

DZone, Inc. | www.dzone.com

By Dave Klein

GettinG started with Grails

G
ra

ils

w

w
w

.d
zo

n
e.

co
m

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#60

Getting Started with Grails

Grails is a full-stack web application framework built on top
of such tried and true open source frameworks as Spring,
Hibernate, Ant, JUnit and more. By applying principles such
as Convention over Configuration and Don’t Repeat Yourself,
and taking advantage of the dynamic Groovy programming
language, Grails makes it incredibly easy to use these powerful
tools. Grails doesn’t reinvent the wheel; Grails makes a wheel
that inflates itself and rolls where you want it to!

In case you are new to Grails, we’ll start with a brief
introduction, which should be enough to get you hooked and
turn you into a Grails developer. That’s when this Refcard will
come in handy; it is a cheat sheet for Grails developers, a quick
source for those things you keep having to go back to the docs
to look up. Controllers, Services and Views with a detailed GSP
taglib reference

Installing Grails
Download the Grails archive from http://grails.org/download
and extract it to a local directory. Set a GRAILS_HOME
environment variable to that directory and add GRAILS_
HOME/bin to your path. (You also need a valid JAVA_HOME
environment variable.) Now you’re ready to go!

A Web App in the Blink of an Eye
To create a new Grails application, type:

$ grails create-app AutoMart

Now change to the AutoMart directory and create a domain class:

$ grails create-domain-class Car

Open AutoMart/grails-app/domain/Car.groovy and edit it, like so:

class Car {
 String make
 String model
 Integer year
}

Save this file, and run:

$ grails generate-all Car

Create-app and create-domain-class are Grails scripts. To see
what other scripts are provided by Grails, run grails help from
the command line.

You now have a complete working web application, with pages
for creating, displaying, editing and listing Car instances. You
can launch it with:

$ grails run-app

Grails runs on port 8080 by default. You can easily run on a
different port like this:

$ grails -Dserver.port=9090 run-app

Navigate to http://
localhost:8080/AutoMart and
look around. Figure 1 and
Figure 2 show a couple of the
views Grails gives us “out of the
box.”

You can also leave it running
while you continue to develop.
Just save your changes and
refresh your browser. This rapid
feedback is one of the strengths
of Grails.

Grails Conventions
In our example the Car.groovy
file that Grails created for us
was placed in a directory called
grails-app/domain. This is one
of the many conventions in
Grails. Placing source files in
certain directories and naming
them in certain ways can make
magical things happen in a
Grails application.

Domain Classes
Placing a Groovy class file in the grails-app/domain directory
will turn it into a persistent domain class. Several properties
and methods will be added to the class dynamically, and Grails
will create a table based on the name of the class, with fields
for each property.

Figure 2: Car List

Figure 1: Create Car

n Authoritative content
n Designed for developers
n Written by top experts
n Latest tools & technologies
n Hot tips & examples
n Bonus content online
n New issue every 1-2 weeks

Subscribe Now for FREE!
Refcardz.com

Get More Refcardz
(They’re free!)

COntents inClUde:
n	 Getting Started with Grails
n	 Testing
n	 Domain Class Mosaic
n	 The Three R’s of Controllers
n	 Services
n	 Hot Tips and more...

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

2
Getting Started with Grails

Controllers
Grails controllers are simple Groovy classes with names ending
in ‘Controller’ and residing in the grails-app/controllers
directory. Controllers also receive several methods and
properties dynamically. Any closure defined as a property in
a Controller will become an action reachable by a URL in the
following form: application/controller/action.

Views
For each controller in your application there will be a directory
under grails-app/views/ named after the controller class (ie.
grails-app/views/car). This directory is where your views
(.gsp files) go. When a controller action is completed it will
automatically attempt to render a view with the name of the
action. So, when you call
http://localhost:8080/AutoMart/car/list the list action will
execute and render the list.gsp page. You can, of course
render specific pages but convention can be a huge time-saver.

Services
A Groovy class with a name ending in ‘Service’ and residing in
the grails-app/services directory becomes a Grails service and
has built-in transaction handling and more.

TagLibs
Creating custom tags in Grails is so easy it should be illegal.
Just create a Groovy class ending with ‘TagLib’ and place it in
the grails-app/TagLib directory. Then define a closure property
and write to the OutputStream called ‘out’ that is already
given to you. You can also use the tag’s attributes and body by
simply declaring them.

class YourTagLib{
def saySomething = {attrs, body ->
 if (attrs.tone == ‘loud’)
 out << body().toUpperCase()
 elseif (attrs.tone == ‘quiet’)
 out << body().toLowerCase()
 else
 out << body()
}

You can use this tag in a .gsp like this:

<g:saySomething tone=”loud”>
 I’m shouting now!
</g:saySomething>

You can use this tag in a .gsp like this:

<g:saySomething tone=”loud”>
 I’m shouting now!
</g:saySomething>

I’M SHOUTING NOW!

There are no extra classes to create, no interfaces to
implement, no TLDs to create. You could probably take up a
new hobby with the time you’ll save!

testinG

Unit Tests
Grails encourages unit testing by automatically creating
stubbed out unit tests when creating artifacts (domain classes,

Figure 3: Grails Test Classes

mockDomain(class, list)- Mocks the domain class and stores instances in the list. Provides
the dynamic GORM methods to class.

mockFor(class, loose) – Returns a mock of the class. loose determines whether mock has
loose expectations or strict.

mockForConstraintsTest(class, list) – Similar to mockDomain but works for domains or
command objects and adds a validate method to test constraints.

mockController(controllerClass) – Mocks a controller, adding the usual dynamic
properties and methods.

mockTagLib(tagLibClass) – Mocks a TagLib, adding the usual dynamic properties and
methods.

mockLogging(class, enableDebug) – Adds a mock logger to the class.

Here are some of the methods that are available to us in the
Grails testing framework.

dOmain Class maGiC

Dynamic methods
Grails adds several methods to our domain classes at runtime.
Here are some of the most commonly used domain class
methods:

Method Description

get(id) Retrieves an instance by id

getAll([id,id,id...]) Retrieves multiple instances by ids

list() Retrieves all instances

listOrderBy*() Retrieves list of instances sorted by expression

findBy*() Returns first instance matching expression

findAllBy*() Returns all instances matching expression

count() Returns total number of instances

countBy*() Returns count of instances matching expression

save() Attempts to persist instance

validate() Validates an instance based on constraints

delete() Attempts to permanently remove instance

withTransaction Executes a closure within a transaction

withCriteria Executes a hibernate criteria using the CriteriaBuilder

hasErrors Returns true if instance has validation errors

Methods such as countBy*() and findBy*() are synthesized
methods, made up of the root method name and a
combination of domain class properties and the following
comparators:

Note

Be careful about adding methods beginning with
‘get’ to a domain class. Grails will consider that a
property and try to persist it. You can avoid this by
not giving the method a return type
(ie. def getSomething(){...})

controllers, services, and taglibs), and by including a powerful
testing framework based on JUnit.

In Grails 1.1 (and earlier via a plugin), there are several classes
inheriting from JUnit’s TestCase class. Figure 1 shows these
classes.

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

3
Getting Started with Grails

 • Equal (Implied default comparator)
 • NotEqual
 • LessThan
 • LessThanEquals
 • GreaterThan
 • GreaterThanEquals
 • Like
 • like (case insensitive Like)
 • InList
 • Between
 • IsNull
 • IsNotNull

Up to two properties with optional comparators can be
combined with a logical operator for example:

Car.countByMakeAndAgeLessThan(‘Dodge’, 4)
Car.findAllByMakeAndModelInList(‘Ford’, [‘Mustang’, ‘Explorer’])

Pagination and Sorting Parameters
The domain method list() takes four parameters which are
used for sorting and pagination. These same parameters can
be passed in a Map as the last parameter to the findAllBy*
methods.

Parameter Description

max The maximum number of instances to return

offset The position to begin retrieving from

sort Domain property to sort by

order Whether to sort asceding or decending

Example: Car.list(max:10, sort:’year’, order:’desc’)

Constraint Validation
Either the save() or validate() methods shown above will trigger
Grails’ powerful data validation. Grails provides 17 built-in
constraints plus the validation constraint for custom validation.

Many of these constraints also influence database schema
generation; those are in shown in bold.

blank (true/false) allow an empty string value

nullable (true/false) allow nulls

max Maximum value of any type that implements java.lang.Comparable

min Minimum value of any type that implements java.lang.Comparable

size Uses a range to determine the upper and lower limits of a collection or
a String

maxSize The maximum size of a collection or String

minSize The minimum size of a collection or String

range Uses a range to determine the limits of a numeric value

scale Rounds value to specified number of decimal places - Does not generate
an Error

notEqual No comment

inList Value must be contained in supplied list

Matches Value must match supplied regular expression

Unique (true/false) Verifies uniqueness in database

url (true/false) Must be valid URL

email (true/false) Must be valid email address

creditCard (true/false) Must be valid credit card number

password (true/false) Must be valid password

Validator Takes a closure for custom validation. First parameter is value, second (if
supplied) is the instance being validated

Here’s an example of how constraints are declared in a domain
class:

Figure 4: One-to-one

Unidirectional one-to-one is the simplest type of relationship.
One class has a Reference to another. This is declared by a
property of the type of another domain class:

class Car {
 Engine engine
}

A bi-directional one-to-one is the same thing but with each
class in the relationship having a reference to the other.

class Driver {
 Car car
}
class Car {
 Driver driver
}

Usually in a situation like this you want to show ownership and
have cascading updates based on that ownership. With Grails
that just takes single line of code:

class Car{
 Driver driver
 static belongsTo = Driver
}

Now a Car belongs to a Driver and when the Driver is saved
the Car will be saved too. If the Driver is deleted then the Car
goes with him. Makes sense. belongsTo also works with uni-
directional relationships.

One-to-many

Figure 5: One-to-many

To declare a uni-directional one-to-many relationship just
include a static hasMany property in the owning class.

class Driver {
 static hasMany = [cars : Car]
}

Now a Driver will have a Collection of Car instances called cars.

static constraints = {
 make()
 model()
 year()
 desription()
}

If validation fails during a call to save(), no exception is thrown.
The failure is quietly recorded and stored in the instances
errors property. To see if a domain class instance has validation
errors, use the hasErrors() method in conjuction with the
errors property, like so:

if (carInsance.hasErrors()){
 carInstance.errors.allErrors.each{ println it }
}

Relationships
GORM also makes relationships between different domain
classes easier. Here we’ll show how to implement the basic
domain relationships.

One-to-one

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

4
Getting Started with Grails

To make this bi-directional add a belongsTo property to the
many class.

class Car{
 Driver driver
 static belongsTo = Driver
}

Many-to-many

Figure 6: Many-to-many

A many-to-many relationship can be declared by adding a
hasMany to both classes involved and a belongsTo property to
one of them.

class Driver {
 static hasMany = [cars : Car]
}
class Car {
 static hasMany = [drivers : Driver]
 static belongsTo = Driver
}

serviCes

Grails service classes are powerful and easy to use. Here’s a
few important things to remember when using services.

Transactions
Grails service classes are transactional by default. If you

import org.codehaus.groovy.grails.commons.ApplicationHolder
def myPogo = new MyPogo()
def ctx = ApplicationHolder.application.mainContext
ctx.autowireCapableBeanFactory.autowireBeanProperties(
 myPogo,
 AutowireCapableBeanFactory.AUTOWIRE_BY_NAME,
 false)

This will tell Spring to inject any Spring beans that are declared
in the MyPogo class into the myPogo instance. Since Grails
service classes are Spring beans, the carService will be
injected.

Services and Scope
Grails services are singletons by default. To change that you
just need to declare a static scope variable.

static scope = ‘request’

Here are the possible values for scope:

Scope Description

request A new instance is created for each request

session One instance is created for an entire session

flash An instance is created that will exist for this request and the next
request

prototype A new instance is created for each objec that it’s injected into

flow instance exists for the life of a flow (webflow only)

conversation Instance exists for the life of a flow and all sub-flows (webflow only)

GsP

Along with the ability to easily create custom GSP tags, Grails
provides over 50 built-in tags. So many that it can be easy to
miss one that could be just what you need. The following table
shows some of the tags you don’t want to miss:

Logical Tags
if- Conditionaly render GSP portions

Attribute Description

test* Expression to evaluate

env* Name of a Grails environment

the three r’s Of COntrOllers

There are three possible conclusions to a controller action in
Grails. You can return map of data or nothing and Grails will
attempt to display the .gsp view with the same name as the
action. You can also redirect to another url or action. The third
way is to render something. This can be a view, a template,
JSON, XML or just about anything that can be written to the
response.

Redirect Method Parameters

controller Controller to redirect to. If action is not present the default action of
the controller will be used.

action Action to redirect to. If controller is not present current controller will
be used.

id Id to be passed, as params.id, to the redirect.

url URL to redirect to (‘http://grails.org’).

uri URI to redirect to (‘/car/edit/1’).

params A map of parameters to be passed to the redirect.

Render Method Parameters

text Text to rendered to the resonse

view A GSP view. Can include path info or the view folder for the current
controller will be assumed

template A template (partial GSP view). Often used with AJAX actions.

model A map containing data to be used by the view or template.

bean A single bean to used as the model for the view or template.

collection A collection of objects to be used as the model for the view or
template.

builder Builder object to be used to render markup.

contentType Sets the content type of the response.

encoding Sets the encoding of the response

don’t want that behavior, for example, if you are going to
handle transactions with the dynamic domain class method
withTransaction, you can turn it off with a single line:

class CarService {
 static transactional = false
}

Service Injection
Services can be injected into controllers, domain classes,
or other services simply by declaring a property with the
same name as the service class type but with the first letter
lowercase:

class CarController{
 def carService

}

You can also inject Services into plain old groovy objects, but
it takes a couple more lines of code. First declare the service in
your POGO.

class MyPogo {
 def carService
}

Then when you create an instance of your POGO do this:

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

5
Getting Started with Grails

Looping Tags
each- iterate over each element of the specified object

Attribute Description

in The object to iterate over

status Variable to stor the iteration index in

var The name of the item

<g:each var=”car” in=”${cars}”>
 <p>Make: ${car.make}</p>
 <p>Year: ${car.year}</p>
</g:each>

findAll- condtionally iterate over objects in a collection

Attribute Description

in The collection to iterate over

expr A Gpath expression

<h1>2003 Vehicles</h1>

<g:findAll in=”${cars}” expr=”it.year == ‘2003’”>
 ${it.make} ${it.model}
</g:findAll>

Form Tags
form- HTML Form with an action attribute based on controller/action/id

Attribute Description

action* Action to use in the Form Action

controller* Controller to use in the Form Action

id* ID to use in the Form Action

url* A map containing the action/controller/id

<g:form name=”myForm” action=”show” id=”1”>
 ...
</g:form>

<g:form name=”myOtherForm” url=”[action:’list’,controller:’car’]”>
 ...
</g:form>

*if not specified, the current controller/action will be used

datePicker- Creates HTML selects for day/month/year/hour/second

Attribute Description

name Name of the date picker field set

value Current value of the date picker

default Default date. if “=none”, the default is blank

Precision Date granularity: year, month, day, hour, minute

noSelection Map detailing the key and value to use for the “no selection made”
choice in the selected box

Years List/range of displayed years, in specific order

<g:datePicker name=”myDate” value=”${new Date()}”
noSelection=”[‘’:’-Choose-’]”/>

<g:datePicker name=”myDate” value=”${new Date()}” precision=”day”
years=”${1930..1970}”/>

checkBox- Creates an HTML checkbox form field

Attribute Description

name Name of the checkBox

value Expression; if evaluates to true, “checked = true”

 <g:checkBox name=”Used” value=”${true}” />

radio- Creates an HTML radio button

Attribute Description

value value represented by radio button. Displayed as label

name Name of radio button

checked Boolean true/false for checked status

<g:radio name=”myGroup” value=”2” />

Select- Creates an HTML select

from a list or range to select from

value the current value of the property

optionKey property of the bean to use as the key

optionValue property of the bean to use as the value

noSelection single-entry Map with a default key to return and a default
value to display.

valueMessage-Prefix Will be prepended to the option value with a ‘.’ to create a key
to lookup the value in the i18n message bundle.

<g:select name=”car.year” from=”${1903..2009}” value=”${year}”
noSelection=”[‘’:’-Choose car year-’]”/>

hiddenField- Creates an HTML input of type ‘hidden’

name the name of the input field

value the value of the text field

<g:hiddenField name=”year” value=”${carInstance.year}”/>

actionSubmit- Creates a submit button with the specified value

name Required; the title of the button. if ‘action’ is not specified, this will be the
default action.

action the action to execute

<g:actionSubmit value=”Button Label” action=”Update”/>

Link Tags
link- Creates an HTML anchor tag based on parameters

action name of action to link to - if not specified, the default action will be used

controller name of the controller to link to – if not specified, the current controller
will be used

id the id to use in the link

params a Map containing request parameters

url a Map containing the controller, action, etc. to use in the link

<g:link controller=”car” action=”list”>List of Cars</g:link>

<g:if env=”development” test=”${car.year > 2008}”>
 <p>This car is new.</p>
</g:if>

Else- The logical else tag

No Attributes

<g:if test=”car.make == ‘Honda’”>
...
</g:if>
<g:else>
 <p>Sir, this car is not a Honda.</p>
</g:else>

createLink- Creates a URL which can be used in anchor tags, etc.

action the action to be used in the link- if not specified the default action will
be used

controller the controller to be used in the link – if not specified the current
controller will be used

id the id to be used in the link

url a Map containing the controller, action, id, etc.

<g:createLink controller=”car” action=”show” id=”1”/>
will create
AutoMart/car/show/1

As a method call in a GSP:
View
Car #1
will create
View Car #1

http://www.dzone.com
http://www.refcardz.com

Design Patterns

By Jason McDonald

CONTENTS INCLUDE:

n	 Chain of Responsibility

n	 Command

n	 Interpreter

n	 Iterator

n	 Mediator

n	 Observer

n	 Template Method and more...

DZone, Inc. | w
ww.dzone.com

D
es

ig
n

Pa
tt

er
ns

 w

w
w

.d
zo

ne
.c

om

 G
et

 M
o

re
 R

ef
ca

rz
!

V
is

it
 r

ef
ca

rd
z.

co
m

#8

Brought to you by...

Inspired

by the

GoF

Bestseller

This Design Patterns refcard provides a quick reference to the

original 23 Gang of Four (GoF) design patterns, as listed in

the book Design Patterns: Elements of Reusable Object-

Oriented Software. Each pattern includes class diagrams,

explanation, usage information, and a real world example.

Chain of Responsibility
, continued

Object Scope: Deals with object relationships that can

be changed at runtime.

Class S
cope: Deals with class relationships that can be

changed at compile time.

C Abstract Factory

S Adapter

S Bridge

C Builder

B Chain of

Responsibility

B Command

S Composite

S Decorator

S Facade

C Factory Method

S Flyweight

B Interpreter

B Iterator

B Mediator

B Memento

C Prototype

S Proxy

B Observer

C Singleton

B State

B Strategy

B Template Method

B Visito
r

ABOUT DESIGN PATTERNS

Creational Patterns: U
sed to construct objects such

that they can be decoupled from their im
plementing

system.

Structural Patterns: U
sed to form large object

structures between many disparate objects.

Behavioral Patterns: U
sed to manage algorithms,

relationships, and responsibilitie
s between objects.

CHAIN OF RESPONSIBILITY

 O
bject Behavioral

COMMAND

 O

bject Behavioral

successor

Client

<<interface>>

Handler

+handlerequest()

ConcreteHandler 1

+handlerequest()

ConcreteHandler 2

+handlerequest()

Purpose
Gives more than one object an opportunity to handle a request by linking

receiving objects together.

Use

When

n
	Multiple objects may handle a request and the handler doesn’t have to

 be a specific object.

n
	A set of objects should be able to handle a request with the handler

 determined at runtime.

n
	A request not being handled is an acceptable potential outcome.

Example
Exception handling in some languages implements this pattern. When an

exception is thrown in a method the runtime checks to see if th
e method

has a mechanism to handle the exception or if it
 should be passed up the

call stack. When passed up the call stack the process repeats until code to

handle the exception is encountered or until th
ere are no more parent

objects to hand the request to.

Receiver

Invoker

Command

+execute()

Client
ConcreteCommand

+execute()

Purpose
Encapsulates a request allowing it to

 be treated as an object. This allows

the request to be handled in traditionally object based relationships such

as queuing and callbacks.

Use

When

n
	You need callback functionality.

n
	Requests need to be handled at variant tim

es or in variant orders.

n
	A history of requests is needed.

n
	The invoker should be decoupled from the object handling the invocation.

Example
Job queues are widely used to facilitate the asynchronous processing

of algorithms. By utilizing the command pattern the functionality to be

executed can be given to a job queue for processing without any need

for the queue to have knowledge of the actual implementation it is

invoking. The command object that is enqueued implements its particular

algorithm within the confines of the interface the queue is expecting.

Upcoming titles
RichFaces
Agile Software Development
BIRT
JSF 2.0
Adobe AIR
BPM&BPMN
Flex 3 Components

most Popular
Spring Configuration
jQuery Selectors
Windows Powershell
Dependency Injection with EJB 3
Netbeans IDE JavaEditor
Getting Started with Eclipse
Very First Steps in Flex

“Exactly what busy developers need:
simple, short, and to the point.”

James Ward, Adobe Systems

Download Now

Refcardz.com

Professional Cheat Sheets You Can Trust

DZone, Inc.
1251 NW Maynard
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2009 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher. Reference:

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to

more than 3.3 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheatsheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

Getting Started with Grails

reCOmmended ClassaBOUt the aUthOr

ISBN-13: 978-1-934238-53-0
ISBN-10: 1-934238-53-8

9 781934 238530

50795

Note

In order for the Ajax tags to work properly, you need
to include the javascript tag, specifying the library to
use, in the <head> section of your page. For example:
<head>
 <javascript library=”yui” />
</head>

javascript- For inclusion of JavaScript libraries and scripts; also a

shorthand for inline JavaScript

library the library to include

src the name of the JavaScript file to import - will look for a file in /web-app/js/

base the full URL to prepend to the library name

<g:javascript src=”thisisascript.js” />
will import
/web-app/js/thisisascript.js

<g:javascript library=”scriptaculous” />
will import necessary JavaScript for the Scriptaculous library

Inline JavaScript:
<g:javascript>alert(‘hello’)</g:javascript>

createLinkTo- Creates a link to a static resource

dir the directory in the application to link to

file the name of the file in the application to link to

<g:createLinkTo dir=”css” file=”main.css” />
creates a link to
/shop/css/main.css

Ajax Tags

dave Klein is a developer with
Contegix, a company specializing
in delivering managed internet
infrastructure based upon Linux, Mac OS
X, JEE, and Grails. Dave has worked as
a developer, architect, project manager,
mentor, and trainer for the past 15 years,
and has presented at user groups and

national conferences. Dave’s Groovy and Grails-related thoughts
can be found at http://dave-klein.blogspot.com.

In Grails: A Quick-Start Guide,
you’ll see how to use Grails by
iteratively building an unique,
working application. By the
time we’re done, you’ll have
built and deployed a real,
functioning website.

BUY nOw
books.dzone.com/books/grails-quick-start

http://refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.refcardz.com
http://books.dzone.com/books/grails-quick-start

