
fusesource.com

FuseSource

Created by James Strachan, co-founder of Apache ServiceMix & Camel

IDE for implementing enterprise integration patterns easily in ServiceMix using Camel

Experts in professional open source integration & messaging

Experts in open source integration

Download New Integration Tooling Today

Go to fusesource.com and try it out today

http://fusesource.com/ide


 

 

DZone, Inc.  |   www.dzone.com

G
e

t 
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#65
S

e
rv

ic
e

M
ix

 4
.2

: 
T

h
e

 A
p

ac
h

e
 O

p
e

n
 S

o
u

rc
e

 E
S

B

CONTENTS INCLUDE:
n	 About ServiceMix 4.2
n	 ServiceMix 4.2 Architecture
n	 Configuration of ServiceMix 4.2
n	 Routing in ServiceMix 4.2
n	 ServiceMix and Web Services
n	 Deployment Options and more... By Jos Dirksen

ServiceMix 4.2
The Apache Open Source ESB

OSGi Runtime
ServiceMix runs on an OSGi-based kernel, but what is OSGi? 
In short, an OSGi container provides a service based in-VM 
platform on which you can deploy services and components 
dynamically. OSGi provides strict class loading separation 
and forces you to think about the dependencies your 
components have. Besides that, OSGi also defines a simple 
lifecycle model for your services and components. This results 
in an environment where you can easily add and remove 
components and services at runtime and allows the creation 
of modular applications. An added advantage of using an OSGi 
container is that you can use many components out of the 
box: remote administration, a Web container, configuration 
and preferences services, etc.

ABOUT SERVICEMIX 4.2

In the open-source community, there are many different solutions 
for each problem. When you look for an open-source ESB, 
however, you don’t have that many options. Even though there 
are many open-source ESB projects, not all of them are mature 
enough to be used to solve enterprise mission-critical
integration problems. ServiceMix is one of the open-source 
projects that is mature enough to be used in these scenarios. 
ServiceMix, an Apache project, has been around for more than 
five years now. It provides all the features you expect from an 
ESB such as routing, transformation, etc. The previous version
was built based on JBI (JSR-208), but in its latest iteration, which 
we’re discussing in this Refcard, ServiceMix has moved to an 
OSGi-based architecture, which we’ll discuss later on.

This DZone Refcard will provide an overview of the core elements 
of ServiceMix 4.2 and will show you how to use ServiceMix 4.2 by 
providing example configurations.

SERVICEMIX 4.2 ARCHITECTURE

Before we show how to configure ServiceMix 4.2 for use, let us 
first look at the architecture of ServiceMix 4.2.

Web: ServiceMix 4.2 also provides a Web component. You can 
use this to start ServiceMix 4.2 embedded in a Web application. 
An example of this is provided in the ServiceMix distribution.

JBI Support: The previous version of ServiceMix was based on 
JBI 1.0. For JBI, a lot of components (from ServiceMix, but also 
from other parties) are available. ServiceMix 4.2 has full support 
for JBI, this way you can still use all the components provided by 
the 3.x version of ServiceMix. For the best results, you should use 
the 2010.01 version of these components.

Camel NMR: ServiceMix 4.2 provides a couple of different 
ways you can configure routing. You can use the endpoints 
provided by the ServiceMix NMR, but you can also use more 
advanced routing engines. One of those is the Camel NMR. This 
component allows you to run Camel based routes on ServiceMix.

CXF NMR: Besides an NMR based on Camel, ServiceMix also 
provides an NMR based on CXF. You can use this NMR to expose 
and route to Java POJOs annotated with JAX-WS annotations.

This figure shows the following components:

ServiceMix Kernel: In this figure, you can see that the basis of
ServiceMix 4.2 is the ServiceMix Kernel. This kernel, which is 
based on the Apache Karaf project (an OSGi based runtime), 
handles the core features ServiceMix provides, such as hot-
deployment, provisioning of libraries or applications, remote 
access using ssh, JMX management, and more.

ServiceMix NMR: This component, a normalized message router, 
handles all the routing of messages within ServiceMix and is used 
by all the other components.

ActiveMQ: ActiveMQ, another Apache project, is the message 
broker that is used to exchange messages between components. 
Besides this, ActiveMQ can also be used to create a fully 
distributed ESB.

Updated for
ServiceMix 4.2

brought to you by...

FuseSource Free downloads-fusesource.com

Come to FuseSource for
•	 IDE, Training & Consulting
•	 Getting started resources
•	 Enterprise subscriptions

Are you ready to get started 
with ServiceMix?

http://www.refcardz.com
http://www.dzone.com
http://www.refcardz.com
http://fusesource.com/ide


3 ServiceMix 4.2: The Apache Open Source ESB

DZone, Inc.  |   www.dzone.com

Before we move on to the next part, let’s have a quick look at 
how a message is processed by ServiceMix. The following figure 
shows how a message is routed by the NMR. In this case, we’re 
showing a reply/response (in-out) message pattern.

In this figure, you can see a number of steps being executed:

     1. �The consumer creates a message exchange for a specific 
service and sends a request.

     2. �The NMR determines the provider this exchange needs  
to be sent to and queues the message for delivery.  
The provider accepts this message and executes its  
business logic.

     3. �After the provider has finished processing, the response 
message is returned to the NMR.

     4. �The NMR once again queues the message for delivery, this 
time to the consumer. The consumer accepts the message.

     5. �After the response is accepted, the consumer sends a 
confirmation to the NMR.

     6. �The NMR routes this confirmation to the provider, who 
accepts it and ends this message exchange.

Now that we’ve seen the architecture and how a message is 
handled by the NMR, we’ll have a look at how to configure 
ServiceMix 4.2.

CONFIGURATION OF SERVICEMIX 4.2

ServiceMix 4.2 configuration is mostly done through Spring XML 
files supported by XML schemas for easy code completion. Let’s 
look at two simple examples. The first one uses the File Binding 
component to poll a directory and the second one exposes a 
Web service using ServiceMix’s CXF support.

<beans xmlns:file=”http://servicemix.Apache.org/file/1.0”
              xmlns:dzone=”http://servicemix.org/dzone/”>
  <file:poller service=”foo:filePoller”
              endpoint=”filePoller”
              targetService=”foo:fileSender”
              file=”inbox” />
</beans>

In this listing, you can see that we define a poller. A poller is  
one of the standard components that is provided by ServiceMix’s 
file-binding-component. If we deploy this configuration to 
ServiceMix, ServiceMix will start polling the inbox directory 
for files. If it finds one, the file will be sent to the specified 
targetService.

In the following listing, we’ve again used a simple XML file. This 
time we’ve configured a Web service.

<beans xmlns=”http://www.springframework.org/schema/beans”
       xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
       xmlns:jaxws=”http://cxf.Apache.org/jaxws”
       xsi:schemaLocation=”
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://cxf.Apache.org/jaxws http://cxf.Apache.org/schemas/jaxws.
xsd”>
    <import resource=”classpath:META-INF/cxf/cxf.xml” /> 1
    <import resource=”classpath:META-INF/cxf/cxf-extension-soap.
     xml” />
    <import resource=”classpath:META-INF/cxf/cxf-extension-http.
     xml” />
    <import resource=”classpath:META-INF/cxf/osgi/cxf-extension-
     osgi.xml” />
       <jaxws:endpoint id=”helloWorld”
                       implementor=”dzone.refcards.HelloWorld”
                       address=”/HelloWorld”/>
</beans>

In this listing, we use a jaxws:endpoint to define a Web service. 
The implementor points to a simple POJO annotated with 
JAX-WS annotations. If this example is deployed to ServiceMix, 
ServiceMix will register a Web service based on the value in the 
address attribute.

This is just one way to expose Web services using ServiceMix 4.2. 
You could also use the servicemix-cxf-bc component for this.

DEPLOYMENT OF SERVICEMIX 4.2 COMPONENTS

ServiceMix provides a number of different options that you can 
use to deploy artifacts. In this section, we’ll look at these options 
and show you how to use these.

ServiceMix 4.2, Deployment Options

Name Description

OSGi Bundles ServiceMix 4.2 is built around OSGi and ServiceMix 4.2 also allows you to
deploy your configurations as an OSGi bundle with all the advantages
OSGi provides.

Spring XML files ServiceMix 4.2 support plain Spring XML files.

JBI artifacts You can also deploy artifacts following the JBI standard (service
assemblies and service units) to ServiceMix 4.2.

Feature 
descriptors

This is a Karaf specific way for installing applications. It will install the
necessary OSGi bundles and will add configuration defaults. This is mostly
used to install core parts of the ServiceMix distribution.

OSGi Bundle Deployment
The easiest way to create an OSGi-based ServiceMix bundle is 
by using Maven 2 or 3. To create a bundle, you need to take a 
couple of simple steps. The first one is adding the maven-bundle-
plugin to your pom.xml file. This is shown in the
following code fragment.

Service Addressing
An important concept to understand when working with 
ServiceMix is that of services and endpoints. When you 
configure services on a component, you need to tell 
ServiceMix how to route messages to and from that service. 
This name is called a service endpoint. If you look back at the 
previous example, we created a file:poller. On this file:poller 
we defined a service and an endpoint attribute. These two 
attributes together uniquely identify this file:poller. Note 
though that you can have multiple endpoints defined on the 
same service. You can also see a targetService attribute 
on the file:poller. Besides this attribute, there is also a 
targetEndpoint attribute. With these two attributes, you 
identify the service endpoint to sent the message to. The 
targetEndpoint isn’t always needed, if only one endpoint is 
registered on that service.

http://www.refcardz.com
http://www.dzone.com


4 ServiceMix 4.2: The Apache Open Source ESB

DZone, Inc.  |   www.dzone.com

...
<dependencies>
  <dependency>
    <groupId>org.Apache.felix</groupId>
    <artifactId>org.osgi.core</name>
    <version>1.0.0</version>
  </dependency>
  ...
</dependencies>
...
<build>
  <plugins>
    <plugin>
      <groupId>org.Apache.felix</groupId>
      <artifactId>maven-bundle-plugin</artifactId>
      <configuration>
        <instructions>
          <Bundle-SymbolicName>${pom.artifactId}</Bundle 
           SymbolicName>
          <Import-Package>*,org.Apache.camel.osgi</Import-Package>
          <Private-Package>org.Apache.servicemix.examples.camel</
           Private-Package>
        </instructions>
      </configuration>
    </plugin>
  </plugins>
</build>
...

The important part here is the instructions section. This 
determines how the plugin packages your project. For more 
information on these settings, see the maven OSGi bundle plugin 
page at http://cwiki.Apache.org/FELIX/Apache-felixmaven-
bundle-plugin-bnd.html. 

The next step is to make sure your project is bundled as a OSGi 
bundle. You do this by setting the <packaging> element in your 
pom.xml to bundle.

Now you can use mvn install to create an OSGi bundle, which 
you can copy to the deploy directory of ServiceMix and your 
bundle will be installed. If you use Spring to configure your 
application, make sure the Spring configuration files are located 
in the META-INF/spring directory. That way, the Spring application 
context will be automatically created based on these files.

If you don’t want to do this by hand, you can also use a Maven 
archetype. ServiceMix provides a set of archetypes you can use. 
A good starting point for a project is the Camel OSGi archetype 
that you can use by executing the following Maven command:

mvn archetype:create -DarchetypeGroupId=org.Apache.servicemix.tooling 
-DarchetypeArtifactId=servicemix-osgi-camel-archetype
-DarchetypeVersion=2010.01.0-fuse-01-00
-DgroupId=com.yourcompany -DartifactId=camel-router
-DremoteRepositories=http://repo.fusesource.com/maven2/

There are many other archetypes available. For an overview of the 
available archetypes, see:
http://repo.fusesource.com/maven2/org/apache/servicemix/tooling/

Spring XML Files Deployment
It’s also possible to deploy Spring files without OSGi. Just drop a 
Spring file into the deploy directory. There are two points to take 
into account. First, you need to add the following to your Spring 
configuration file:

<bean class=”org.Apache.servicemix.common.osgi.EndpointExporter” />

This will register the endpoints you’ve configured in your Spring 
file. The next element is optional but is good practice to add:

<manifest>
   Bundle-Version = 1.0.0
   Bundle-Name = Dzone :: Dzone test application
   Bundle-SymbolicName = dzone.refcards.test
   Bundle-Description = An example for servicemix refcard
   Bundle-Vendor = jos.dirksen@gmail.com
   Require-Bundle = servicemix-file, servicemix-eip
</manifest>

Using a manifest configuration element allows you to specify how 
your application is registered in ServiceMix.

JBI Artifacts Deployment
If you’ve already invested in JBI-based applications, you can 
still use ServiceMix 4.2 to run them in. Just deploy your Service 
Assembly (SA) in the ServiceMix deploy directory and ServiceMix 
will deploy your application.

Feature Descriptor-Based Deployment
If you’ve got an application that contains many bundles and 
that requires additional configuration you can use a feature 
to easily manage this. A feature contains a set of bundles and 
configuration which can be easily installed from the ServiceMix 
console. The following listing shows the feature descriptor of the 
nmr component.

<feature name=”nmr” version=”1.2.0”>
  <feature>document</feature>
  <!-- those two bundles are currently required for servicemix-
utils to resolve -->
  <bundle>mvn:org.apache.servicemix.specs/org.apache.servicemix.
specs.activation-api-1.1/1.4.0</bundle>
  <bundle>mvn:org.apache.servicemix.specs/org.apache.servicemix.
specs.jbi-api-1.0/1.4.0</bundle>
  <bundle>mvn:org.apache.servicemix.specs/org.apache.servicemix.
specs.stax-api-1.0/1.4.0</bundle>
  <bundle>mvn:org.apache.servicemix/servicemix-utils/1.2.1</
bundle>
  <bundle>mvn:org.apache.servicemix.document/org.apache.
servicemix.document/1.2.0</bundle>
  <bundle>mvn:org.fusesource.commonman/commons-management/1.0</
bundle>
  <bundle>mvn:org.apache.servicemix.nmr/org.apache.servicemix.nmr.
api/1.2.0</bundle>
  <bundle>mvn:org.apache.servicemix.nmr/org.apache.servicemix.nmr.
core/1.2.0</bundle>
  <bundle>mvn:org.apache.servicemix.nmr/org.apache.servicemix.nmr.
osgi/1.2.0</bundle>
  <bundle>mvn:org.apache.servicemix.nmr/org.apache.servicemix.nmr.
spring/1.2.0</bundle>
  <bundle>mvn:org.apache.servicemix.nmr/org.apache.servicemix.nmr.
commands/1.2.0</bundle>
  <bundle>mvn:org.apache.servicemix.nmr/org.apache.servicemix.nmr.
management/1.2.0</bundle>
</feature>

If you want to install this feature you can just type 
features;install nmr from the ServiceMix console.

If you don’t see a command line when you started ServiceMix use 
ssh to connect to your local instance. You can do this by using the 
following command: ssh -l smx -p 8101 localhost and when asked 
for a password use ‘smx’.

ROUTING IN SERVICEMIX 4.2

For routing in ServiceMix, you’ve got two options:

     • EIP: ServiceMix provides a JBI component that 
        implements a number of Enterprise Integration Patterns.
     • Camel: You can use Camel routes in ServiceMix. Camel 
        provides the most flexible and exhaustive routing options 
        for ServiceMix

EIP Component Routing
This routing is provided by the EIP component. To check whether 
this is installed in your ServiceMix runtime, you can execute 
features;list from the ServiceMix command line. This will 
show you a list of installed features. If you see [installed] 
[2010.01] servicemix-eip the component is installed. If it 
shows uninstalled instead of installed, you can use the 
features;install servicemix-eip to install this component. You 
can now use this router using a simple XML file:

http://www.refcardz.com
http://www.dzone.com


5 ServiceMix 4.2: The Apache Open Source ESB

DZone, Inc.  |   www.dzone.com

<eip:static-routing-slip service=”test:routingSlip” 
 endpoint=”endpoint”>
  <eip:targets>
    <eip:exchange-target service=”test:echo” />
    <eip:exchange-target service=”test:echo” />
  </eip:targets>
</eip:static-routing-slip>

When installed, this component provides the following  
routing options (this information is also available in the XSD  
of this component):

XML Element Description

async-bridge The async bridge pattern is used to bridge an In-Out exchange 
with two In-Only (or Robust-In-Only) exchanges. This pattern is the 
opposite of the pipeline.

content-basedrouter Component that can be used for content based routing of the 
message. You can configure this component with a set of predicates 
which define how the message is routed.

content-enricher A content enricher can be used to add extra information to the 
message from a different source.

message-filter With a message filter you specify a set of predicates which determine 
whether to process the message or not.

pipeline The pipeline component is a bridge between an In-Only (or Robust-In-
Only) MEP and an In-Out MEP. This is the opposite of the async 
bridge.

resequencer A resequencer can be used to re-order a set of incoming messages
before passing them on in a the new order.

split-aggregator A split aggregator is used to reassemble messages that have been 
split by a splitter.

static-recipient-list A static recipient list will forward the incoming message to a set of 
predefined destinations.

static-routing-slip The static routing slip routes a message through a set of services. It 
uses the result of the first invocation as input for the next.

wire-tap The wire-tap will copy and forward a message to the specified 
destination.

xpath-splitter This splitter uses an xpath expression to split an incoming message in 
multiple parts.

Camel Routing
Apache Camel is a project that provides a lot of different routing 
and integration options. In this section, we’ll show how to use 
Camel with ServiceMix and give an overview of the routing 
options it provides. Installing the Camel component in ServiceMix 
is done in the same way as we did for the EIP component. We 
use the features;list command to check what’s already installed 
and we can use features/add to add new Camel functionality. 
Once installed, we can use Camel to route messages between 
our components. Camel provides two types of configuration: 
XML and Java-based DSL, XML configuration was used for the 
following two listings:

Camel XML configuration - Listing 1: Camel configuration

<beans xmlns=”http://www.springframework.org/schema/beans”
  xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>
    <import resource=”classpath:org/Apache/servicemix/camel/nmr/
     camel-nmr.xml” />
       <camelContext xmlns=”http://camel.Apache.org/schema/
        spring”>
      <route>
        <from uri=”ftp://gertv@localhost/testfile?password 
         =secret”/>
        <to uri=”nmr:IncomingOrders”/>
      </route>
</beans>

Camel XML configuration - Listing 2: Target service

<beans xmlns:file=”http://servicemix.Apache.org/file/1.0”
              xmlns:dzone=”http://servicemix.org/dzone/”>
   <import resource=”classpath:org/Apache/servicemix/camel/nmr/
    camel-nmr.xml” />
   <file:sender service=”nmr:IncomingOrders”
            directory=”file:target/pollerFiles” />
</beans>

In these two listings, you can see how we can easily integrate the 
Camel routes with the other components from ServiceMix. We 
use the nmr prefix to tell Camel to send the message to the NMR. 
The other service, which can be separately deployed, will then 
pick up this message since it’s also configured to listen to a nmr 
prefixed service.

Now let’s look at two listings that use Camel’s Java-based DSL  
to configure the routes. For this, we need a small XML file 
describing where the routes can be found and a Java file which 
contains the routing.

Camel Java configuration - Listing 1: Spring configuration

<beans xmlns=”http://www.springframework.org/schema/beans”
       xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
       xsi:schemaLocation=”
       http://www.springframework.org/schema/beans http://www.
        springframework.org/schema/
beans/spring-beans-2.0.xsd
       http://activemq.Apache.org/camel/schema/spring
http://activemq.Apache.org/camel/schema/spring/camel-spring.xsd “>

<import resource=”classpath:org/Apache/servicemix/camel/nmr/camel-
 nmr.xml” />
        <camelContext xmlns=”http://activemq.Apache.org/camel/
         schema/spring”>
          <package>dzone.refcards.camel.routes</package>
        </camelContext>
</beans>

Camel Java configuration - Listing 2: Java route

public class SimpleRouter extends RouteBuilder {
    public void configure() throws Exception {

           from(“timer:myTimerEvent?fixedRate=true”)
                    .setBody(constant(“Hello World!”)).
                          to(“nmr:someService”);
    }
}

Camel itself provides a lot of standard functionality. It doesn’t  
just provide routing, it can also provide connectivity for  
different technologies. For more information on Camel, go to  
http://camel.apache.org/ or see the “Enterprise Integrations 
Patterns with Camel” Refcard.

SERVICEMIX AND WEB SERVICES

Support for Web services is an important feature for an ESB. 
ServiceMix uses the CXF project for this. Since CXF is also 
completely spring based, using CXF to deploy Web services is 
very easy.

Hosting Web Services
When you want to expose a service as a Web service, you can 
easily do this using CXF. Just create a CXF OSGi bundle using the 
archetype: servicemix-osgicxf-code-first-archetype. This will 
create an OSGi- and CXF-enabled maven project that you can use 

Differences between ServiceMix and Camel
If you’ve looked at the Camel website you notice that it provides much the same functionality as ServiceMix. It provides connectivity to various 
standards and technologies, provides routing and transformation and even allows you to expose Web services. The main difference though is that 
Camel isn’t a container. Camel is designed to be used inside some other container. We’ve shown that you can use Camel in ServiceMix, but you can 
also use Camel in other ESBs or in ActiveMQ or CXF. So if you just want an routing and mediation engine Camel is a good choice. If you however need 
a full ESB with good support for JBI, a flexible OSGi based kernel, hot-deploy and easy administration ServiceMix is the better choice.

http://www.refcardz.com
http://www.dzone.com
http://refcardz.dzone.com/refcardz/enterprise-integration
http://refcardz.dzone.com/refcardz/enterprise-integration


6 ServiceMix 4.2: The Apache Open Source ESB

DZone, Inc.  |   www.dzone.com

SERVICEMIX COMPONENTS

Besides integration with Web services through CXF, ServiceMix 
provides a lot of components you can use out of the box to 
integrate with various other standards and technologies. In this 
section, we’ll give an overview of these components. This list is 
based on the 2010.01 versions. Most of this information can also 
be found in the XML schemas of these components.

ServiceMix Components

XML Element Description

ServiceMix Bean

Endpoint Allows you to define a simple bean that can receive and send message 
exchanges.

ServiceMix File

Poller A polling endpoint that looks for a file or files in a directory and sends the 
files to a target service. You can configure various options on this endpoint 
such as archiving, filters, use of subdirectories, etc.

Sender An endpoint that receives messages from the NMR and writes them to a
specific file or directory.

ServiceMix CXF Binding Component

Consumer A consumer endpoint that is capable of using SOAP/HTTP or SOAP/JMS.

Provider A provider endpoint that is capable of exposing SOAP/HTTP or SOAP/
JMS services.

ServiceMix CXF Service Engine

Endpoint With the Drools Endpoint, you can use a drools rule set as a service or as 
a router.

ServiceMix FTP

Poller This endpoint can be used to poll an FTP directory for files, download 
them and send them to a service.

Sender With a sender endpoint, you can store a message on an FTP server.

ServiceMix HTTP

Consumer Plain HTTP consumer endpoint. This endpoint can be used to handle plain 
HTTP request (without SOAP) or to be able to process the request in a 
non-standard way.

Provider A plain HTTP provider. This type of endpoint can be used to send  
non-SOAP requests to HTTP endpoints.

Soap-Consumer An HTTP consumer endpoint that is optimized to work with SOAP 
messages.

Soap-Provider An HTTP provider endpoint that is optimized to work with SOAP 
messages.

ServiceMix JMS

Consumer An endpoint that can receive messages from a JMS broker.

Provider An endpoint that can send messages to a JMS broker.

Soap-Consumer A JMS consumer that is optimized to work with SOAP messages.

to develop Web services. Now just edit the src/main/resources/
META-INF/spring/beans.xml file and after you’ve run the mvn 
install command you can deploy the bundle to ServiceMix. The 
following listing shows such an example. This will create a Web 
service and host it on http://localhost:8080/cfx/HelloDzone.

CXF Host Web service example using CXF

<beans xmlns=”http://www.springframework.org/schema/beans”
      xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
      xmlns:jaxws=”http://cxf.Apache.org/jaxws”
      xsi:schemaLocation=”
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://cxf.Apache.org/jaxws http://cxf.Apache.org/schemas/jaxws.
xsd”>

    <import resource=”classpath:META-INF/cxf/cxf.xml” />
    <import resource=”classpath:META-INF/cxf/cxf-extension-soap.
     xml” />
    <import resource=”classpath:META-INF/cxf/cxf-extension-http.
     xml” />
    <import resource=”classpath:META-INF/cxf/osgi/cxf-extension-
     osgi.xml” />
      <jaxws:endpoint id=”helloDZone”
             implementor=”dzone.examples.ws.HelloDZoneImpl”
                 address=”/HelloDzone”/>
</beans>

In the previous example, we hosted a Web service that could  
be called from outside the container. You can also configure 
CXF to host the Web service internally by prefixing the address 
with nmr. That way, you can easily expose JAX-WS annotated 
java beans to the other services inside the ESB. The following 
example shows this:

CXF Host Web service internally

<beans xmlns=”http://www.springframework.org/schema/beans”
      xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
      xmlns:jaxws=”http://cxf.apache.org/jaxws”
      xsi:schemaLocation=”
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.
xsd”>
    <import resource=”classpath:META-INF/cxf/cxf.xml” />
    <import resource=”classpath:META-INF/cxf/cxf-extension-soap.
     xml” />
    <import resource=”classpath:META-INF/cxf/transport/nmr/cxf-
     transportnmr.xml” />
      <jaxws:endpoint id=”helloDzone”
             implementor=”dzone.examples.ws.HelloDZoneImpl”
                 address=”nmr:helloDZone” />
</beans>

You can also host a Web services using the servicemix-cxf-bc 
component.

Host Web service using the servicemix-cxf-bc component

<beans xmlns:cxfbc=”http://servicemix.Apache.org/cxfbc/1.0”
       xmlns:dzone=”http://dzone.org/refcard/example”>

  <cxfbc:consumer wsdl=”classpath:dzone-example.wsdl”
                      targetService=”dzone:ExampleService”
                      targetInterface=”dzone:Example”/>
</beans>

Consuming Web Services
Consuming Web services in ServiceMix is just as easy. ServiceMix 
provides two different options for this. You can use Camel or use 
the servicemix-cxf-bc component:

Consume Web servicemix using the servicemix-cxf-bc component

<beans xmlns:cxfbc=”http://servicemix.Apache.org/cxfbc/1.0”
       xmlns:dzone=”http://dzone.org/refcard/example”>
<cxfbc:provider wsdl=”classpath:target-service.wsdl”
                 locationURI=”http://webservice.com/Service”
                 endpoint=”ServicePort”
                 service=”dzone:ServicePortService”/>
</beans>

With this configuration, you can consume a Web service that is 
located at http://webservice.com/Service and that is defined by 
the WSDL file target-service.wsdl. Other services can use this 

component by making a call to the dzone:ServicePortService.
You can also consume a Web service using Camel. For more 
information on how you can configure the Camel route, see the 
Camel CXF integration section of the Camel website: 
http://camel.apache.org/cxf.html.

For Web services, ServiceMix provides the following useful 
archetypes:

Name Description

servicemix-cxf-bc-service-unit Create a maven project which uses the JBI CXF binding
component.

servicemix-cxf-se-service-unit Create a maven project which uses the JBI CXF service engine.

servicemix-cxf-se-wsdl-
firstservice-unit

Create a maven project which uses the JBI CXF service
engine. This project is based on WSDL first development.

servicemix-osgi-cxf-code-
firstarchetype

Create a maven project which uses CXF and OSGi together.
This project is based on code first development.

servicemix-osgi-cxf-wsdl-
firstarchetype

Create a maven project which uses CXF and OSGi together.
This project is based on wsdl first development.

http://www.refcardz.com
http://www.dzone.com


7 ServiceMix 4.2: The Apache Open Source ESB

   

DZone, Inc.
140 Preston Executive Dr.
Suite 100
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com 

Sponsorship Opportunities 
sales@dzone.com 

Copyright © 2011 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a 
retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, 
without prior written permission of the publisher. 

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to 
more than 3.3 million software developers, architects and decision 
makers. DZone offers something for everyone, including news, 
tutorials, cheat sheets, blogs, feature articles, source code and more. 
“DZone is a developer’s dream,” says PC Magazine.

RECOMMENDED BOOKABOUT THE AUTHOR

 

 

By Paul M. Duvall

ABOUT CONTINUOUS INTEGRATION

  
  

  
  

  
  

 G
e

t 
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

 

#84

Continuous Integration:

Patterns and Anti-Patterns

CONTENTS INCLUDE:

■ About Continuous Integration

■ Build Software at Every Change

■ Patterns and Anti-patterns

■ Version Control

■ Build Management

■ Build Practices and more...

Continuous Integration (CI) is the process of building software 

with every change committed to a project’s version control 

repository.  

CI can be explained via patterns (i.e., a solution to a problem 

in a particular context) and anti-patterns (i.e., ineffective 

approaches sometimes used to “fi x” the particular problem) 

associated with the process. Anti-patterns are solutions that 

appear to be benefi cial, but, in the end, they tend to produce 

adverse effects. They are not necessarily bad practices, but can 

produce unintended results when compared to implementing 

the pattern.

Continuous Integration

While the conventional use of the term Continuous Integration 

efers to the “build and test” cycle, this Refcard 

expands on the notion of CI to include concepts such as 

Aldon®

Change. Collaborate. Comply.

Pattern

Description

Private Workspace
Develop software in a Private Workspace to isolate changes

Repository

Commit all fi les to a version-control repository

Mainline

Develop on a mainline to minimize merging and to manage 

active code lines

Codeline Policy

Developing software within a system that utilizes multiple 

codelines

Task-Level Commit
Organize source code changes by task-oriented units of work 

and submit changes as a Task Level Commit

Label Build

Label the build with unique name

Automated Build

Automate all activities to build software from source without 

manual confi guration

Minimal Dependencies
Reduce pre-installed tool dependencies to the bare minimum

Binary Integrity

For each tagged deployment, use the same deployment 

package (e.g. WAR or EAR) in each target environment

Dependency Management Centralize all dependent libraries

Template Verifi er

Create a single template fi le that all target environment 

properties are based on

Staged Builds

Run remote builds into different target environments

Private Build

Perform a Private Build before committing changes to the 

Repository

Integration Build

Perform an Integration Build periodically, continually, etc.

Send automated feedback from CI server to development team

ors as soon as they occur

Generate developer documentation with builds based on 

brought to you by...

 

 

By Andy Harris

HTML BASICS

e.
co

m
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
G

e
t 

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m
 

#64

Core HTMLHTML and XHTML are the foundation of all web development.  

HTML is used as the graphical user interface in client-side 

programs written in JavaScript. Server-side languages like PHP 

and Java also receive data from web pages and use HTML 

as the output mechanism. The emerging Ajax technologies 

likewise use HTML and XHTML as their visual engine. HTML 

was once a very loosely-defi ned language with very little 

standardization, but as it has become more important, the 

need for standards has become more apparent.  Regardless of 

whether you choose to write HTML or XHTML, understanding 

the current standards will help you provide a solid foundation 

that will simplify all your other web coding.  Fortunately HTML 

and XHTML are actually simpler than they used to be, because 

much of the functionality has moved to CSS.

common elements
Every page (HTML or XHTML shares certain elements in

common.)  All are essentially plain text 

extension.  HTML fi les should not be cr

processor

CONTENTS INCLUDE:
■ HTML Basics■ HTML vs XHTML

■ Validation■ Useful Open Source Tools

■ Page Structure Elements
■ Key Structural Elements and more...

The src attribute describes where the image fi le can be found, 

and the alt attribute describes alternate text that is displayed if 

the image is unavailable.Nested tagsTags can be (and frequently are) nested inside each other.  Tags 

cannot overlap, so <a><b></a></b> is not legal, but <a><b></

b></a> is fi ne. 

HTML VS XHTMLHTML has been around for some time. While it has done its 

job admirably, that job has expanded far more than anybody 

expected.  Early HTML had very limited layout support.

Browser manufacturers added many competing standar

web developers came up with clever workar

result is a lack of standar
The latest web standar

Browse our collection of over 100 Free Cheat Sheets
Upcoming Refcardz
RichFaces
CSS3
Windows Azure Platform
Spring Roo

 

 

By Daniel Rubio

ABOUT CLOUD COMPUTING

 C
lo

u
d

 C
o

m
p

u
ti

n
g

  
  

  
  

  
  

   
  

  
  

  
w

w
w

.d
zo

n
e.

co
m

  
  

  
  

  
  

  
  

  
 G

e
t 

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m
 

#82

Getting Started with 
Cloud Computing

CONTENTS INCLUDE:
■ About Cloud Computing
■ Usage Scenarios
■ Underlying Concepts 
■ Cost
■ Data Tier Technologies
■ Platform Management and more...

Web applications have always been deployed on servers 
connected to what is now deemed the ‘cloud’.

However, the demands and technology used on such servers 
has changed substantially in recent years, especially with 
the entrance of service providers like Amazon, Google and 
Microsoft. 

These companies have long deployed web applications 
that adapt and scale to large user bases, making them 
knowledgeable in many aspects related to cloud computing.

This Refcard will introduce to you to cloud computing, with an 
emphasis on these providers, so you can better understand 
what it is a cloud computing platform can offer your web 
applications.

USAGE SCENARIOS

Pay only what you consume
Web application deployment until a few years ago was similar 
to most phone services: plans with alloted resources, with an 
incurred cost whether such resources were consumed or not.

Cloud computing as it’s known today has changed this. 
The various resources consumed by web applications (e.g. 
bandwidth, memory, CPU) are tallied on a per-unit basis 
(starting from zero) by all major cloud computing platforms.

also minimizes the need to make design changes to support 
one time events. 

Automated growth & scalable technologies
Having the capability to support one time events, cloud 
computing platforms also facilitate the gradual growth curves 
faced by web applications.

Large scale growth scenarios involving specialized equipment 
(e.g. load balancers and clusters) are all but abstracted away by 
relying on a cloud computing platform’s technology.

In addition, several cloud computing platforms support data 
tier technologies that exceed the precedent set by Relational 
Database Systems (RDBMS): Map Reduce, web service APIs, 
etc. Some platforms support large scale RDBMS deployments.

CLOUD COMPUTING PLATFORMS AND 
UNDERLYING CONCEPTS

Amazon EC2: Industry standard software and virtualization
Amazon’s cloud computing platform is heavily based on 
industry standard software and virtualization technology.

Virtualization allows a physical piece of hardware to be 
utilized by multiple operating systems. This allows resources 
(e.g. bandwidth, memory, CPU) to be allocated exclusively to 
individual operating system instances.

As a user of Amazon’s EC2 cloud computing platform, you are 
assigned an operating system in the same way as on all hosting 

Jos Dirksen is a software architect for Atos Origin, 
where he has been the architect for a number of large 
integration projects over the last couple of years. Jos has 
worked with various integration products, commercial and 
open source for the last five years. He co-authored the 
book Open Source ESBs in Action and regularly presents 
on topics ranging from enterprise integration patterns 
to JavaFX and OSGi at such conferences as Devoxx and 
JavaOne.

Open-Source ESBs in Action describes how to use ESBs 
in real-world situations. You will learn how the various 
features of an ESB such as transformation, routing, 
security, connectivity, and more can be implemented on 
the example of two open-source ESB implementations: 
Mule and ServiceMix.

BUY NOW
books.dzone.com/books/opensource-esb

Soap-Provider A JMS provider that is optimized to work with SOAP messages.

JCA-Consumer A JMS consumer that uses JCA to connect to the JMS broker.

ServiceMix Mail

Poller An endpoint that can be used to retrieve messages.

Sender An endpoint that you can use to send messages.

ServiceMix OSWorkflow

Endpoint This endpoint can be used to start an OSWorkflow process.

ServiceMix Quartz

Endpoint The Quartz endpoint can be used to fire messages into the NMR at specific 
intervals.

ServiceMix Saxon

XSLT With the XSLT endpoint, you can apply an XSLT transformation to the 
received message.

Proxy The proxy component allows you to transform an incoming message and 
send it to an endpoint. You can also configure a transformation that needs 
to be applied to the result of that invocation.

XQuery The XQuery endpoint can be used to apply a selected XQuery to the input 
document.

ServiceMix Scripting

Endpoint With the scripting endpoint, you can create a service that is implemented 
using a scripting language. The following languages are supported: 
Groovy, JRuby, Rhino JavaScript

ServiceMix SMPP

Consumer A polling component that binds with jSMPP and receives SMPP messages 
and sends the SMPPs into the NMR as messages.

Provider A provider component receives XML message from the NMR and converts 
into SMPP packet and sends it to SMPP server.

ServiceMix SNMP

Poller With this poller, you can receive SNMP events by using the SNMP4J library.

ServiceMix Validation

Endpoint With this endpoint, you can provide schema validation of documents using 
JAXP 1.3 and XMLSchema or RelaxNG.

ServiceMix-VFS

Poller A polling endpoint that looks for a file or files in a virtual file system
(based on Apache commons-vfs) and sends the files to a target service.

Sender An endpoint that receives messages from the NMR and writes the 
message to the virtual file system.

ServiceMix-wsn2005

Create-pull-
point

Lets you create a WS-Notification pull point that can be used by a 
requester to retrieve accumulated notification messages.

Publisher Sends messages to a specific topic.

Register-
publisher

An endpoint that can be used by publishers to register themselves.

Subscribe Lets you create subscriptions to a specific topic using the WSNotification 
specification.

ServiceMix Drools

Endpoint Provides a consumer endpoint that can implement a service or a router 
using JBoss Rules.

Namespace Defines the namespace context used by drools.

ISBN-13: 978-1-934238-65-3
ISBN-10: 1-934238-65-1

9 781934 238653

50795

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://refcardz.dzone.com
http://books.dzone.com/books/opensource-esb

