

DZone, Inc. | www.dzone.com

By James Sugrue

About the Rich client plAtfoRm

e
cl

ip
se

 R
C

P

 w

w
w

.d
zo

n
e.

co
m

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#62

Getting Started with eclipse RCP

The Eclipse Rich Client Platform (RCP) is a platform for building
and deploying rich client applications. It includes Equinox,
a component framework based on the OSGi standard, the
ability to deploy native GUI applications to a variety of desktop
operating systems, and an integrated update mechanism for
deploying desktop applications from a central server. Using
the RCP you can integrate with the Eclipse environment, or can
deploy your own standalone rich application.

n Authoritative content
n Designed for developers
n Written by top experts
n Latest tools & technologies
n Hot tips & examples
n Bonus content online
n New issue every 1-2 weeks

Subscribe Now for FREE!
Refcardz.com

Get More Refcardz
(They’re free!)

intRoducing the plug-in development enviRonment

To get started in developing your own plug-ins, first download
a version of Eclipse including the Plug-in Development
Environment (PDE). Eclipse Classic is the best distribution for
this.

When developing plug-ins, you should use the Plug-in
Development perspective. You’ll notice this perspective
provides another tab in your Project Navigator listing all the
plug-ins available.

To create an RCP application, go to the File menu and select
New > Project where you will be presented with the new
project wizard. From here choose Plug-in Project.

figure 1: The New Project Wizard

The next screen allows you to assign a name to your plug-
in. Usually, plug-in name follow Java’s package naming
conventions. RCP applications should be targeted to run on a
particular version of Eclipse – here we choose to run on Eclipse
3.5.

figure 2: RCP Project Settings Page

The next page in the project wizard allows you to set some
important attributes of your plug-in. This page allows you to
specify whether your plug-in will make contributions to the
UI. In the case of RCP plug-ins, this will usually be true. You
can choose whether to create your own RCP application, or to
create a plug-in that can be integrated with existing Eclipse
installations.

The following table summarizes other plug-in settings and what
they mean for your application. All of these settings can be
changed in the generated MANIFEST.MF file for your project
at any stage.

contentS include:
n	 About the Rich Client Platform
n	 Introducing the Plug-in

Development Environment
n	 Views, Perspectives and Editors
	n	 Adding a Menu to your Plug-in
n	 Help System Explained
n	 Hot Tips and more...

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

2
Getting Started with eclipse Rcp

Attribute Name Default Value Meaning

id <project name> The identifier for this RCP plug-in

Version 1.0.0.qualifier The plug-in version. Multiple versions of any plug-in
are possible in your Eclipse environment provided they
have unique version numbers

Name RCP Application The readable name of this plug-in

Provider The second part
of your project
package name.

The provider of this plug-in

Hot
Tip

Get started quickly with your first RCP application
by using the included RCP Mail Template, available
when you choose to create a standalone RCP
application.

mAnifeSt.mf explAined

The generated META-INF/MANIFEST.MF file is the centre
of your RCP plug-in. Here you can define the attributes,
dependencies and extension points related to your project. In
addition, you may have a plugin.xml file. The contents of both
these files are show in the plug-in manifest editor.

figure 3: The plug-in manifest editor

The Overview tab in this editor allows you to change the
settings described earlier in the new project wizard. It
also provides a shortcut where you can launch an Eclipse
application containing your new RCP plug-in.

The Dependencies tab describes how this plug-in interacts
with others in the system. All plug-ins which you are dependent
on will need to be added here.

The Runtime tab allows you to contribute packages from
your own plug-in to others to use or extend. You can also add
libraries that don’t exist as plug-ins to your own project in the
Classpath section.

Hot
Tip

While you may change your build path through the
Dependencies or Runtime tab, changing dependent
plug-ins in the Java Build Path of the project
properties tab will not reflect properly in the plug-ins
manifest.

The Extensions tab is where you go to define how this plug-in
builds on the functionality of other plug-ins in the system, such
as for adding menus, views or actions. We will describe these
extension points in more detail in the relevant sections. The
Extension Points tab allows you to define your own extensions
for other plug-ins to use.

the StAndARd Widget toolkit And JfAce

While developing UI code for your RCP application, it is
important to understand the Standard Widget Toolkit (SWT).
This is a layer that wraps around the platform’s native controls.
JFace provides viewers, in a similar way to Swing, for displaying
your data in list, tables, tree and text viewers.

The UI toolkits used in Eclipse applications are a large topic,
so we assume that the reader will be aware of how to program
widgets in SWT and JFace.

Adding A menu to youR plug-in

One of the first things that you will want to do with your RCP
plug-in is to provide a menu, establishing its existence with the
Eclipse application that it is built into. To do this, as with any
additions to our plug-in, we start in the Extensions tab of the
plug-in manifest editor.

Up to Eclipse 3.3 Actions was the only API available to deal
with menus, but since then the commands API has become
available, which we will focus on here.

To add a menu in the command API you will need to follow
similar steps to these:

Declare a command
To do this we use the org.eclipse.ui.commands extension
point. Simply click on the Add… button in the Extensions tab
and chose the relevant extension point.

First, you will need to associate this command with a category.
Categories are useful for managing large numbers of
commands. From the org.eclipse.ui.commands node, select
New>Category. The required fields are a unique ID and a
readable name.

After this right click on the node and choose New>Command.
The important attributes for a command are listed below.

Attribute Name Required Use

id Yes A unique id for this command

Name Yes A readable name for the command

Description No A short description for display in the UI

CategoryID No The id of the category for this command (that you
described in the previous step).

DefaultHandler No A default handler for this command. Usually you will create
your own handler.

Declare a Menu Contribution for the Command
To create a menu, you will first need to add the org.eclipse.
ui.menus extension point. From the created node in the UI,
select New>menuContribution. The required attribute for the
menu contribution is it’s locationURI, which specifies where
the menu should be placed in the UI. This URI takes the format
of [scheme]:[id]?[argument-list]

An example of the more useful locationURI’s in the Eclipse
platform follow:

Attribute Name Required

menu:org.eclipse.ui.main.
menu?after=window

Insert this contribution on the main menu bar after
the Window menu

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

3
Getting Started with eclipse Rcp

menu:file?after=additions Inserts contribution in the File menu after the
additions group

toolbar:org.eclipse.ui.main.
toolbar?after=additions

Insert this contribution on the main toolbar

popup:org.eclipse.ui.popup.
any?after=additions

Adds this contribution to any popup menu in the
application

Once the location of your contribution is chosen, click on
New>command on this contribution to define the menu. The
following attributes exist for each command:

Attribute Required Use

commandId Yes The id of the Command object to bind to this element,
typically already defined, as in our earlier step. Click
Browse... to find this

Label No The readable label to be displayed for this menu item in
the user interface

id No A unique identifier fo this item. Further menu contributions
can be placed under this menu item using this id in the
locationURI

mnemonic No The Character within the label to be assigned as the
mnemonic

icon No Relative path to the icon that will be displayed to the left
of the label

tooltip No The tooltip to display for this menu item

Hot
Tip

Defining a toolbar item is a similar process. Based
on a menuContribution with the correct locationURI,
select New>Toolbar providing a unique id. Create a
new command under the toolbar similar to the menu
item approach.

Create a Handler for the Command
The final extension point required for the menu is org.eclipse.
ui.handlers. A handler has two vital attributes. The first is
the commandId which should be the same as the command
id specified in the beginning. As you can see, this is the glue
between all three parts of the menu definition.

You will also need to create a concrete class for this handler,
which should implement the org.eclipse.core.commands.
IHandler interface.

Hot
Tip

Clicking on the class hyperlink on the manifest
editor will pop up a New Class Wizard with the fields
autofilled for this.

Hot
Tip

Once you have added in an extension point plugin.
xml will become available. All extension points can be
added through the manifest editor, or in XML format
through this file.

vieWS

In an RCP applications Views are used to present information
to the user. A viewer must implement the org.eclipse.
ui.IViewPart interface, or subclass org.eclipse.ui.parts.
ViewPart.

Hot
Tip

It’s good practice to store the view’s id as a public
constant in your ViewPart implementation, for easy
access.

Loose Coupling
To facilitate loose coupling, your ViewPart should implement
org.eclipse.ui.ISelectionListener. You will also need to
register this as a selection listener for the entire workbench:

getSite().getWorkbenchWindow().getSelectionService().

addSelectionListener(this);

This allows your view to react to selections made outside of the
view’s own context.

Finally, you will need to define when this command is
enabled or active. This can be done programmatically in the
isEnabled() and isHandled() methods. While this is easiest,
the recommended approach is to use the activeWhen and
enabledWhen expressions in the plug-ins manifest editor which
avoids unnecessary plug-in loading.

figure 4: An illustration of the difference between perspective, editor and view.

To create a View, you will need to add the org.eclipse.
ui.views extension point. In order to group your views, it is
useful to create a category for them. Select New>Category
from the org.eclipse.ui.views node to do this. The required
fields are a unique ID and a readable name.

Next, choose New>View from the extension point node and fill
in the necessary details.

Attribute Required Use

id Yes The unique id of the View

name Yes A readable name for this view

class Yes The class that implements the IViewPart interface

category No The id of the category that contains this view. This category
should be used if you wish to group views together in the
Show Views...dialog.

icon No The image to be displayed in the top left hand corner of
the view

allowMultiple No Flag indicating whether multiple views can be instantiated.
The default value is false.

The code behind the view is in a class that extends
org.eclipse.ui.ViewPart. All controls are created
programmatically In the createPartControl() method in this
class.

To facilitate lazy loading, a workbench page only holds
IViewReference objects, so that you can list out the views
without loading the plug-in that contains the view definition.

When created, you will see your view in the Window>Show
View>Other… dialog

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

4
Getting Started with eclipse Rcp

peRSpectiveS

Perspectives are a way of grouping you views and editors
together in a way that makes sense to a particular context, such
as debugging. By creating your own perspective, you can hook
into the Window>Open Perspective dialog.

To create a perspective, you need to extend the org.eclipse.
ui.perspectives extension point.

Attribute Required Use

id Yes The unique id of this perspective

name Yes A readable name for the perspective

class Yes The class that implements the IPerspectiveFactory
interface

icon No The image to be displayed related to this perspective

Fixed No Whether this perspective can be closed or not. Default
is false

The class driving the perspective implements org.eclipse.
ui.IPerspectiveFactory. This class has one method
createInitialLayout(), within which you can use the
IPageLayout.addView() method to add views directly to
the perspective. To group many views together in a tabbed
fashion, rather than side by side, IPageLayout.createFolder()
can be used.

Hot
Tip

When running your application you need to ensure
that you have all required plug-ins included. Do this
by checking your Run Configurations. Go to the plug-
ins tab and click Validate Plug-ins. If there are errors
click on Add Required Plug-ins to fix the error.

pRefeRenceS

Now that you have created a perspective and a view for your
RCP application, you will probably want to provide some
preference pages. Your contributed preference pages will
appear in the Window>Preferences dialog.

To provide preference pages you will need to implement the
org.eclipse.ui.preferencePages extension in the plug-in
manifest editor.

Attribute Required Use

id Yes The unique id of this preference page

name Yes A readable name for the preference page

class Yes The class that implements the
IWorkbenchPreferencePage interface

category No Path indicating the location of the page in the
preferences tree. The path may be defined using
the parent preference page id or a sequence of ids
separated by “/”.
If no category is specified, the page will appear at the
top level of the preferences tree.

While the preference page class will implement org.eclipse.
ui.IWorkbenchPreferencePage, it is useful to extend org.
eclipse.jface.preference.FieldEditorPreferencePage as it
provides createFieldEditors() method which is all you need
to implement, along with the init() method in order to display
a standard preference page. A complete list of FieldEditors is
provided in the org.eclipse.jface.preference package.

Loading and Storing Preferences
Preferences for a plug-in are stored in an org.eclipse.jface.
preference.IPreferenceStore object. You can access a plug-ins
preference through the Activator, which will typically extend
org.eclipse.ui.plugin.AbstractUIPlugin. Each preference
you add to the store has to be assigned a key. Preferences are
stored as String based values, but methods are provided to
access the values in number of formats such as double, int and
Boolean.

pRopeRty SheetS

While preferences are used to display the overall preferences
for the plug-in, property sheets are used to display the
properties for views, editors or other resources in the Eclipse
environments. By hooking into the Properties API, the
properties for you object will appear in the Properties view
(usually displayed at the bottom of your Eclipse application).

The Properties view will check if the selected object in
the workspace can supports the org.eclipse.ui.views.
properties.IPropertySource interface, either through
implementation or via the getAdapter() method of the object.
Each property gets a descriptor and a value through the
IPropertySource interface.

editoRS

An editor is used in an Eclipse RCP application when you want
to create or modify files, or other resources. Eclipse already
provides some basic text and Java source file editors.

In your plug-in manifest editor, add in the org.eclipse.
ui.editors extension point, and fill in the following details

Attribute Required Use

id Yes The unique id of this editor

name Yes A readable name for this editor

icon No The image to be displayed in the top left hand corner of
the editor when it is open

extensions No A string of comma separated file extensions that are
understood by the editor

class No The class that implements the IEditorPart interface

command No A command to run to launch and external editor

launcher No The name of a class that implements
IEditorLauncher to an external editor

contributorClass No A class that implements
IEditorActionBarContributor and adds new
actions to the workbench menu and toolbar which reflect
the features of the editor type

default No If true this editor will be used as the default for this file
type. The default value is false

filenames No A list of filenames understood by the editor. More
specific than the extensions attribute

matchingStrategy No An implementation of IEditorMatchingStrategy
that allows an editor to determine whether a given editor
input should be opened

Editors implement the org.eclipse.ui.IEditorPart interface,
or subclass org.eclipse.ui.parts.EditorPart.

Like views, to facilitate lazy loading, a workbench page only
holds IEditorReference objects, so that you can list out the
editors without loading the plug-in that contains the editor
definition.

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

5
Getting Started with eclipse Rcp

figure 5: Cheat sheet registration dialog

Clicking finish on this dialog will add the org.eclipse.
ui.cheatsheets.cheatSheetContent extension point to your
manifest. You can modify the details of the cheat sheet from
here if necessary.

feAtuReS

You can help the user to load up your plug-in(s) as a single
part, by combining them into one feature. Eclipse provides a
wizard to create your feature through the New Project> Plug-in
Development >Feature Project wizard.

This wizard generated a feature.xml file which has an editor,
similar to the plug-in manifest editor, where you can change
the details of your feature.

The most important section is the Plug-ins tab, which lists the
plug-ins required for your feature. The Included Features tab
allows you to specify sub-features to include as part of your
feature. On the Dependencies tab, you can get all the plug-
ins or features that you are dependent on by clicking on the
Compute button.

A simple feature.xml may look as follows:

<?xml version=”1.0” encoding=”UTF-8”?>
<feature
 id=”my.feature”
 label=”Feature”
 version=”1.0.0.qualifier”
 provider-name=”James”>

 <description url=”http://www.example.com/description”>
 [Enter Feature Description here.]
 </description>

 <copyright url=”http://www.example.com/copyright”>
 [Enter Copyright Description here.]
 </copyright>

 <license url=”http://www.example.com/license”>
 [Enter License Description here.]
 </license>

 <requires>
 <import plugin=”org.eclipse.ui”/>
 <import plugin=”org.eclipse.core.runtime”/>
 </requires>

 <plugin
 id=”com.dzone.refcard.rcpapp”
 download-size=”0”
 install-size=”0”
 version=”0.0.0”
 unpack=”false”/>

</feature>

The feature also provides a single location where you can
define all the branding for your application. In the Overview
tab, you can assign a Branding Plug-in to the feature.

The branding plug-in needs to contain the following artefacts:

Item Purpose

about.html A HTML file that will be displayed in the Plug-in Details>More Info
dialog

about.ini This file contains most of the branding information for the feature
Described below

about.properties Used for localisation of the strings from the about.ini file. The values
are referenced using the %key notation

about.ini

Property Purpose

aboutText Multiline description containing name, version number and copyright
information. Will appear in the About>Feature Details>About
Features dialog.

featureImage A 32x32 pixel icon representation of the feature to be used across the
relevant About dialogs

bRAnding

help

All good applications should provide some level of user
assistance. To add help content to the standard Help>Help
Contents window, you can use the org.eclipse.help.toc
extension point. Add a number of toc items to this extension
point – the only mandatory attribute for each toc entry is the
file that contains the table of contents definition.

Hot
Tip

To see a quick example of what help content should
look like, choose the Help Content item from the
Extension Wizards tab when adding to the plug-ins
manifest.

<toc label=”Getting Started” link_to=”toc.xml#gettingstarted”>
 <topic label=”Main Topic” href=”html/gettingstarted/
 maintopic.html”>
 <topic label=”Sub Topic” href=”html/gettingstarted/
 subtopic.html” />
 </topic>
 <topic label=”Main Topic 2”>
 <topic label=”Sub Topic 2” href=”html/gettingstarted/
 subtopic2.html” />
 </topic>
</toc>

Each topic entry should have a link to a HTML file with the full
content for that topic. The above XML extract from a table of
contents file illustrates this. There is also the choice to use the
definition editor for help content. This will open by default in
Eclipse when choosing a toc file.

Cheat Sheets
Another user assistance mechanism used in Eclipse is a cheat
sheet, which guides the user through a series of steps to
achieve a task. To create your initial cheat sheet content,
use the New>Other…>User Assistance>Cheat Sheet. This
presents you with an editor to add an Intro and a series of
items, with the option to hook in commands to automate the
execution of the task.

To add this cheat sheet to your plug-in manifest, the cheat
sheet editor has a Register this cheat sheet link on the top right
hand corner. When registering the cheat sheet you will need to
provide it with a category and a description.

http://www.dzone.com
http://www.refcardz.com

Design Patterns

By Jason McDonald

CONTENTS INCLUDE:

n	 Chain of Responsibility

n	 Command

n	 Interpreter

n	 Iterator

n	 Mediator

n	 Observer

n	 Template Method and more...

DZone, Inc. | w
ww.dzone.com

D
es

ig
n

Pa
tt

er
ns

 w

w
w

.d
zo

ne
.c

om

 G
et

 M
o

re
 R

ef
ca

rz
!

V
is

it
 r

ef
ca

rd
z.

co
m

#8

Brought to you by...

Inspired

by the

GoF

Bestseller

This Design Patterns refcard provides a quick reference to the

original 23 Gang of Four (GoF) design patterns, as listed in

the book Design Patterns: Elements of Reusable Object-

Oriented Software. Each pattern includes class diagrams,

explanation, usage information, and a real world example.

Chain of Responsibility
, continued

Object Scope: Deals with object relationships that can

be changed at runtime.

Class S
cope: Deals with class relationships that can be

changed at compile time.

C Abstract Factory

S Adapter

S Bridge

C Builder

B Chain of

Responsibility

B Command

S Composite

S Decorator

S Facade

C Factory Method

S Flyweight

B Interpreter

B Iterator

B Mediator

B Memento

C Prototype

S Proxy

B Observer

C Singleton

B State

B Strategy

B Template Method

B Visito
r

ABOUT DESIGN PATTERNS

Creational Patterns: U
sed to construct objects such

that they can be decoupled from their im
plementing

system.

Structural Patterns: U
sed to form large object

structures between many disparate objects.

Behavioral Patterns: U
sed to manage algorithms,

relationships, and responsibilitie
s between objects.

CHAIN OF RESPONSIBILITY

 O
bject Behavioral

COMMAND

 O

bject Behavioral

successor

Client

<<interface>>

Handler

+handlerequest()

ConcreteHandler 1

+handlerequest()

ConcreteHandler 2

+handlerequest()

Purpose
Gives more than one object an opportunity to handle a request by linking

receiving objects together.

Use

When

n
	Multiple objects may handle a request and the handler doesn’t have to

 be a specific object.

n
	A set of objects should be able to handle a request with the handler

 determined at runtime.

n
	A request not being handled is an acceptable potential outcome.

Example
Exception handling in some languages implements this pattern. When an

exception is thrown in a method the runtime checks to see if th
e method

has a mechanism to handle the exception or if it
 should be passed up the

call stack. When passed up the call stack the process repeats until code to

handle the exception is encountered or until th
ere are no more parent

objects to hand the request to.

Receiver

Invoker

Command

+execute()

Client
ConcreteCommand

+execute()

Purpose
Encapsulates a request allowing it to

 be treated as an object. This allows

the request to be handled in traditionally object based relationships such

as queuing and callbacks.

Use

When

n
	You need callback functionality.

n
	Requests need to be handled at variant tim

es or in variant orders.

n
	A history of requests is needed.

n
	The invoker should be decoupled from the object handling the invocation.

Example
Job queues are widely used to facilitate the asynchronous processing

of algorithms. By utilizing the command pattern the functionality to be

executed can be given to a job queue for processing without any need

for the queue to have knowledge of the actual implementation it is

invoking. The command object that is enqueued implements its particular

algorithm within the confines of the interface the queue is expecting.

upcoming titles
Java Performance Tuning
Eclipse RCP
Java Concurrency
Selenium
ASP.NET MVC Framework
Virtualization
Wicket

most popular
Spring Configuration
jQuery Selectors
Windows Powershell
Dependency Injection with EJB 3
Netbeans IDE JavaEditor
Getting Started with Eclipse
Very First Steps in Flex

“Exactly what busy developers need:
simple, short, and to the point.”

James Ward, Adobe Systems

Download Now

Refcardz.com

Professional Cheat Sheets You Can Trust

DZone, Inc.
1251 NW Maynard
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2009 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher. Reference:

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to

more than 3.3 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheatsheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

6
Getting Started with eclipse Rcp

Recommended bookSAbout the AuthoR

ISBN-13: 978-1-934238-75-2
ISBN-10: 1-934238-75-9

9 781934 238752

50795

Property Purpose

windowImages The image used for this application, in windows and dialogs. This
should be in the order of the 16x16 pixel image, followed by the
32x32

aboutImage Larger image to be placed in the About dialog

aboutText Multiline description containing name, version number and copyright
information. Will appear in the About>Feature Details>About
Features dialog.

You can also provide most of these details in the Branding tab
of the generated .product file.

Splash Screen
The .product file that is generated while creating your product
includes a Splash tab. Here you can specify the plug-in that
contains the splash.bmp file for your Splash screen. Typically,
this should reside in your branding plug-in. The splash screen
can also be customized with templates, and can include a
progress bar with messages.

Hot
Tip

An application can be provided by using the org.
eclipse.core.runtime.applications extension point

All of the icons and files referenced by the about.ini file should
be placed in this plug-in also.

Product Branding
A product is an entire distribution of an RCP application, rather
than a feature intended to be part of an existing distribution.
As such, products have additional branding requirements.
To specify these extra parameters, a contribution to the org.
eclipse.core.runtime.products extension point is required.

The product must be assigned the application to run, the
name of the product (for the title bar) and a description.
Further properties are added as name/value pairs underneath
the product.

James Sugrue is a software architect at
Pilz Ireland, a company using many Eclipse
technologies. James is also editor at both
EclipseZone and JavaLobby. Currently he is
working on TweetHub, a Twitter client based on

RCP and ECF. James has also written a Refcard on EMF and has
another Refcard on the way covering Eclipse Plug-ins.

Building on two
internationally best-
selling previous
editions, Eclipse
Plug-ins, Third Edition,
has been fully revised
to reflect the powerful
new capabilities of
Eclipse 3.4.

buy noW
books.dzone.com/books/eclipse-plug-ins

In Eclipse Rich Client
Platform, two leaders
of the Eclipse RCP
project show exactly
how to leverage Eclipse
for rapid, efficient,
cross-platform desktop
development.

books.dzone.com/books/eclipse-rcp

http://refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.refcardz.com
http://www.books.dzone.com/books/eclipse-plug-ins
http://www.books.dzone.com/books/eclipse-rcp

