

DZone, Inc. | www.dzone.com

By Andrew Lombardi

About Apache Wicket

A
p

ac
h

e
 W

ic
ke

t

w
w

w
.d

zo
n

e.
co

m

G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#63

Getting Started with Apache Wicket

Apache Wicket is a Java-based web application framework that
has rapidly grown to be a favorite among many developers. It
features a POJO data model, no XML, and a proper mark-up /
logic separation not seen in most frameworks. Apache Wicket
gives you a simple framework for creating powerful, reusable
components and offers an object oriented methodology
to web development while requiring only Java and HTML.
This Refcard covers Apache Wicket 1.3 and describes
common configuration, models, the standard components,
implementation of a form, the markup and internationalization
options available.

Hot
Tip

Depending on your configuration needs, you can set
this parameter in the web.xml as either:
 • a context-param or init-param to the filter
 • a command line parameter wicket.configuration
 • by overriding Application.getConfigurationType()

CONTENTS INCLUDE:
n	 About Apache Wicket
n	 Project Layout
n	 Configuring the Web Application
n	 Models
n	 Components
n	 Hot Tips and more...

Project Layout

The project layout most typical of Apache Wicket applications
is based on the default Maven directories. Any Wicket
component that requires view markup in the form of HTML
needs to be side-by-side with the Java file. Using Maven
however, we can separate the source directories into java/ and
resources/ to give some distinction. To get started, download
either the wicket-quickstart project and modify it to your
needs, or use the maven archetype here:

mvn archetype:create \
-DarchetypeGroupId=org.apache.wicket \
-DarchetypeArtifactId=wicket-archetype-quickstart \
-DarchetypeVersion=1.3.5 \
-DgroupId=com.mysticcoders.refcardmaker \
-DartifactId=refcardmaker

Either way, if using Maven, you’ll need the wicket jar, and the
latest slf4j jar.

<dependency>
 <groupId>org.apache.wicket</groupId>
 <artifactId>wicket</artifactId>
 <version>1.3.6</version>
</dependency>
<dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-api</artifactId>
 <version>1.4.2</version>
</dependency>

 <init-param>
 <param-name>applicationClassName</param-name>
 <param-value>com.mysticcoders.refcardmaker.
RefcardApplication</param-value>
 </init-param>
 <init-param>
 <param-name>filterPath</param-name>
 <param-value>/*</param-value>
 </init-param>
 </filter>
 <filter-mapping>
 <filter-name>wicketFilter</filter-name>
 <url-pattern>/*</url-pattern>
 </filter-mapping>
</web-app>

Apache Wicket offers a development and deployment mode
that can be configured in the web.xml file:

<context-param>
 <param-name>configuration</param-name>
 <param-value>development</param-value>
</context-param>

Configuring the web application

I mentioned that Wicket has no XML, and that’s mostly true,
but J2EE requires a web.xml file to do anything. We set
up the WicketFilter and point it to our implementation of
WebApplication along with the URL mapping.

<web-app>
 <filter>
 <filter-name>wicketFilter</filter-name>
 <filter-class>org.apache.wicket.protocol.http.
WicketFilter</filter-class>

Models

Apache Wicket uses models to separate the domain layer from
the view layer in your application and to bind them together.
Components can retrieve data from their model, and convert
and store data in the model upon receiving an event. There
are a variety of implementations of Model, and they all extend
from the interface IModel.

n 	Authoritative content
n 	Designed for developers
n 	Written by top experts
n 	Latest tools & technologies
n	 Hot tips & examples
n 	Bonus content online
n 	New issue every 1-2 weeks

Subscribe Now for FREE!
Refcardz.com

Get More Refcardz
(They’re free!)

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

2
Getting Started with Apache Wicket

IModel
There are only two methods that a class would have to
implement to be a Model, and that is getObject and setObject.
getObject returns the value from the model, and setObject
sets the value of the model. Your particular implementation of
IModel can get data from wherever you’d like; the Component
in the end only requires the ability to get and set the value.
Every component in Wicket has a Model: some use it, some
don’t, but it’s always there.

PropertyModel
A model contains a domain object, and it’s common practice
to follow JavaBean conventions. The PropertyModel allows
you to use a property expression to access a property in your
domain object. For instance if you had a model containing
Person and it had a getter/setter for firstName to access this
property, you would pass the String “firstName” to that Model.

CompoundPropertyModel
An even fancier way of using models is the
CompoundPropertyModel. Since most of the time, the
property identifier you would give Wicket mimics that of the
JavaBean property, this Model takes that implied association
and makes it work for you.

...
setModel(new CompoundPropertyModel(person));
add(new Label(“firstName”));
add(new Label(“lastName”));
add(new Label(“address.address1”));
...

We can see from the example above, that if we set the model
with the person object using a CompoundPropertyModel, the
corresponding components added to this parent Component
will use the component identifiers as the property expression.

IDetachable
In order to keep domain objects around, you’re either going
to need a lot of memory / disk space, or devise a method
to minimize what gets serialized in session. The detachable
design helps you do this with minimal effort. Simply store as
little as needed to reconstruct the domain object, and within
the detach method that your Model overrides, null out the rest.

LoadableDetachableModel
In order to make things easier, LoadableDetachableModel
implements a very common use case for detachable models. It
gives you the ability to override a few constructors and a load
method, and provides automatic reattach and detach within
Wicket’s lifecycle. Let’s look at an example:

public class LoadableRefcardModel extends LoadableDetachableModel
{
 private Long id;
 public LoadableRefcardModel(Refcard refcard) {
 super(refcard);
 id = refcard.getId();
 }
 public LoadableRefcardModel(Long id) {
 super();
 this.id = id;
 }
 protected Object load() {
 if(id == null) return new Refcard();
 RefcardDao dao = ...
 return dao.get(id);
 }
}

Here we have two constructors, each grabbing the identifier
and storing it with the Model. We also override the load
method so that we can either return a newly created Object, or

In Wicket, Components display data and can react to events
from the end user. In terms of the Model-View-Controller
pattern, a Component is the View and the Controller.
The following three distinct items make up every Wicket
Component in some way:

 • Java Class implementation – defines the behavior and
 responsibilities

 • HTML Markup – defines the Components using their
 identifiers within view markup to determine where it shows
 to the end user

 • The Model – provides data to the Component

Now that we have an idea about what makes up a Component,
let’s look at a few of the building blocks that make up the
majority of our Pages. Forms and their Components are so
important they have their own section.

Label
When developing your application, if you’d like to show text
on the frontend chances are pretty good that you’ll be using
the Label Component. A Label contains a Model object which
it will convert to a String for display on the frontend.

[message]

...

add(new Label(“message”, “Hello, World!”));

The first portion is an HTML template, which gives a
component identifier of “message” which must be matched in
the Java code. The Java code passes the component identifier
as the first parameter.

Link
Below is a list of the different types of links, bookmarkable and
non-bookmarkable, and how they are used to navigate from
page-to-page.

Name Description

Link If linking to another Page, it is best to use a Link in most instances:
add(new Link(“myLink”) {
 public void onClick() {
 setResponsePage(MyNewPage.class);
 }
}

BookmarkablePageLink A Bookmarkable page gives you a human readable URL that
can be linked to directly from outside of the application. The
default look of this URL can be overridden as we’ll see in the
next section.
add(new BookmarkablePageLink(“myLink”,
MyNewPage.class);

ExternalLink If linking to an external website that is not within your
application, here’s the Link component you’ll need and an
example:
add(new ExternalLink(“myLink”, http://www.
mysticcoders.com, “Mystic”);

Repeaters
Due to the lack of any executable code inside of Wicket’s
HTML templates, the method of showing lists may seem a

Components

use an access object to return the Object associated with the
Model’s stored identifier. LoadableDetachableModel handles
the process of attaching and detaching the Object properly
giving us as little overhead as possible.

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

3
Getting Started with Apache Wicket

little counterintuitive at first. One of the simplest methods for
showing a list of data is the RepeatingView. Here’s an example
of how to use it:

 <li wicket:id=”list”>

...

RepeatingView list = new RepeatingView(“list”);
add(list);
for(int i = 1; i <= 10; i++) {
 list.add(new Label(list.newChildId(), “Item “ + i));
}

This will simply print out a list from 1 to 10 into HTML.
RepeatingView provides a method .newChildId() which should
be used to ensure the Component identifier is unique. As your
needs get more complex, this method quickly turns stale as
there is a lot of setup that has to be done. Using a ListView is
a great approach for managing possibly complex markup and
business logic, and is more akin to other ways we’re asked to
interact with Apache Wicket:

 <li wicket:id=”list”>[descripti
on]

...
ListView list = new ListView(“list”, Arrays.asList(“1”, “2”, “3”,
“4”, “5”, “6”, “7”, “8”, “9”, “10”) {
 @Override
 protected void populateItem(ListItem item) {
 String text = (String)item.getModelObject();
 item.add(new Label(“description”, text));
 }
};
add(list);

This method, while it looks more complex, allows us a lot more
flexibility in building our lists to show to the user. The two list
approaches described above each suffer from some drawbacks,
one of which is that the entirety of the list must be held in
memory. This doesn’t work well for large data sets, so if you
need finer grain control on how much data is kept in memory,
paging, etc., DataTable or DataView is something to look into.

Custom
The beauty of Wicket is that reuse is as simple as putting
together a Panel of Components and adding it to any number
of pages – this could be a login module, a cart, or whatever
you think needs to be reused. For more great examples of
reusable components check out the wicket-extensions
(http://cwiki.apache.org/Wicket/wicket-extensions.html) and
wicket-stuff (http:..wicketstuff.org) projects.

Hot
Tip

Since Wicket always needs a tag to bind to, even
for a label, a tag is sometimes easier to
place into your markup; however, this can throw
your CSS design off. .setRenderBodyOnly(true) can
be used so the span never shows on the frontend
but be careful using this with any AJAX enabled
components, since it requires the tag to stick
around.

Page and navigation

A Wicket Page is a component that allows you to group
components together that make up your view. All Components
will be related in a tree hierarchy to your page, and if the
page is bookmarkable you can navigate directly to it. To

create a new page, simply extend WebPage and start adding
components.

Most webapps will share common areas that you don’t want
to duplicate on every page -- this is where markup inheritance
comes into play. Because every page is just a component, you
can extend from a base page and inherit things like header,
navigation, footer, whatever fits your requirements. Here’s an
example:

public class BasePage extends WebPage {
 ... header, footer, navigation, etc ...
}
public class HomePage extends BasePage {
... everything else, the content of your pages...
}

Everything is done similarly to how you would do it in Java,
without the need for messy configuration files. If we need to
offer up pages that can be referenced and copied, we’re going
to need to utilize bookmarkable pages. The default Wicket
implementation of a BookmarkablePage is not exactly easy to
memorize, so in your custom Application class you can define
several mount points for your pages:

// when a user goes to /about they will get directly to this page
mountBookmarkablePage(“/about”, AboutPage.class);

// this mount makes page available at /blog/param0/param1/param2
and fills PageParameters with 0-indexed numbers as the key
mount(new IndexedParamUrlCodingStrategy(“/blog”, BlogPage.class);

// this mount makes page available at /blog?paramKey=paramValue&pa
ramKey2=paramValue2
mount(new QueryStringUrlCodingStrategy(“/blog”, BlogPage.class);

In your code, you’ll need several ways of navigating to pages,
including within Link implementations, in Form onSubmits, and
for an innumerable number of reasons. Here are a few of the
more useful:

// Redirect to MyPage.class
setResponsePage(MyPage.class);

// Useful to immediately interrupt request processing to perform a
redirect
throw new RestartResponseException(MyPage.class);

// Redirect to an interim page such as a login page, keep the URL
in memory so page can call continueToOriginalDestination()
redirectToInterceptPage(LoginPage.class);

// Useful to immediately interrupt request processing to perform a
redirectToInterceptPage call
throw new RestartResponseAtInterceptPageException(MyPage.class);

Markup

Apache Wicket does require adding some attributes and tags
to otherwise pristine X/HTML pages to achieve binding with
Component code. The following table illustrates the attributes
available to use in your X/HTML templates, the most important
and often used being wicket:id.

Attribute Name Description

wicket:id Used on any X/HTML element you want to bind a
compoent to

wicket:message Used on any tag we want to fill an attribute with a
resource bundle value. To use, prefix with te [attribute
name]:[resource name]

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

4
Getting Started with Apache Wicket

The following table lists out all of the most commonly used
tags in X/HTML templates with Wicket.

Tag Name Description

wicket:panel This tag is used in your template to define the area associatedf with
the component. Anything outside of this tag’s hierarchy will be
ignored. It is sometimes useful to wrap each of your templates with
html and body tags like so:
<html xmlns:wicket=”http://wicket.apache.org”>
<body>
<wicket:panel> ... </wicket:panel>
</body>
</html>
In this example, you can avoid errors showing in your IDE, and it
won’t affect the resulting HTML.

wicket:child Used in conjunction with markup inheritance. The subclassing Page
will replace the tag with the output of its component

wicket:extend Defining a page that inherits from a parent Page requires a mirroring
of the relationship in your X/HTML template. As with wicket:panel,
everything outside of the tag’s hierarchy will be ignored, and the
component’s result will end up in the wrapping template

wicket:link Using this tag enables autolinking to another page without having
to add BookmarkablePageLink’s to the component hierarchy as this
is done automatically for you. To link to the homepage from one of
its subpages:
<wicket:link>Homepage</
a></wicket:link>

wicket:head Adding this to the root-level hierarchy of the template will give you
access to inject code into the X/HTML <head></head> section.

wicket:message This tag will look for the given key in the resource bundle component
hierarchy and replace the tag with the String retrieved from that
bundle property. To pull the resource property page.label:
<wicket:message key=”page.label”>[page label]</
wicket:message>

wicket:remove The entire contents of this tag will be removed upon running this
code in the container. Its use is to ensure that the template can show
design intentions such as repeated content without interfering with
the resulting markup.

wicket:fragment A fragment is an inline Panel. Using a Panel requires a separate
markup file, and with a fragment this block can be contained within
the parent component.

wicket:enclosure A convenience tag added in 1.3 that defines a block of code
surrounding your component which derives its entire visibility from
the enclosing component. This is useful in situations when showing
multiple fields some of which may be empty or null where you don’t
want to add WebMarkupContainers to every field just to mimic this
behavior. For example if we were printing out phone and fax:
<wicket:enclosure>
<tr><td class=”label”>Fax:</td><td><span
wicket:id=”fax”>[fax number]</td></tr>
</wicket:enclosure>
...
add(new Label(“fax”) { public boolean isVisible()
{ return getModelObjectAsString()!=null; } });

wicket:container This tag is useful when you don’t want to render any tags into the
markup because it may cause invalid markup. Consider the following:
<table>
 <wicket:container wicket:id=”repeater”>
 <tr><td>1</td></tr>
 <tr><td>2</td></tr>
 </wicket:container>
</table>
In this instance, if we were to add any code in between the table and
tr tags, it would be invalid. Wicket:container fixes that.

Form

A Form in Wicket is a component that takes user input and
processes it upon submission. This component is a logical
holder of one or more input fields that get processed together.

The Form component, like all others, must be bound to an
HTML equivalent, in this case the <form> tag.

<form wicket:id=”form”>
 Name: <input type=”text” wicket:id=”name” />
 <input type=”submit” value=”Send” />
</form>
...
Form form = new Form(“form”) {
 @Override
 protected void onSubmit() {

Form input controls can each have their own Models attached
to them, or can inherit from their parent, the Form. This is
usually a good place to use CompoundPropertyModel as it
gets rid of a lot of duplicate code. As you can see, each input
component should be added to the Form element.

Wicket uses a POST to submit your form, which can be
changed by overriding the Form’s getMethod and returning
Form.METHOD_GET. Wicket also uses a redirect to buffer
implementation details of form posts which gets around the
form repost popup. The following behavior settings can be
changed:

Name Setting Description

No redirect IRequestCycleSettings.
ONE_PASS_RENDER

Renders the response directly

Redirect to buffer IRequestCycleSettings.
REDIRECT_BUFFER

Renders the response directly to
a buffer, redirects the browser and
prevents reposting the form

Redirect to render IRequestCycleSettings.
REDIRECT_TO_RENDER

Redirects the browser directly;
renders in a separate request

Components of a Form
The following table lists all the different form components
available, and how to use them with Models.

Name Example

TextField <input type=”text” wicket:id=”firstName” />

...

add(new TextField(“firstName”, new
PropertyModel(person, “firstName”));

TextArea <textarea wicket:id=”comment”></textarea>

...

add(new TextArea(“comment”, new
PropertyModel(feedback, “comment”));

Button <form wicket:id=”form”>
 <input type=”submit” value=”Submit”
wicket:id=”submit” />
</form>

...

Form form = new Form(“form”) {
 @Override
 protected void onSubmit() {
 System.out.println(“onSubmit called”);
 }
};
add(form);
form.add(new Button(“submit”));

CheckBoxMultipleChoice
 <input type=”checkbox” /> Windows

 <input type=”checkbox” /> OS/2 Warp

...

add(new CheckBoxMultipleChoice(“operat
ingSystems”, new PropertyModel(system,
“operatingSystems”), Arrays.asList(“Windows”,
“OS X”, “Linux”, “Solaris”, “HP/UX”,
“DOS”)));

DropDownChoice <select wicket:id=”states”>
 <option>[state]</option>
</select>

...

add(new DropDownChoice(“states”, new
PropertyModel(address, “state”),
listOfStates));

 System.out.println(“form submit”);
 }
};
add(form);
form.add(new TextField(“name”, new Model(“”));

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

5
Getting Started with Apache Wicket

PasswordTextField <input type=”password” wicket:id=”password”
/>

...

add(new PasswordTextField(“password”, new
PropertyModel(user, “password”));

RadioChoice
 <input type=”radio” /> Male

 <input type=”radio” /> Female</br />

...

add(new RadioChoice(“sex”, new
PropertyModel(person, “gender”), Arrays.
asList(“Male”, “Female”));

SubmitLink <form wicket:id=”form”>
 <a href=”#”
wicket:id=”submitLink”>Submit
</form>

...

form.add(new SubmitLink(“submitLink”) {
 @Override
 public void onSubmit() {
 System.out.println(“submitLink
called”);
 }
});

Validation
When dealing with user input, we need to validate it against
what we’re expecting, and guide the user in the right direction
if they stray. Any user input is processed through this flow:

 • Check that the required input is supplied
 • Convert input values from String to the expected type
 • Validate input using registered validators
 • Push converted and validated input to models
 • Call onSubmit or onError depending on the result

Wicket provides the following set of validators:

Resource Key Example

Required textField.setRequired(true)	

RangeValidator.range numField.add(RangeValidator.
range(0,10))

MinimumValidator.minimum numField.add(MinimumValidator.
minimum(0))

MaximumValidator.maximum numField.add(MaximumValidator.
maximum(0))

StringValidator.exact textField.add(StringValidator.
exact(8))

StringValidator.range textField.add(StringValidator.range(6,
18))

StringValidator.maximum textField.add(StringValidator.
maximum(8))

StringValidator.minimum textField.add(StringValidator.
minimum(2))

DateValidator.range dateField.add(DateValidator.
range(startDate, endDate))

DateValidator.minimum dateField.add(DateValidator.
minimum(minDate))

DateValidator.maximum dateField.add(DateValidator.
maximum(maxDate))

CreditCardValidator ccField.add(new CreditCardValidator())

PatternValidator textFIeld.add(new PatternValidator(“\
d+”)

EmailAddressValidator emailField.add(EmailAddressValidator.
getInstance())

UrlValidator urlField.add(new UrlValidator())

EqualInputValidator add(new EqualInputValidator(formComp1,
formComp2))

EqualPasswordInputValidator Add(new EqualPasswordInputValidator(pa
ssFld1, passFld2))

More than one validator can be added to a component if
needed. For instance, if you have a password that needs to be
within the range of 6 – 20 characters, must be alphanumeric
and is required, simply chain the needed validators above to
your component. If the validators listed above don’t fit your
needs, Wicket lets you create your own and apply them to your
components.

public class PostalCodeValidator extends AbstractValidator {
 public PostalCodeValidator() {
 }

 @Override
 protected void onValidate(IValidatable validatable) {
 String value = (String)validatable.getValue();
 if(!postalCodeService.isValid(value)) {
 error(validatable);
 }
 }
 @Override
 protected String resourceKey() {
 return “PostalCodeValidator”;
 }
 @Override
 protected Map variablesMap(IValidatable validatable) {
 Map map = super.variablesMap(validatable);
 map.put(“postalCode”, n);
 return map;
 }
}

When Wicket has completed processing all input it will either
pass control to the Form’s onSubmit, or the Form’s onError..
If you don’t choose to override onError, you’ll need a way to
customize the error messages that show up.

Feedback Messages
Apache Wicket offers a facility to send back messages for
failed validations or flash messages to provide notification
of status after submitting a form or performing some action.
Wicket’s validators come with a default set of feedback
messages in a variety of languages, which you can override in
your own properties files. Here’s the order Wicket uses to grab
messages out of resource bundles:

Location Order Description Example

Page class 1 Messages Specific to a
page

Index.properties
Index_es.properties

Component class 2 Messages specific to a
component

AddressPanel_
es.properties
CheckOutForm.properties

Custom
Application class

3 Default application-wide
message bundle

RefcardApplication_es_
MX.properties
RefcardApplication_
es.properties
RefcardApplication.
properties

During a Form submission, if you’d like to pass back messages
to the end user, Wicket has a message queue that you can
access with any component:

info(“Info message”);
warn(“Warn message”);
error(“Error message”);

With that added to the queue, the most basic method
of showing these to users is to use the FeedbackPanel
component which you can add to your Page as follows:

http://www.dzone.com
http://www.refcardz.com

Design Patterns

By Jason McDonald

CONTENTS INCLUDE:

n	 Chain of Responsibility

n	 Command

n	 Interpreter

n	 Iterator

n	 Mediator

n	 Observer

n	 Template Method and more...

DZone, Inc. | w
ww.dzone.com

D
es

ig
n

Pa
tt

er
ns

 w

w
w

.d
zo

ne
.c

om

 G
et

 M
o

re
 R

ef
ca

rz
!

V
is

it
 r

ef
ca

rd
z.

co
m

#8

Brought to you by...

Inspired

by the

GoF

Bestseller

This Design Patterns refcard provides a quick reference to the

original 23 Gang of Four (GoF) design patterns, as listed in

the book Design Patterns: Elements of Reusable Object-

Oriented Software. Each pattern includes class diagrams,

explanation, usage information, and a real world example.

Chain of Responsibility
, continued

Object Scope: Deals with object relationships that can

be changed at runtime.

Class S
cope: Deals with class relationships that can be

changed at compile time.

C Abstract Factory

S Adapter

S Bridge

C Builder

B Chain of

Responsibility

B Command

S Composite

S Decorator

S Facade

C Factory Method

S Flyweight

B Interpreter

B Iterator

B Mediator

B Memento

C Prototype

S Proxy

B Observer

C Singleton

B State

B Strategy

B Template Method

B Visito
r

ABOUT DESIGN PATTERNS

Creational Patterns: U
sed to construct objects such

that they can be decoupled from their im
plementing

system.

Structural Patterns: U
sed to form large object

structures between many disparate objects.

Behavioral Patterns: U
sed to manage algorithms,

relationships, and responsibilitie
s between objects.

CHAIN OF RESPONSIBILITY

 O
bject Behavioral

COMMAND

 O

bject Behavioral

successor

Client

<<interface>>

Handler

+handlerequest()

ConcreteHandler 1

+handlerequest()

ConcreteHandler 2

+handlerequest()

Purpose
Gives more than one object an opportunity to handle a request by linking

receiving objects together.

Use

When

n
	Multiple objects may handle a request and the handler doesn’t have to

 be a specific object.

n
	A set of objects should be able to handle a request with the handler

 determined at runtime.

n
	A request not being handled is an acceptable potential outcome.

Example
Exception handling in some languages implements this pattern. When an

exception is thrown in a method the runtime checks to see if th
e method

has a mechanism to handle the exception or if it
 should be passed up the

call stack. When passed up the call stack the process repeats until code to

handle the exception is encountered or until th
ere are no more parent

objects to hand the request to.

Receiver

Invoker

Command

+execute()

Client
ConcreteCommand

+execute()

Purpose
Encapsulates a request allowing it to

 be treated as an object. This allows

the request to be handled in traditionally object based relationships such

as queuing and callbacks.

Use

When

n
	You need callback functionality.

n
	Requests need to be handled at variant tim

es or in variant orders.

n
	A history of requests is needed.

n
	The invoker should be decoupled from the object handling the invocation.

Example
Job queues are widely used to facilitate the asynchronous processing

of algorithms. By utilizing the command pattern the functionality to be

executed can be given to a job queue for processing without any need

for the queue to have knowledge of the actual implementation it is

invoking. The command object that is enqueued implements its particular

algorithm within the confines of the interface the queue is expecting.

Upcoming Titles
ServiceMix 4.0
ASP.NET MVC Framework
Selenium
Java Performance Tuning
Oracle Berkeley DB
Eclipse Plug-in Development
Virtualization

Most Popular
Spring Configuration
jQuery Selectors
Windows Powershell
Dependency Injection with EJB 3
Netbeans IDE JavaEditor
Getting Started with Eclipse
Very First Steps in Flex

“Exactly what busy developers need:
simple, short, and to the point.”

James Ward, Adobe Systems

Download Now

Refcardz.com

Professional Cheat Sheets You Can Trust

DZone, Inc.
1251 NW Maynard
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2009 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher. Reference:

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to

more than 3.3 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheatsheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

6
Getting Started with Apache Wicket

RECOMMENDED BookABOUT the Author

Internationalization

Earlier sections touched on the order of resource bundles
importance from the Page down to Wicket’s default
application. Apache Wicket uses the same resource
bundles standard in the Java platform, including the naming
convention, properties file or XML file.

Using ResourceBundles, you can pull out messages in your
markup using <wicket:message>, or use a ResourceModel with

the component to pull out the localized text.

Another available option is to directly localize the filename of
the markup files, i.e. HomePage_es_MX.html, HomePage.html.
Your default locale will be used for HomePage.html, and if you
were from Mexico, Wicket would dutifully grab HomePage_es_
MX.html.

Hot
Tip

Wicket’s Label component overrides the
getModelObjectAsString of Component to offer you
Localaware String’s output to the client, so you don’t
have to create your own custom converter.

<div wicket:id=”feedback”></div>

…

add(new FeedbackPanel(“feedback”));

When you’d like to get them back out again, it will give you an
Iterator to cycle through on the subsequent page:

getSession().getFeedbackMessages().iterator();

Resources

Wicket 1.3 Homepage http://wicket.apache.org/

Component Reference http://wicketstuff.org/wicket13/compref/

Wicket Wiki http://cwiki.apache.org/WICKET/

Wicket by Example http://wicketbyexample.com/

Andrew Lombardi is one of a new breed of business-
men: the enlightened entrepreneur. He has been writing
code since he was a 5-year old, sitting at his dad’s knee at
their Apple II computer. Having such a deep affinity for the
computer model, it is no surprise that at the age of 17 he
began to delve deeply into the inner workings of the human
mind. He became a student of Neuro Linguistic Program-
ming and other mind technologies, and then went on to
study metaphysics. He is certified as an NLP Trainer, Master

Hypnotherapist and Time Line Therapy practitioner.

Using all of his accumulated skills, at the age of 24, Andrew began his consulting
business, Mystic Coders, LLC. Since the inception of Mystic in 2000, Andrew has
been building the business and studying finance and economics as he stays on
the cutting edge of computer technology.

Wicket in Action is an authoritative, comprehensive
guide for Java developers building Wicket-
based Web applications. This book starts with an
introduction to Wicket’s structure and components,
and moves quickly into examples of Wicket at work.
Written by two of the project’s earliest and most
authoritative experts, this book shows you both the
“how-to” and the “why” of Wicket. As you move
through the book, you’ll learn to use and customize
Wicket components, how to interact with other

technologies like Spring and Hibernate, and how to build rich, Ajax-driven
features into your applications.

BUY NOW
books.dzone.com/books/wicket-action

ISBN-13: 978-1-934238-66-0
ISBN-10: 1-934238-66-X

9 781934 238660

50795

http://refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.refcardz.com
http://books.dzone.com/books/wicket-action
http://www.mysticcoders.com

