

DZone, Inc. | www.dzone.com

By Craig Walls

about spring-dm

S
p

ri
n

g
-DM

 w

w
w

.d
zo

n
e.

co
m

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#57

Getting Started with Spring-DM

Spring is a framework that promotes development of loosely-
coupled/highly-cohesive objects through dependency
injection and interface-oriented design. OSGi is a framework
specification that promotes development of loosely-coupled/
highly-cohesive application modules through services and
interface-oriented design. Seems like a match made in heaven!
Spring Dynamic Modules (Spring-DM) brings Spring and
OSGi together to enable a declarative service model for OSGi
that leverages Spring’s power of dependency injection. This
reference card will be your resource for working with Spring-
DM to wire together OSGi services and ultimately building
modular applications.

You may be interested to know that Spring-DM is the basis for
the SpringSource dm Server, a next-generation application
server that embraces modularity through OSGi. What’s more,
the upcoming OSGi R4.2 specification includes a component
model known as the OSGi Blueprint Services that is heavily
influenced by Spring-DM.

Introducing Spring-DM

Spring-DM also provides a Spring configuration namespace
that enables you to declare and publish Spring beans as OSGi
services and to consume OSGi services as if they were just
beans in a Spring application context. This declarative model
effectively eliminates the need to work with the OSGi API
directly.

Installing Spring-DM

One of the nice things about Spring-DM is that you do not
need to include it in the classpath of your OSGi bundles or
even reference it from those bundles. Installing Spring-DM
involves two parts:

 1) Installing the Spring-DM and supporting bundles in your
 OSGi framework
 2) Adding the Spring-DM configuration namespace to your
 bundle’s Spring configuration XML files

You can download Spring-DM from
http://www.springframework.org/osgi. The distribution comes
complete with everything you need to work with Spring-
DM, including the Spring-DM extender bundle and all of its
dependency bundles.

Installing the Spring-DM extender bundles
There are several means by which you can install bundles into
an OSGi framework, depending on the OSGi framework and
any add-ons or tools you may be using. But the most basic
way is to use the “install” command that is available in most
OSGi framework shells. For example, to install the Spring-
DM extender bundle and the supporting Spring-DM bundles
(assuming that you’ve unzipped the Spring-DM distribution in /
spring-dm-1.2.0):

osgi> install file:///spring-dm-1.2.0/dist/spring-osgi-core-
 1.2.0.jar
osgi> install file:///spring-dm-1.2.0/dist/spring-osgi-extender-
 1.2.0.jar
osgi> install file:///spring-dm-1.2.0/dist/spring-osgi-io-1.2.0.jar

Spring-DM depends on the Spring framework, so you’ll also
need to install several other Spring bundles:

The star player of Spring-DM is a bundle known as the Spring-
DM extender. The Spring-DM extender watches for bundles
to be installed and inspects them to see if they are Spring-
enabled (that is, if they contain a Spring application context
definition file). When it finds a Spring-enabled bundle, the
extender will create a Spring application context for the
bundle.

CONTENTS INCLUDE:
n	 About Spring-DM
n	 Introducing Spring-DM
n	 Installing Spring-DM
n	 Publishing Services
n	 Consuming Services
n	 Hot Tips and more...

Spring Application Contexts

n 	Authoritative content
n 	Designed for developers
n 	Written by top experts
n 	Latest tools & technologies
n	 Hot tips & examples
n 	Bonus content online
n 	New issue every 1-2 weeks

Subscribe Now for FREE!
Refcardz.com

Get More Refcardz
(They’re free!)

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

2
Getting Started with Spring-DM

osgi> install file:///spring-dm-1.2.0/lib/spring-aop-2.5.6.A.jar
osgi> install file:///spring-dm-1.2.0/lib/spring-context-
 2.5.6.A.jar
osgi> install file:///spring-dm-1.2.0/lib/spring-core-2.5.6.A.jar
osgi> install file:///spring-dm-1.2.0/lib/spring-beans-2.5.6.A.jar

Finally, you’ll also need to install several other supporting
bundles that Spring and Spring-DM depend on:

osgi> install file:///spring-dm-1.2.0/lib/com.springsource.net.
 sf.cglib-2.1.3.jar
osgi> install file:///spring-dm-1.2.0/lib/com.springsource.org.
 aopalliance-1.0.0.jar
osgi> install file:///spring-dm-1.2.0/lib/com.springsource.slf4j.
 api-1.5.0.jar
osgi> install file:///spring-dm-1.2.0/lib/com.springsource.slf4j.
 log4j-1.5.0.jar
osgi> install file:///spring-dm-1.2.0/lib/com.springsource.slf4j.
 org.apache.commons.logging-1.5.0.jar
osgi> install file:///spring-dm-1.2.0/lib/log4j.osgi-1.2.15-
 SNAPSHOT.jar

Hot
Tip

Use tools to help install bundles
Installing bundles using the “install” command
should work with almost any OSGi framework, but it
is also quite a manual process. Pax Runner (http://
paxrunner.ops4j.org) is an OSGi framework launcher
that takes a lot of the tedium out of installing
bundles. Just use Pax Runner’s “spring dm” profile:
% pax-run.sh --profiles=spring.dm

The Spring-DM configuration namespace
Schema URI:
http://www.springframework.org/schema/osgi

Schema XSD:
http://www.springframework.org/schema/osgi/spring-osgi.xsd

When it comes to declaring services and service consumers in
Spring-DM, you’ll use Spring-DM’s core namespace. To do that,
you’ll need to include the namespace in the XML file.

<?xml version=”1.0” encoding=”UTF-8”?>
<beans xmlns=”http://www.springframework.org/schema/beans”
	 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
	 xmlns:osgi=”http://www.springframework.org/schema/osgi”
	 xsi:schemaLocation=”http://www.springframework.org/
schema/beans
	 http://www.springframework.org/schema/beans/
spring-beans.xsd
		 http://www.springframework.org/schema/osgi
		 http://www.springframework.org/schema/
osgi/spring-osgi.xsd”>
...
</beans>

Spring’s “beans” namespace is the default namespace, but
if you know that most or all of the elements in the Spring
configuration file will be from the Spring-DM namespace, you
can make it the default namespace:

Publishing Services

To demonstrate Spring-DM’s capabilities, we’re going to create
a few OSGi services that translate English text into some other
language. All of these services will implement the following
Translator interface:

package com.habuma.translator;
public interface Translator
{
 String translate(String text);
}

The first service we’ll work with is one that translates English
into Pig Latin. It’s implementation looks something like this:

package com.habuma.translator.piglatin;
import com.habuma.translator.Translator;

public class PigLatinTranslator implements Translator {

 private final String VOWELS = “AEIOUaeiou”;

 public String translate(String text) {
 // actual implementation left out for brevity
 }
}

If we were working with basic OSGi (that is, without Spring-
DM), we’d publish this service to the OSGi service registry
using the OSGi API, perhaps in a bundle activator’s start()
method:

public void start(BundleContext context) throws Exception {
 context.registerService(Translator.class.getName(),
 new PigLatinTranslator(), null);
}

Although the native OSGi approach will work fine, it requires
us to work programmatically with the OSGi API. Instead, we’ll
publish services declaratively using Spring-DM.

The first step: Create a Spring context definition file that
declares the PigLatinTranslator as a Spring bean:

<?xml version=”1.0” encoding=”UTF-8”?>
<beans xmlns=”http://www.springframework.org/schema/beans”
	 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
	 xsi:schemaLocation=”http://www.springframework.org/
schema/beans
	 http://www.springframework.org/schema/beans/spring-
beans.xsd”>

 <bean id=”pigLatinTranslator”
 class=”com.habuma.translator.piglatin.PigLatinTranslator” />

</beans>

Hot
Tip

Overriding the context configuration location
By default, the Spring-DM extender looks for all XML
files located in a bundle’s META-INF/spring folder and
assumes that they’re all Spring context definition
files that are to be used to create a Spring application
context for the bundle; however, if you’d like to put
your context definition files elsewhere in the bundle,
use the Spring-Context: header in the META-INF/
MANIFEST.MF file.

For example, if you’d rather place your Spring con-
figuration files in a directory called “spring-config”
at the root of the bundle, add the following entry to
your bundle’s manifest:
Spring-Context: spring-config/*.xml

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

3
Getting Started with Spring-DM

This Spring context file can be named anything, but it should
be placed in the Pig Latin translator bundle’s META-INF/
spring directory. When the bundle is started in an OSGi
framework, the Spring-DM extender will look for Spring context
configuration files in that directory and use them to create a
Spring application context for the bundle.

Publishing a simple OSGi service
By itself the Spring context we’ve created only creates a bean
in the Spring application context. It’s not yet an OSGi service.
To publish it as an OSGi service, we’ll create another Spring
context definition file that uses the Spring-DM namespace:

<?xml version=”1.0” encoding=”UTF-8”?>
<beans:beans xmlns:beans=”http://www.springframework.org/schema/
beans”
	 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
	 xmlns=”http://www.springframework.org/schema/osgi”
	 xsi:schemaLocation=”http://www.springframework.org/
schema/beans
	 http://www.springframework.org/schema/beans/
spring-beans.xsd
		 http://www.springframework.org/schema/osgi
		 http://www.springframework.org/schema/
osgi/spring-osgi.xsd”>

 <service ref=”pigLatinTranslator”
 interface=”com.habuma.translator.Translator” />

</beans:beans>

Hot
Tip

Don’t mix your Spring and OSGi contexts
Although you can certainly define all of your bundle’s
Spring beans and OSGi services in a single Spring
context definition file, it’s best to keep them in
separate files (all in META-INF/spring). By keeping
the OSGi-specific declarations out of the normal
Spring context definition, you’ll be able to use the
OSGi-free context to do non-OSGi integration tests of
your beans.

This new Spring context file uses Spring-DM’s <service>
element to publish the bean whose ID is “pigLatinTranslator”
in the OSGi service registry. The ref attribute refers to the
Spring bean in the other context definition file. The interface
attribute identifies the interface under which the service will be
available in the OSGi service registry.

Publishing a service under multiple interfaces
Let’s suppose that the PigLatinTranslator class were
to implement another interface, perhaps one called
TextProcessor. And let’s say that we want to publish the service
under both the Translator interface and the TextProcessor
interface. In that case, you can use the <interfaces> element to
identify the interfaces for the service:

<service ref=”pigLatinTranslator”>
 <interfaces>
 <beans:value>com.habuma.translator.Translator</beans:value>
 <beans:value>com.habuma.text.TextProcessor</beans:value>
 </interfaces>
</service>

Auto-selecting service interfaces
Instead of explicitly specifying the interfaces for a service, you
can also let Spring-DM figure out which interfaces to use by
specifying the auto-export attribute:

<service ref=”pigLatinTranslator”
 auto-export=”interfaces” />

By setting auto-export to “interfaces”, it tells Spring-DM to
publish the service under all interfaces that the implementation
class implements. You can also set auto-export to “all-classes”
to publish the service under all interfaces and classes for the
service or “class-hierarchy.”

Publishing a service with properties
It’s also possible to publish a service with properties to qualify
that service. These properties can later be used to help refine
the selection of services available to a consumer. For example,
let’s say that we want to qualify Translator services by the
language that they translate to:

<service ref=”pigLatinTranslator”
 interface=”com.habuma.translator.Translator”>
 <service-properties>
 <beans:entry key=”translator.language” value=”Pig Latin” />
 </service-properties>
</service>

The <service-properties> element can contain one or more
<entry> elements from the “beans” namespace. In this case,
we’ve added a property named “translator.language” with a
value of “Pig Latin”. Later, we’ll use this property to help select
this particular service from among a selection of services that
all implement Translator.

Consuming Services

Now that we’ve seen how to publish a service in the OSGi
service registry, let’s look at how we can use Spring-DM to
consume that service. To get started, we’ll create a simple
client class:

package com.habuma.translator.client;
import java.util.List;
import com.habuma.translator.Translator;

public class TranslatorClient {
 private static String TEXT = “Be very very quiet. I’m hunting
rabbits!”;

 public void go() {

 System.out.println(“ TRANSLATED: “ +
 translator.translate(TEXT));

 }

 private Translator translator;
 public void setTranslator(Translator translator) {
 this.translator = translator;
 }
}

TranslatorClient is a simple POJO that is injected with a
Translator and uses that Translator in its go() method to
translate some text. We’ll declare it as a Spring bean like this:

<?xml version=”1.0” encoding=”UTF-8”?>
<beans xmlns=”http://www.springframework.org/schema/beans”
	 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
	 xsi:schemaLocation=”http://www.springframework.org/
schema/beans
	 http://www.springframework.org/schema/beans/spring-
beans.xsd”>

 <bean class=”com.habuma.translator.client.TranslatorClient”
 init-method=”go”>
 <property name=”translator” ref=”translator” />
 </bean>

</beans>

As with the service’s Spring context declaration, the name of
this Spring context definition can be named anything, but it
should be placed in the client bundle’s META-INF/spring folder

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

4
Getting Started with Spring-DM

so that the Spring-DM extender will find it.

The bean is declared with the init-method attribute set to call
the go() method when the bean is created. And we use the
<property> element to inject the bean’s translator property
with a reference to a bean whose ID is “translator”.

The big question here is: Where does the “translator” bean
come from?

Simple service consumption
Spring-DM’s <reference> element mirrors the <service>
element. Rather than publishing a service, however,
<reference> retrieves a service from the OSGi service registry.
The simplest way to consume a Translator service is as follows:

<reference id=”translator”
 interface=”com.habuma.translator.Translator” />

When the Spring-DM extender creates a Spring context for the
client bundle, it will create a bean with an ID of “translator”
that is a proxy to the service it finds in the service registry. With
that id attribute and interface, it is quite suitable for wiring into
the client bean’s translator property.

Setting a service timeout
In a dynamic environment like OSGi, services can come and go.
When the client bundle starts up, there may not be a Translator
service available for consumption. If it’s not available, then
Spring-DM will wait up to 5 minutes for the service to become
available before giving up and throwing an exception.

But it’s possible to override the default timeout using the
<reference> element’s timeout attribute. For example, to set
the timeout to 1 minute instead of 5 minutes:

<reference id=”translator”
 interface=”com.habuma.translator.Translator”
 timeout=”60000” />

Notice that the timeout attribute is specified in milliseconds, so
60000 indicates 60 seconds or 1 minute.

Optional service references
Another way to deal with the dynamic nature of OSGi services
is to specify that a service reference is optional. By default, the
cardinality of a reference to a service is “1..1”, meaning that
the service must be found within the timeout period or else
an exception will be thrown. But you can specify an optional
reference by setting the cardinality to “0..1”:

<reference id=”translator”
 interface=”com.habuma.translator.Translator”
 cardinality=”0..1” />

Filtering services
Imagine that we have two or more Translator services published
in the OSGi service registry. Let’s say that in addition to the
Pig Latin translator there’s also another Translator service
that translates text into Elmer Fudd speak. How can we
ensure that our client gets the Pig Latin service when another
implementations may be available?

Earlier, we saw how to set a property on a service when it’s
published. Now we’ll use that property to filter the selection of
services found on the consumer side:

<reference id=”translator”
 interface=”com.habuma.translator.Translator”
 filter=”(translator.language=Pig Latin)” />

The filter attribute lets us specify properties that will help
refine the selection of matching services. In this case, we’re
only interested in a service that has its “translator.language”
property set to “Pig Latin”.

Consuming multiple services
But why choose? What if we wanted to consume all matching
services? Instead of pin-pointing a specific service, we can
use Spring-DM’s <list> element to consume a collection of
matching services:

<list id=”translators”
 interface=”com.habuma.translator.Translator” />

The Spring-DM extender will create a list of matching services
that can be injected into a client bean collection property such
as this one:

private List<Translator> translators;
public void setTranslators(List<Translator> translators) {
 this.translators = translators;
}

Optionally, you can use Spring-DM’s <set> element to create a
set of matching services:

<set id=”translators”
 interface=”com.habuma.translator.Translator” />

The <list> and <set> elements share many of the same
attributes with <reference>. For example, to consume a set of
all Translator services filtered by a specific property:

<set id=”translators”
 interface=”com.habuma.translator.Translator”
 filter=”(translator.language=Elmer Fudd)” />

Testing Bundles

Hopefully, you’re in the habit of writing unit tests for your code.
If so, that practice should extend to the code that is contained
within your OSGi bundles. Because Spring-DM encourages
POJO-based OSGi development, you can continue to write
unit-tests for the classes that define and consume OSGi
services just like you would for any other non-OSGi code.

But it’s also important to write tests that exercise
your OSGi services as they’ll be used when deployed
in an OSGi container. To accommodate in-OSGi
integration testing of bundles, Spring-DM provides
AbstractConfigurableBundleCreatorTests, a JUnit 3 base test
class from which you can write your bundle tests.

What’s fascinating is how tests based on
AbstractConfigurableBundleCreatorTests work. When the
test is run, it starts up an OSGi framework implementation
(Equinox by default) and installs one or more bundles into
the framework. Finally, it wraps itself in an on-the-fly bundle
and installs itself into the OSGi framework so that it can test
bundles as an insider.

Writing a basic OSGi test
To illustrate, let’s write a simple test that loads our Translator
interface bundle and the Pig Latin implementation bundle:

package com.habuma.translator.test;
import org.osgi.framework.ServiceReference;
import org.springframework.osgi.test.
AbstractConfigurableBundleCreatorTests;

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

5
Getting Started with Spring-DM

import com.habuma.translator.Translator;

public class PigLatinTranslatorBundleTest
 extends AbstractConfigurableBundleCreatorTests {

 @Override
 protected String[] getTestBundlesNames() {
 return new String[] {
 “com.habuma.translator, interface, 1.0.0”,
 “com.habuma.translator, pig-latin, 1.0.0”
 };
 }

 public void testOsgiPlatformStarts() {
 assertNotNull(bundleContext);
 }
}

The getTestBundleNames() method returns an array of Strings
where each entry represents a bundle that should be installed
into the OSGi framework for the test. The format of each entry
is a comma-separated set of values that identify the bundle by
its Maven group ID, artifact ID, and version number.

So far, our test has a single test method,
testOsgiPlatformStarts(). All this method does is test that the
OSGi framework has started by asserting that bundleContext
(inherited from AbstractConfigurableBundleCreatorTests) is not
null.

Testing OSGi service references
A more interesting test we could write is one that uses the
bundle context to lookup a reference to the Translator service
and assert that it meets our expectations:

public void testServiceReferenceExists() {
 ServiceReference serviceReference =
 bundleContext.getServiceReference(Translator.class.
getName());
 assertNotNull(serviceReference);
 assertEquals(“Pig Latin”,
 serviceReference.getProperty(“translator.language”));
}

Here we retrieve a ServiceReference from the bundle
context and assert that it isn’t null. This means that some
implementation of the Translator service has been published in
the OSGi service registry. Then, it examines the properties of
the service reference and asserts that the “translator.language”
property has been set to “Pig Latin”, as we’d expect from how
we published the service earlier.

Testing OSGi services
One more thing we could test is that the Translator service
does what we’d expect it to do. Certainly, this kind of test
usually belongs in a unit test. But it’s still good to throw a
smoke test its way to make sure that we’re getting the service
we’re expecting.

We could use the ServiceReference to lookup the service. But,
we can avoid any additional work with the OSGi API by having
the Translator service wired directly into our test class. First,
let’s add a Translator property and setter method to our test
class

private Translator translator;
public void setTranslator(Translator translator) {
 this.translator = translator;
}

When the test is run, Spring will attempt to autowire the
property with a bean from its own Spring application context.
But we haven’t defined a Spring application context for the test
yet. Let’s do that now:

<?xml version=”1.0” encoding=”UTF-8”?>
<beans:beans xmlns:beans=”http://www.springframework.org/schema/
beans”
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xmlns=”http://www.springframework.org/schema/osgi”
 xsi:schemaLocation=”http://www.springframework.org/schema/
beans
 http://www.springframework.org/schema/beans/spring-beans.
xsd
 http://www.springframework.org/schema/osgi
 http://www.springframework.org/schema/osgi/spring-osgi.xsd”>

 <reference id=”translator”
 interface=”com.habuma.translator.Translator” />

</beans:beans>

You’ll recognize that this Spring context definition looks a
lot like the one we created for the service consumer. In fact,
our test class will ultimately be a consumer of the Translator
service. We just have one more thing to do before we can test
the service—we’ll need to override the getConfigLocations()
method to tell the test where it can find the context definition
file:

@Override
protected String[] getConfigLocations() {
 return new String[] { “bundle-test-context.xml” };
}

Now we can write our test method:

public void testTranslatorService() {
 assertNotNull(translator);
 assertEquals(“id-DAY is-thAY ork-wAY”,
 translator.translate(“Did this work”));
}

This method assumes that by the time it is invoked, the
translator property has been set. It first asserts that it is not null
and then throws a simple test String at it to test that the service
does what we expect.

Changing the tested OSGi framework
By default, Spring-DM tests are run within Equinox. But you
can change them to run within another OSGi framework
implementation such as Apache Felix or Knopflerfish by
overriding the getConfigLocations() method. For example, to
run the test within Apache Felix:

@Override
protected String getPlatformName() {
 return Platforms.FELIX;
}

Or for Knoplerfish:

@Override
protected String getPlatformName() {
 return Platforms.KNOPFLERFISH;
}

Providing a Custom Manifest
When a Spring-DM test gets wrapped up in an on-the-fly
bundle, a manifest will be automatically generated for it.
But if you’d like to provide a custom manifest. To provide a
custom manifest for the on-the-fly bundle, all you need to do is
override the getManifestLocation(). For example:

 protected String getManifestLocation() {
 return “classpath:com.habuma.translator.Translator.MF”;
 }

http://www.dzone.com
http://www.refcardz.com

Design Patterns

By Jason McDonald

CONTENTS INCLUDE:

n	 Chain of Responsibility

n	 Command

n	 Interpreter

n	 Iterator

n	 Mediator

n	 Observer

n	 Template Method and more...

DZone, Inc. | w
ww.dzone.com

D
es

ig
n

Pa
tt

er
ns

 w

w
w

.d
zo

ne
.c

om

 G
et

 M
o

re
 R

ef
ca

rz
!

V
is

it
 r

ef
ca

rd
z.

co
m

#8

Brought to you by...

Inspired

by the

GoF

Bestseller

This Design Patterns refcard provides a quick reference to the

original 23 Gang of Four (GoF) design patterns, as listed in

the book Design Patterns: Elements of Reusable Object-

Oriented Software. Each pattern includes class diagrams,

explanation, usage information, and a real world example.

Chain of Responsibility
, continued

Object Scope: Deals with object relationships that can

be changed at runtime.

Class S
cope: Deals with class relationships that can be

changed at compile time.

C Abstract Factory

S Adapter

S Bridge

C Builder

B Chain of

Responsibility

B Command

S Composite

S Decorator

S Facade

C Factory Method

S Flyweight

B Interpreter

B Iterator

B Mediator

B Memento

C Prototype

S Proxy

B Observer

C Singleton

B State

B Strategy

B Template Method

B Visito
r

ABOUT DESIGN PATTERNS

Creational Patterns: U
sed to construct objects such

that they can be decoupled from their im
plementing

system.

Structural Patterns: U
sed to form large object

structures between many disparate objects.

Behavioral Patterns: U
sed to manage algorithms,

relationships, and responsibilitie
s between objects.

CHAIN OF RESPONSIBILITY

 O
bject Behavioral

COMMAND

 O

bject Behavioral

successor

Client

<<interface>>

Handler

+handlerequest()

ConcreteHandler 1

+handlerequest()

ConcreteHandler 2

+handlerequest()

Purpose
Gives more than one object an opportunity to handle a request by linking

receiving objects together.

Use

When

n
	Multiple objects may handle a request and the handler doesn’t have to

 be a specific object.

n
	A set of objects should be able to handle a request with the handler

 determined at runtime.

n
	A request not being handled is an acceptable potential outcome.

Example
Exception handling in some languages implements this pattern. When an

exception is thrown in a method the runtime checks to see if th
e method

has a mechanism to handle the exception or if it
 should be passed up the

call stack. When passed up the call stack the process repeats until code to

handle the exception is encountered or until th
ere are no more parent

objects to hand the request to.

Receiver

Invoker

Command

+execute()

Client
ConcreteCommand

+execute()

Purpose
Encapsulates a request allowing it to

 be treated as an object. This allows

the request to be handled in traditionally object based relationships such

as queuing and callbacks.

Use

When

n
	You need callback functionality.

n
	Requests need to be handled at variant tim

es or in variant orders.

n
	A history of requests is needed.

n
	The invoker should be decoupled from the object handling the invocation.

Example
Job queues are widely used to facilitate the asynchronous processing

of algorithms. By utilizing the command pattern the functionality to be

executed can be given to a job queue for processing without any need

for the queue to have knowledge of the actual implementation it is

invoking. The command object that is enqueued implements its particular

algorithm within the confines of the interface the queue is expecting.

Upcoming Titles
Java Performance Tuning
Eclipse RCP
Java Concurrency
Selenium
ASP.NET MVC Framework
Virtualization
Wicket

Most Popular
Spring Configuration
jQuery Selectors
Windows Powershell
Dependency Injection with EJB 3
Netbeans IDE JavaEditor
Getting Started with Eclipse
Very First Steps in Flex

“Exactly what busy developers need:
simple, short, and to the point.”

James Ward, Adobe Systems

Download Now

Refcardz.com

Professional Cheat Sheets You Can Trust

DZone, Inc.
1251 NW Maynard
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2009 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher. Reference:

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to

more than 3.3 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheatsheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

6
Getting Started with Spring-DM

RECOMMENDED booksABOUT the Author

Be aware, however, that if you provide a custom manifest, you
must include a few things in that manifest to make Spring-DM
testing work. First, you’ll need to specify a bundle activator:

Bundle-Activator: org.springframework.osgi.test.JUnitTestActivator

 And you’ll need to import JUnit and Spring-DM packages:

 Import-Package: junit.framework,
 org.osgi.framework,
 org.apache.commons.logging,
 org.springframework.util,
 org.springframework.osgi.service,
 org.springframework.osgi.util,
 org.springframework.osgi.test,
 org.springframework.context

Example Source Code:
http://www.habuma.com/refcard/spring-dm/translator.zip

Spring-DM Homepage:
http://www.springframework.org/osgi

OSGi Alliance: http://www.osgi.org

Modular Java on Twitter: http://twitter.com/modularjava

Craig’s Modular Java Blog: http://www.modularjava.com

Craig’s Spring Blog: http://www.springinaction.com

Craig Walls is a Texas-based software developer with more
than 15 years experience working the telecommunication,
financial, retail, education, and software industries. He’s
a zealous promoter of the Spring Framework, speaking
frequently at local user groups and conferences and writing
about Spring and OSGi on his blog. When he’s not slinging

code, Craig spends as much time as he can with his wife, two daughters,
six birds, and two dogs.

Craig’s Publications:
 • Modular Java: Creating Flexible Applications with OSGi and Spring,
 2009
 • Spring in Action, 2nd Edition, 2007
 • XDoclet in Action, 2003

Craig’s Blog: http://www.springinaction.com

References

BUY NOW
books.dzone.com/books/spring-in-action

Spring in Action, 2nd Edition is a practical and
comprehensive guide to the Spring Framework, the framework
that forever changed enterprise Java development. What’s
more, it’s also the first book to cover the new features and
capabilities in Spring 2.

Modular Java is filled with tips and tricks that will make you
a more proficient OSGi and Spring-DM developer. Equipped
with the know-how gained from this book, you’ll be able to
develop applications that are more robust and agile.

BUY NOW
books.dzone.com/books/modularjava

ISBN-13: 978-1-934238-60-8
ISBN-10: 1-934238-60-0

9 781934 238608

50795

http://refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.refcardz.com
http://books.dzone.com/books/spring-in-action
http://books.dzone.com/books/spring-in-action
http://books.dzone.com/books/modularjava

