-sources Filter, sed and copy unit test source code.

generate-test-resources Generate dynamic unit test resources.

process-test-resources Filter, sed and copy unit test resources.

test-compile Compile unit test source files

test Execute unit tests

prepare-package Manipulate generated artifacts immediately prior to
packaging. (Maven 2.1 and above)

package Bundle the module or application into a distributable
package (commonly, JAR, WAR, or EAR).

pre-integration-test

integration-test Execute tests that require connectivity to external resources
or other components

post-integration-test

verify Inspect and cross-check the distribution package (JAR,
WAR, EAR) for correctness.

install Place the package in the user’s local Maven repository.

deploy Upload the package to a remote Maven repository

The site lifecycle generates a project information web site, and
can deploy the artifacts to a specified web server or local path.

Site Lifecycle

Lifecycle Phase Purpose

pre-site Cross check that all elements necessary for the build are
correct and present.

site Generate an HTML web site containing project information
and reports.

post-site

site-deploy Upload the generated website to a web server

Default Goal
The default goal codifies the author’s intended usage of
the build script. Only one goal or lifecycle can be set as the
default. The most common default goal is install.

<project>
 [...]
 <build>
 <defaultGoal>install</defaultGoal>
 </build>
 [...]
</project>

HELP

Help for a Plugin
Lists all the possible goals for a given plugin and any
associated documentation.

help:describe -Dplugin=<pluginname>

Help for POMs
To view the composite pom that’s a result of all inherited poms:

mvn help:effective-pom

Help for Profiles
To view all profiles that are active from either manual or
automatic activation:

mvn help:active-profiles

DEPENDENCIES

Declaring a Dependency
To express your project’s reliance on a particular artifact, you
declare a dependency in the project’s pom.xml.

You can use the search engine at
repository.sonatype.org to find dependencies by
name and get the xml necessary to paste into your
pom.xml

Hot
Tip

<project>
 <dependencies>
 <dependency>
 <groupId>com.yourcompany</groupId>
 <artifactId>yourlib</artifactId>
 <version>1.0</version>
 <type>jar</type>
 <scope>compile</scope>
 </dependency>
 </dependencies>
 <!-- ... -->
</project>

Standard Scopes
Each dependency can specify a scope, which controls its
visibility and inclusion in the final packaged artifact, such as a
WAR or EAR. Scoping enables you to minimize the JARs that
ship with your product.

Scope Description

compile Needed for compilation, included in packages.

test Needed for unit tests, not included in packages.

provided Needed for compilation, but provided at runtime by the runtime container.

system Needed for compilation, given as absolute path on disk, and not included in
packages.

import An inline inclusion of a POM-type artifact facilitating dependency-declaring
POM snippets.

PLUGINS

Adding a Plugin
A plugin and its configuration are added via a small
declaration, very similar to a dependency, in the <build>
section of your pom.xml.

<build>
 <!-- ... -->
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <configuration>
 <maxmem>512m</maxmem>
 </configuration>
 </plugin>
 </plugins>
</build>

surefire Runs unit tests.

checkstyle Checks the code’s styling

clover Code coverage evaluation.

enforcer Verify many types of environmental conditions as prerequisites.

assembly Creates ZIPs and other distribution packages of apps and their
transitive dependency JARs.

The full catalog of plugins can be found at:
http://maven.apache.org/plugins/index.html

Hot
Tip

Common Plugins
Maven created an acronym for its plugin classes that
aggregates “Plain Old Java Object” and “Maven Java Object”
into the resultant word, Mojo.

There are dozens of Maven plugins, but a handful constitute
some of the most valuable, yet underused features:

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

4
Apache Maven 2

VISUALIZE DEPENDENCIES

Users often mention that the most challenging task is
identifying dependencies: why they are being included, where
they are coming from and if there are collisions. Maven has a
suite of goals to assist with this.

List a hierarchy of dependencies.

mvn dependency:tree

List dependencies in alphabetic form.

mvn dependency:resolve

List plugin dependencies in alphabetic form.

mvn dependency:resolve-plugins

Analyze dependencies and list any that are unused, or
undeclared.

mvn dependency:analyze

REPOSITORIES

Repositories are the web sites that host collections of Maven
plugins and dependencies.

Declaring a Repository

<repositories>
 <repository>
 <id>JavaDotNetRepo</id>
 <url>https://maven-repository.dev.java.net</url>
 </repository>
</repositories>

The Maven community strongly recommends using a
repository manager such as Nexus to define all repositories.
This results in cleaner pom.xml files and centrally cached and
managed connections to external artifact sources. Nexus can
be downloaded from http://nexus.sonatype.org/

Popular Repositories
Central http://repo1.maven.org/maven2/

Java.net https://maven-repository.dev.java.net/

Codehaus http://repository.codehaus.org/

JBoss http://repository.jboss.org/maven2

A near complete list of repositores can be found at
http://www.mvnbrowser.com/repositories.html

Hot
Tip

PROPERTY VARIABLES

A wide range of predefined or custom of property variables can
be used anywhere in your pom.xml files to keep string and path
repetition to a minimum.

All properties in Maven begin with ${ and end with }.

Predefined Properties (Partial List)

${env.PATH} Any OS environment variable such as EDITOR, or GROOVY_
HOME. Specifically, the PATH environment variable.

Define a Property
You can define a new custom property in your pom.xml like so:

<project>
 [...]
 <properties>
 <my.somevar>My Value</my.somevar>
 </properties>
 [...]
</project>

Exception Full Stack Traces
If a Maven plugin is reporting an error, to see the full detail of
the exception’s stack trace run Maven with the -e flag.

mvn <yourgoal> -e

Output Debugging Info
Whenever reporting a Maven bug, or troubleshooting a problem,
turn on all the debugging info by running Maven like so:

mvn <yourgoal> -X

Debug Maven Core/Plugins
Core Maven operations and plugins can be stepped through
with any JPDA-compatible debugger, the most common option
being Eclipse. When run in debug mode, Maven will wait for
you to connect your debugger to socket port 8000 before
continuing with its lifecycle.

mvnDebug <yourgoal>

Preparing to Execute Maven in Debug Mode
Listening for transport dt_socket at address: 8000

Debug a Unit Test
Your suite or an individual unit test can be debugged in much
the same fashion by telling the Surefire test-execution plugin
to wait for you to attach a debugger to port 5005.

mvn test -Dmaven.surefire.debug

Listening for transport dt_socket at address: 5005

DEBUGGING

Project properties could previously be referenced with a
${pom.basedir} prefix or no prefix at all ${basedir}. Maven now
requires that you prefix these variables with the word project
${project.basedir}.

To list all available properties, run the following command.

mvn help:expressions

${project.groupId} Any project node from the aggregated Maven pom.xml.
Specifically, the Group ID of the project

${project.artifactId} Name of the artifact.

${project.basedir} Path of the pom.xml.

${settings.
localRepository}

The path to the user’s local repository.

${java.home} Any Java System Property.
Specifically, the Java System Property path to its home.

${java.vendor} The Java System Property declaring the JRE vendor’s name.

${my.somevar} A user-defined variable.

SOURCE CODE MANAGEMENT

Configuring SCM
Your project’s SCM connection can be quickly configured with
just three XML tags, which adds significant capabilities to the
scm, release, and reactor plugins.

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

5
Apache Maven 2

Over 12 SCM systems are supported by Maven. The
full list can be viewed at
http://docs.codehaus.org/display/SCM/SCM+Matrix

Hot
Tip

Using the SCM Plugin
The core SCM plugin offers two highly useful goals.

The diff command produces a standard Unix patch file with the
extension .diff of the pending (uncommitted) changes on disk
that can be emailed or attached to a bug report.

mvn scm:diff

The update-subprojects goal invokes a recursive scm-provider
specific update (svn update, git pull) across all the submodules of
a multimodule project.

mvn scm:update-subprojects

PROFILES

Profiles are a means to conditionally turn on portions of Maven
configuration, including plugins, pathing and configuration.

The most common uses of profiles are for Windows/Unix
platform-specific variations and build-time customization of
JAR dependencies based on the use of a specific Weblogic,
Websphere or JBoss J2EE vendor.

<project>
 [...]
 <profiles>
 <profile>
 <id>YourProfile</id>
 [...settings, build, plugins etc...]
 <dependencies>
 <dependency>
 <groupId>com.yourcompany</groupId>
 <artifactId>yourlib</artifactId>
 </dependency>
 <dependencies>
 </profile>
 </profiles>
 [...]
</project>

Profile Definition Locations
Profiles can be defined in pom.xml, profiles.xml (parallel to the
pom.xml), ~/.m2/settings.xml, or $M2_HOME/conf/settings.
xml.

The full Maven Profile reference, including details
about when to use each of the profile definition files,
can be found at http://maven.apache.org/guides/
introduction/introduction-to-profiles.html

Hot
Tip

PROFILE ACTIVATION

CUTTING A RELEASE

Maven offers excellent automation for cutting a release of your
project. In short, this is a plugin-guided ceremony for verifying
that all tests pass, tagging your source code repository, and
altering the POMs to reflect a product version increment.

The prepare goal runs the unit tests, continuing only if all
pass, then increments the value in the pom <version> tag to
a release version, tags the source repository accordingly, and
increments the pom version tag back to a SNAPSHOT version.

mvn release:prepare

After a release has been successfully prepared, run the
perform goal. This goal checks out the prepared release and
deploys it to the POM’s specified remote Maven repository for
consumption by other teams and Maven builds.

mvn release:perform

ARCHETYPES

An archetype is a powerful template that uses your corporate
Java package names and project name in the instantiated
project and establishes a baseline of dependencies, with a
bonus of basic sample code.

You can leverage public archetypes for quickly starting a
project that uses a familiar stack, such as Struts+Spring, or
Tapestry+Hibernate. You can also create private archetypes
within your company to offer new projects a level of consistent
dependencies matching your approved corporate technology
stack.

Using an Archetype
The default behavior of the generate goal is to bring up

The connection tag is your read-only view of your repository
and developerConnection is the writable link. URL is your web-
based view of the source.

<scm>
 <connection>scm:svn:http://myvendor.com/ourrepo/trunk</
connection>
 <developerConnection>
 scm:svn:https://myvendor.com/ourrepo/trunk
 </developerConnection>
 <url>http://myvendor.com/viewsource.pl</url>
</scm>

Profiles can be activated manually from the command line or
through an activation rule (OS, file existence, Maven version,
etc.). Profiles are primarily additive, so best practices suggest
leaving most off by default, and activating based on specific
conditions.

Manual Profile Activation

mvn <yourgoal> –P YourProfile

Automatic Profile Activation

<project>
 [...]
 <profiles>
 <profile>
 <id>YourProfile</id>
 [...settings, build, etc...]
 <activation>
 <os>
 <name>Windows XP</name>
 <family>Windows</family>
 <arch>x86</arch>
 <version>5.1.2600</version>
 </os>
 <file>
 <missing>somefolder/somefile.txt</missing>
 </file>
 </activation>
 </profile>
 </profiles>
 [...]
</project>

http://www.dzone.com
http://www.refcardz.com

Upcoming Titles
JavaFX
JSF 2.0
Maven
Drupal
Java Performance Tuning
Eclipse RCP
ASP.NET MVC Framework

Most Popular
Spring Configuration
jQuery Selectors
Windows PowerShell
Dependency Injection with EJB 3
NetBeans IDE JavaEditor
Getting Started with Eclipse
Very First Steps in Flex

“Exactly what busy developers need:
simple, short, and to the point.”

James Ward, Adobe Systems

Download Now

Refcardz.com

Professional Cheat Sheets You Can Trust

DZone, Inc.
2222 Sedwick Rd Suite 101
Durham, NC 27713
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2009 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher. Reference:

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to

more than 3.3 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheatsheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

6
Apache Maven 2

Matthew McCullough is an Open Source Architect
with the Denver, Colorado consulting firm Ambient
Ideas, LLC which he co-founded in 1997. He’s spent
the last 13 years passionately aiming for ever-greater
efficiencies in software development, all while
exploring how to share these practices with his clients
and their team members. Matthew is a nationally

touring speaker on all things open source and has provided long term
mentoring and architecture services to over 40 companies ranging
from startups to Fortune 500 firms. Feedback and questions are
always welcomed at matthewm@ambientideas.com

RECOMMENDED BOOKABOUT THE AUTHOR

REPORTS

Maven has a robust offering of reporting plugins, commonly
run with the site generation phase, that evaluate and
aggregate information about the project, contributors, it’s
source, tests, code coverage, and more.

Adding a Report Plugin

<reporting>
 <plugins>

 <plugin>
 <artifactId>maven-javadoc-plugin</artifactId>
 </plugin>
 </plugins>
</reporting>

A list of commonly used reporting plugins can be
reviewed here http://maven.apache.org/plugins/

Hot
Tip

a menu of choices. You are then prompted for various
replaceables such as package name and artifactId. Type this
command, then answer each question at the command line
prompt.

mvn archetype:generate

Creating Archetypes
An archetype can be created from an existing project, using
it as the pattern by which to build the template. Run the
command from the root of your existing project.

mvn archetype:create-from-project

Archetype Catalogs
The Maven Archetype plugin comes bundled with a default
catalog of applications it can create, but other projects on the
Internet also publish catalogs. To use an alternate catalog:

mvn archetype:generate –DarchetypeCatalog=<catalog>

A list of the most commonly used catalogs is as follows:

local
remote
http://repo.fusesource.com/maven2
http://cocoon.apache.org
http://download.java.net/maven/2

http://myfaces.apache.org
http://tapestry.formos.com/maven-repository
http://scala-tools.org
http://www.terracotta.org/download/reflector/maven2/

Several sources for Maven have appeared online for
some time, but nothing served as an introduction
and comprehensive reference guide to this tool --
until now. Maven: The Definitive Guide is the ideal
book to help you manage development projects
for software, webapplications, and enterprise
applications. And it comes straight from the source.

BUY NOW
books.dzone.com/maven-definitive-guide

ISBN-13: 978-1-934238-57-8
ISBN-10: 1-934238-57-0

9 781934 238578

50795

http://refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.refcardz.com

