

DZone, Inc. | www.dzone.com

By Jos Dirksen

About Servicemix 4.0

S
e

rv
ic

e
M

ix
 4

.0

w
w

w
.d

zo
n

e.
co

m

G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#65

Getting Started with

ServiceMix 4.0

In the open source community there are many different
solutions for each problem. When you look for an open source
ESB, however, you don’t have that many options. Even though
there are many open source ESB projects, not all of them are
mature enough to be used to solve enterprise mission critical
integration problems. ServiceMix is one of the open source
projects that is mature enough to be used in these scenarios.
ServiceMix, an Apache project, has been around for a couple
of years now. It provides all the features you expect from an
ESB such as routing, transformation, etc. The previous version
was built based on JBI (JSR-208), but in its latest iteration,
which we’re discussing in this Refcard, ServiceMix has moved
to an OSGi based architecture, which we’ll discuss later on.

This DZone Refcard will provide an overview of the core
elements of ServiceMix 4.0 and will show you how to use
ServiceMix 4 by providing example configurations.

Hot
Tip

CONTENTS INCLUDE:
n	 About ServiceMix 4.0
n	 ServiceMix 4.0 Architecture
n	 Configuration of ServiceMix 4.0 Components
n	 Routing in ServiceMix 4.0
n	 ServiceMix and Web services
n	 Threads Coordination and more...

n 	Authoritative content
n 	Designed for developers
n 	Written by top experts
n 	Latest tools & technologies
n	 Hot tips & examples
n 	Bonus content online
n 	New issue every 1-2 weeks

Subscribe Now for FREE!
Refcardz.com

Get More Refcardz
(They’re free!)

Servicemix 4.0 Architecture

Before we show how to configure ServiceMix 4.0 for use, let us
first look at the architecture of ServiceMix 4.0.

This figure shows the
following components:

ServiceMix Kernel: In this
figure you can see that
the basis of
ServiceMix 4 is the
ServiceMix Kernel. This
kernel, which is based on
the Apache Felix Karaf

project (an OSGi based runtime), handles the core features
ServiceMix provides, such as hot-deployment, provisioning
of libraries or applications, remote access using ssh, JMX
management and more.

ServiceMix NMR: This component, a normalized message
router, handles all the routing of messages within ServiceMix
and is used by all the other components.

ActiveMQ: ActiveMQ, another Apache project, is the message
broker which is used to exchange messages between
components. Besides this ActiveMQ can also be used to create
a fully distributed ESB.

Web: ServiceMix 4 also provides a web component. You can
use this to start ServiceMix 4 embedded in a web application.
An example of this is provided in the ServiceMix distribution.

JBI compatibility layer: The previous version of ServiceMix

was based on JBI 1.0. For JBI a lot of components (from
ServiceMix, but also from other parties), are available. This
layer provides compatibility with the JBI specification, so that
all the components from the previous version of ServiceMix can
run on ServiceMix 4. Be sure though to use the 2009.01 version
of these components.

Camel NMR: ServiceMix 4 provides a couple of different
ways you can configure routing. You can use the endpoints
provided by the ServiceMix NMR, but you can also use more
advanced routing engines. One of those is the Camel NMR.
This component allows you to run Camel based routes on
ServiceMix.

CXF NMR: Besides an NMR based on Camel, ServiceMix also
provides an NMR based on CXF. You can use this NMR to expose
and route to Java POJOs annotated with JAX-WS annotations.

OSGi runtime
ServiceMix runs on an OSGi based kernel, but what is
OSGi? In short an OSGi container provides a service
based in-VM platform on which you can deploy
services and components dynamically. OSGi provides
strict classloasing seperation and forces you to think
about the dependencies your components have.
Besides that OSGi also defines a simple lifecycle
model for your services and components. This results
in an environment where you can easily add and
remove components and services at runtime and
allows the creation of modular applications. An added
advantage of using an OSGi container is that you
can use many components out of the box: remote
administration, a web container, configuration and
preferences services, etc.

ServiceMix JBI
Components

JBI Compatibility
Layer CXF NMR Camel

NMR

ServiceMix
NMR

Web ActiveMQ

ServiceMix Kernel

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

2
 Getting Started with ServiceMix 4.0

Hot
Tip

Service Addressing
An important concept to understand when working
with ServiceMix is that of services and endpoints.
When you configure services on a component you
need to tell ServiceMix how to route messages to and
from that service. This name is called a service end-
point. If you look back at the previous example we
created a file:poller. On this file:poller we defined
a service and an endpoint attribute. These two
attributes together uniquely identify this
file:poller. Note though that you can have multiple
endpoints defined on the same service. You can also
see a targetService attribute on the file:poller.
Besides this attribute there is also a targetEndpoint
attribute. With these two attributes you identify the
service endpoint to sent the message to. The targe-
tEndpoint isn’t always needed, if only one endpoint
is registered on that service.

Before we move on to the next part, let’s have a quick look
at how a message is processed by ServiceMix. The following
figure shows how a message is routed by the NMR. In this case
we’re showing a reply / response (in-out) message pattern.

In this figure you can see a number of steps being executed:

 1. The consumer creates a message exchange for a specific
 service and sends a request.
 2. The NMR determines the provider this exchange needs
 to be sent to and queus the message for delivery. The
 provider accepts this message and executes its business
 logic.
 3. After the provider has finished processing, the response
 message is returned to the NMR.
 4. The NMR once again queues the message for delivery.
 This time to the consumer. The consumer accepts the
 message.
 5. After the response is accepted, the consumer sends a
 confirmation to the NMR.
 6. The NMR routes this confirmation to the provider, who
 accepts it and ends this message exchange.

Now that we’ve seen the architecture and how a message is
handled by the NMR, we’ll have a look at how to configure
ServiceMix 4.

Configuration of ServiceMix 4.0

ServiceMix 4 configuration is mostly done through Spring XML
files supported by XML schemas for easy code completion.
Let’s look at two simple examples. The first one uses the File
Binding component to poll a directory and the second one
exposes a Web service using ServiceMix’s CXF support.

<beans xmlns:file=”http://servicemix.Apache.org/file/1.0”
 xmlns:dzone=”http://servicemix.org/dzone/”>
 <file:poller service=”foo:filePoller”
 endpoint=”filePoller”
 targetService=”foo:fileSender”
 file=”inbox” />
</beans>

In this listing you can see that we define a poller. A poller
is one of the standard components that is provided by
ServiceMix’s file-binding-component. If we deploy this
configuration to ServiceMix, ServiceMix will start polling the
inbox directory for files. If it finds one, the file will be sent to
the specified targetService.

In the following listing, we’ve again used a simple XML file.
This time we’ve configured a webservice.

<beans xmlns=”http://www.springframework.org/schema/beans”
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xmlns:jaxws=”http://cxf.Apache.org/jaxws”
 xsi:schemaLocation=”
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://cxf.Apache.org/jaxws http://cxf.Apache.org/schemas/jaxws.
xsd”>
 <import resource=”classpath:META-INF/cxf/cxf.xml” /> 1
 <import resource=”classpath:META-INF/cxf/cxf-extension-soap.
 xml” />
 <import resource=”classpath:META-INF/cxf/cxf-extension-http.
 xml” />
 <import resource=”classpath:META-INF/cxf/osgi/cxf-extension-
 osgi.xml” />
 <jaxws:endpoint id=”helloWorld”
 implementor=”dzone.refcards.HelloWorld”
 address=”/HelloWorld”/>
</beans>

In this listing we use a jaxws:endpoint to define a webservice.
The implementor points to a simple POJO annotated with
JAX-WS annotations. If this example is deployed to ServiceMix,
ServiceMix will register a webservice based on the value in the
address attribute.

Deployment of ServiceMix 4 Components

ServiceMix provides a number of different options which you
can use to deploy artifacts. In this section we’ll look at these
options, and show you how to use these.

ServiceMix 4, deployment options

Name Description

OSGi Bundles ServiceMix 4 is built around OSGi and ServiceMix 4 also allows you to
deploy your configurations as an OSGi bundle with all the advantages
OSGi provides.

Spring XML files ServiceMix 4 support plain Spring XML files.

JBI artifacts You can also deploy artifacts following the JBI standard (service
assemblies and service units) to ServiceMix 4.

Feature
descriptors

This is a Karaf specific way for installing applications. It will install the
necessary OSGi bundles and will add configuration defaults. This is mostly
used to install core parts of the ServiceMix distribution.

OSGi bundle deployment
The easiest way to create an OSGi based ServiceMix bundle
is by using Maven 2. To create a bundle you need to take a

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

3
 Getting Started with ServiceMix 4.0

couple of simple steps. The first one is adding the maven-
bundle-plugin to your pom.xml file. This is shown in the
following code fragment.

...
<dependencies>
 <dependency>
 <groupId>org.Apache.felix</groupId>
 <artifactId>org.osgi.core</name>
 <version>1.0.0</version>
 </dependency>
 ...
</dependencies>
...
<build>
 <plugins>
 <plugin>
 <groupId>org.Apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <configuration>
 <instructions>
 <Bundle-SymbolicName>${pom.artifactId}</Bundle
 SymbolicName>
 <Import-Package>*,org.Apache.camel.osgi</Import-Package>
 <Private-Package>org.Apache.servicemix.examples.camel</
 Private-Package>
 </instructions>
 </configuration>
 </plugin>
 </plugins>
</build>
...

The important part here is the instructions section. This
determines how the plugin packages your project. For more
information on these settings see the maven OSGi bundle
plugin page at http://cwiki.Apache.org/FELIX/Apache-
felixmaven-bundle-plugin-bnd.html.

The next step is to make sure your project is bundled as a
OSGi bundle. You do this by setting the <packaging> element
in your pom.xml to bundle.

Now you can use mvn install to create an OSGi bundle,
which you can copy to the deploy directory of ServiceMix and
your bundle will be installed. If you use Spring to configure
your application, make sure the Spring configuration files are
located in the META-INF/spring directory. That way the Spring
application context will be automatically created based on
these files.

If you don’t want to do this by hand you can also use a Maven
archetype. ServiceMix provides a set of archetypes you can
use. A good starting point for a project is the Camel OSGi
archetype which you can use by executing the following
following Maven command:

mvn archetype:create -DarchetypeGroupId=org.Apache.servicemix.tooling
-DarchetypeArtifactId=servicemix-osgi-camel-archetype
-DarchetypeVersion=4.0.0.2-fuse
-DgroupId=com.yourcompany -DartifactId=camel-router
-DremoteRepositories=http://repo.fusesource.com/maven2/

There are many other archetypes available. For an overview of
the available archetypes see:
http://repo.fusesource.com/maven2/org/Apache/servicemix/tooling/

Spring XML Files Deployment
It’s also possible to deploy Spring files without OSGi. Just drop
a Spring file into the deploy directory. There are two points to
take into account. First, you need to add the following to your
Spring configuration file:

<bean class=”org.Apache.servicemix.common.osgi.EndpointExporter” />

This will register the endpoints you’ve configured in your
Spring file. The next element is optional but is good practice
to add:

<manifest>
 Bundle-Version = 1.0.0
 Bundle-Name = Dzone :: Dzone test application
 Bundle-SymbolicName = dzone.refcards.test
 Bundle-Description = An example for servicemix refcard
 Bundle-Vendor = jos.dirksen@gmail.com
 Require-Bundle = servicemix-file, servicemix-eip
</manifest>

Using a manifest configuration element allows you to specify
how your application is registered in ServiceMix.

JBI artifacts deployment
If you’ve already invested in JBI based applications, you
can still use ServiceMix 4 to run them in. Just deploy your
Service Assembly (SA) in the ServiceMix deploy directory and
ServiceMix will deploy your application.

Feature descriptor based deployment
If you’ve got an application which contains many bundles and
that requires additional configuration you can use a feature
to easily manage this. A feature contains a set of bundles and
configuration which can be easily installed from the ServiceMix
console. The following listing shows the feature descriptor of
the nmr component.

<features>
 <feature name=”nmr” version=”1.0.0>
 <bundle>mvn:org.Apache.servicemix.document/org.Apache.
 servicemix.document/1.0.0</bundle>
 <bundle>mvn:org.Apache.servicemix.nmr/org.Apache.servicemix.
 nmr.api/1.0.0</bundle>
 <bundle>mvn:org.Apache.servicemix.nmr/org.Apache.servicemix.
 nmr.core/1.0.0</bundle>
 <bundle>mvn:org.Apache.servicemix.nmr/org.Apache.servicemix.
 nmr.osgi/1.0.0</bundle>
 <bundle>mvn:org.Apache.servicemix.nmr/org.Apache.servicemix.
 nmr.spring/1.0.0</bundle>
 <bundle>mvn:org.Apache.servicemix.nmr/org.Apache.servicemix.
 nmr.commands/1.0.0</bundle>
 <bundle>mvn:org.Apache.servicemix.nmr/org.Apache.servicemix.
 nmr.management/1.0.0</bundle>
 </feature>
</features>

If you want to install this feature you can just type features/
install nmr from the ServiceMix console.

Routing in ServiceMix 4.0

For routing in ServiceMix you’ve got two options:

 • EIP: ServiceMix provides a JBI component that
 implements a number of Enterprise Integration Patterns.
 • Camel: You can use Camel routes in ServiceMix. Camel
 provides the most flexible and exhaustive routing options
 for ServiceMix

EIP Component Routing
This routing is provided by the EIP component. To check
whether this is installed in your ServiceMix runtime you can
execute features/list from the ServiceMix commandline. This
will show you a list of installed features. If you see [installed]
[2009.01] servicemix-eip the component is installed. If
it shows uninstalled instead of installed, you can use the
features/install servicemix-eip to install this component.
You can now use this router using a simple XML file:

<eip:static-routing-slip service=”test:routingSlip”
 endpoint=”endpoint”>
 <eip:targets>
 <eip:exchange-target service=”test:echo” />
 <eip:exchange-target service=”test:echo” />
 </eip:targets>
</eip:static-routing-slip>

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

4
 Getting Started with ServiceMix 4.0

When installed this component provides the following routing
options (this information is also available in the XSD of this
component):

XML Element Description

async-bridge The async bridge pattern is used to bridge an In-Out exchange with
two In-Only (or Robust-In-Only) exchanges. This pattern is the opposite
of the pipeline.

content-basedrouter Component that can be used for content based routing of the
message. You can configure this component with a set of predicates
which define how the message is routed.

content-enricher A content enricher can be used to add extra information to the
message from a different source.

message-filter With a message filter you specify a set of predicates which determine
whether to process the message or not.

pipeline The pipeline component is a bridge between an In-Only (or Robust-In-
Only) MEP and an In-Out MEP. This is the opposite of the async bridge.

resequencer A resequencer can be used to re-order a set of incoming messages
before passing them on in a the new order.

split-aggregator A split aggregator is used to reassemble messages that have been split
by a splitter.

static-recipient-list A static recipient list will forward the incoming message to a set of
predefined destinations.

static-routing-slip The static routing slip routes a message through a set of services. It
uses the result of the first invocation as input for the next.

wire-tap The wire-tap will copy and forward a message to the specified
destination.

xpath-splitter This splitter uses an xpath expression to split an incoming message in
multiple parts.

Camel Routing
Apache Camel is a project which provides a lof of different
routing and integration options. In this section we’ll show how
to use Camel with ServiceMix and give an overview of the
routing options it provides. Installing the Camel component
in ServiceMix is done in the same way as we did for the EIP
component. We use the features/list command to check what’s
already installed and we can use features/add to add new
Camel functionality. Once installed we can use Camel to route
messages between our components. Camel provides two types
of configuration: XML and Java based DSL, XML configuration
was used for the following two listings:

Camel XML configuration - Listing 1: Camel configuration

<beans xmlns=”http://www.springframework.org/schema/beans”
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>
 <import resource=”classpath:org/Apache/servicemix/camel/nmr/
 camel-nmr.xml” />
 <camelContext xmlns=”http://camel.Apache.org/schema/
 spring”>
 <route>
 <from uri=”ftp://gertv@localhost/testfile?password
 =secret”/>
 <to uri=”nmr:IncomingOrders”/>
 </route>
</beans>

Camel XML configuration - Listing 2: Target service

<beans xmlns:file=”http://servicemix.Apache.org/file/1.0”
 xmlns:dzone=”http://servicemix.org/dzone/”>
 <import resource=”classpath:org/Apache/servicemix/camel/nmr/
 camel-nmr.xml” />
 <file:sender service=”nmr:IncomingOrders”
 directory=”file:target/pollerFiles” />
</beans>

Hot
Tip

Differences between ServiceMix and Camel
If you’ve looked at the Camel website you notice that it provides much the same functionality as ServiceMix. It provides
connectivity to various standards and technologies, provides routing and transformation and even allows you to expose
Web services. The main difference though is that Camel isn’t a container. Camel is designed to be used inside some other
container. We’ve shown that you can use Camel in ServiceMix, but you can also use Camel in other ESBs or in ActiveMQ or CXF.
So if you just want an routing and mediation engine Camel is a good choice. If you however need a full ESB with good support
for JBI, a flexible OSGi based kernel, hot-deploy and easy administration ServiceMix is the better choice.

In these two listings you can see how we can easily integrate
the Camel routes with the other components from ServiceMix.
We use the nmr prefix to tell Camel to send the message to
the NMR. The other service, which can be seperately deployed
will then pick-up this message since it’s also configured to
listen to a nmr prefixed service.

Now let’s look at two listings that use Camel’s Java based
DSL to configure the routes. For this we need a small XML
file describing where the routes can be found, and a Java file
which contains the routing.

Camel Java configuration - Listing 1: Spring configuration

<beans xmlns=”http://www.springframework.org/schema/beans”
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xsi:schemaLocation=”
 http://www.springframework.org/schema/beans http://www.
 springframework.org/schema/
beans/spring-beans-2.0.xsd
 http://activemq.Apache.org/camel/schema/spring
http://activemq.Apache.org/camel/schema/spring/camel-spring.xsd “>

<import resource=”classpath:org/Apache/servicemix/camel/nmr/camel-
 nmr.xml” />
 <camelContext xmlns=”http://activemq.Apache.org/camel/
 schema/spring”>
 <package>dzone.refcards.camel.routes</package>
 </camelContext>
</beans>

Camel Java configuration - Listing 2: Java route

public class SimpleRouter extends RouteBuilder {
 public void configure() throws Exception {

 from(“timer:myTimerEvent?fixedRate=true”)
 .setBody(constant(“Hello World!”)).
 to(“nmr:someService”);
 }
}

Camel itself provides a lot of standard functionality. It doesn’t
just provide routing, it can also provide connectivity for
different technologies. For more information on Camel please
see it’s website at http://camel.Apache.org/ or look at the
“Enterprise Integrations Patterns with Camel” Refcard.

ServiceMix and web services

Support for Web services is an important feature for an ESB.
ServiceMix uses the CXF project for this. Since CXF is also
completely spring based, using CXF to deploy Web services is
very easy.

Hosting Web services
When you want to expose a service as a webservice you can
easily do this using CXF. Just create a CXF OSGi bundle using
the archetype: servicemix-osgicxf-code-first-archetype. This
will create an OSGi and CXF enabled maven project which you
can use to develop webservices. Now just edit the src/main/
resources/META-INF/spring/beans.xml file and after you’ve
run the mvn install command you can deploy the bundle to
ServiceMix. The following listing shows such an example. This

http://www.dzone.com
http://www.refcardz.com
http://refcardz.dzone.com/refcardz/enterprise-integration

DZone, Inc. | www.dzone.com

5
 Getting Started with ServiceMix 4.0

Servicemix Components

Besides integration with Web services through CXF, ServiceMix
provides a lot of components you can use out of the box to
integrate with various other standards and technologies. In this
section we’ll give an overview of these components. This list is
based on the 2009.1 versions. Most of this information can also
be found in the XML schemas of these components.

ServiceMix Components

XML Element Description

ServiceMix Bean

Endpoint Allows you to define a simple bean that can receive and send message
exchanges.

ServiceMix File

Poller A polling endpoint that looks for a file or files in a directory and sends the
files to a target service. You can configure various options on this endpoint
such as archiving, filters, use of subdirectories etc.

Sender An endpoint that receives messages from the NMR and writes them to a
specific file or directory.

ServiceMix CXF Binding Component

consumer A consumer endpoint that is capable of using SOAP/HTTP or SOAP/JMS.

Provider A provider endpoint that is capable of exposing SOAP/HTTP or SOAP/JMS
services.

ServiceMix CXF Service Engine

Endpoint With the Drools Endpoint you can use a drools rule set as a service or
as a router.

ServiceMix FTP

Poller This endpoint can be used to poll an FTP directory for files, download
them and send them to a service.

Sender With a sender endpoint you can store a message on an FTP server.

ServiceMix HTTP

Consumer Plain HTTP consumer endpoint. This endpoint can be used to handle
plain HTTP request (without SOAP) or to be able to process the request
in a non standard way.

Provider A plain HTTP provider. This type of endpoint can be used to send non-
SOAP requests to HTTP endpoints.

Soap-Consumer An HTTP consumer endpoint that is optimized to work with SOAP
messages.

Soap-Provider An HTTP provider endpoint that is optimized to work with SOAP
messages.

ServiceMix JMS

Consumer An endpoint that can receive messages from a JMS broker.

Provider An endpoint that can send messages to a JMS broker.

will create a Web service and host it on
http://localhost:8080/cfx/HelloDzone.

CXF Host Web service example using CXF

<beans xmlns=”http://www.springframework.org/schema/beans”
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xmlns:jaxws=”http://cxf.Apache.org/jaxws”
 xsi:schemaLocation=”
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://cxf.Apache.org/jaxws http://cxf.Apache.org/schemas/jaxws.
xsd”>

 <import resource=”classpath:META-INF/cxf/cxf.xml” />
 <import resource=”classpath:META-INF/cxf/cxf-extension-soap.
 xml” />
 <import resource=”classpath:META-INF/cxf/cxf-extension-http.
 xml” />
 <import resource=”classpath:META-INF/cxf/osgi/cxf-extension-
 osgi.xml” />
 <jaxws:endpoint id=”helloDZone”
 implementor=”dzone.examples.ws.HelloDZoneImpl”
 address=”/HelloDzone”/>
</beans>

In the previous example we hoseted a Web service which could
be called from outside the container. You can also configure
CXF to host the Web service internally by prefixing the address
with nmr. That way you can easily expose JAX-WS annotated
java beans to the other services inside the ESB. The following
example shows this:

CXF Host Web service internally

<beans xmlns=”http://www.springframework.org/schema/beans”
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xmlns:jaxws=”http://cxf.apache.org/jaxws”
 xsi:schemaLocation=”
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.
xsd”>
 <import resource=”classpath:META-INF/cxf/cxf.xml” />
 <import resource=”classpath:META-INF/cxf/cxf-extension-soap.
 xml” />
 <import resource=”classpath:META-INF/cxf/transport/nmr/cxf-
 transportnmr.xml” />
 <jaxws:endpoint id=”helloDzone”
 implementor=”dzone.examples.ws.HelloDZoneImpl”
 address=”nmr:helloDZone” />
</beans>

You can also host a Web services using the servicemix-cxf-bc
component.

Host Web service using the servicemix-cxf-bc component

<beans xmlns:cxfbc=”http://servicemix.Apache.org/cxfbc/1.0”
 xmlns:dzone=”http://dzone.org/refcard/example”>

 <cxfbc:consumer wsdl=”classpath:dzone-example.wsdl”
 targetService=”dzone:ExampleService”
 targetInterface=”dzone:Example”/>
</beans>

Consuming Web services
Consuming Web services in ServiceMix is just as easy.
ServiceMix provides two different options for this. You can use
Camel or use the servicemix-cxf-bc component:

Consume Web servicemix using the servicemix-cxf-bc component

<beans xmlns:cxfbc=”http://servicemix.Apache.org/cxfbc/1.0”
 xmlns:dzone=”http://dzone.org/refcard/example”>
<cxfbc:provider wsdl=”classpath:target-service.wsdl”
 locationURI=”http://webservice.com/Service”
 endpoint=”ServicePort”
 service=”dzone:ServicePortService”/>
</beans>

With this configuration you can consume a Web service which
is located at http://webservice.com/Service and which
is defined by the WSDL file target-service.wsdl. Other
services can use this component by making a call to the
dzone:ServicePortService.

You can also consume a Web service using Camel. For more
information on how you can configure the Camel route for
this look at the Camel CXF integration section of the Camel
website: http://camel.Apache.org/cxf.html.

For Web services ServiceMix provides the following useful
archetypes:

Name Description

servicemix-cxf-bc-service-unit Create a maven project which uses the JBI CXF binding
component.

servicemix-cxf-se-service-unit Create a maven project which uses the JBI CXF service
engine.

servicemix-cxf-se-wsdl-
firstservice-unit

Create a maven project which uses the JBI CXF service
engine. This project is based on WSDL first development.

servicemix-osgi-cxf-code-
firstarchetype

Create a maven project which uses CXF and OSGi together.
This project is based on code first development.

servicemix-osgi-cxf-wsdl-
firstarchetype

Create a maven project which uses CXF and OSGi together.
This project is based on wsdl first development.

http://www.dzone.com
http://www.refcardz.com

Design Patterns

By Jason McDonald

CONTENTS INCLUDE:

n	 Chain of Responsibility

n	 Command

n	 Interpreter

n	 Iterator

n	 Mediator

n	 Observer

n	 Template Method and more...

DZone, Inc. | w
ww.dzone.com

D
es

ig
n

Pa
tt

er
ns

 w

w
w

.d
zo

ne
.c

om

 G
et

 M
o

re
 R

ef
ca

rz
!

V
is

it
 r

ef
ca

rd
z.

co
m

#8

Brought to you by...

Inspired

by the

GoF

Bestseller

This Design Patterns refcard provides a quick reference to the

original 23 Gang of Four (GoF) design patterns, as listed in

the book Design Patterns: Elements of Reusable Object-

Oriented Software. Each pattern includes class diagrams,

explanation, usage information, and a real world example.

Chain of Responsibility
, continued

Object Scope: Deals with object relationships that can

be changed at runtime.

Class S
cope: Deals with class relationships that can be

changed at compile time.

C Abstract Factory

S Adapter

S Bridge

C Builder

B Chain of

Responsibility

B Command

S Composite

S Decorator

S Facade

C Factory Method

S Flyweight

B Interpreter

B Iterator

B Mediator

B Memento

C Prototype

S Proxy

B Observer

C Singleton

B State

B Strategy

B Template Method

B Visito
r

ABOUT DESIGN PATTERNS

Creational Patterns: U
sed to construct objects such

that they can be decoupled from their im
plementing

system.

Structural Patterns: U
sed to form large object

structures between many disparate objects.

Behavioral Patterns: U
sed to manage algorithms,

relationships, and responsibilitie
s between objects.

CHAIN OF RESPONSIBILITY

 O
bject Behavioral

COMMAND

 O

bject Behavioral

successor

Client

<<interface>>

Handler

+handlerequest()

ConcreteHandler 1

+handlerequest()

ConcreteHandler 2

+handlerequest()

Purpose
Gives more than one object an opportunity to handle a request by linking

receiving objects together.

Use

When

n
	Multiple objects may handle a request and the handler doesn’t have to

 be a specific object.

n
	A set of objects should be able to handle a request with the handler

 determined at runtime.

n
	A request not being handled is an acceptable potential outcome.

Example
Exception handling in some languages implements this pattern. When an

exception is thrown in a method the runtime checks to see if th
e method

has a mechanism to handle the exception or if it
 should be passed up the

call stack. When passed up the call stack the process repeats until code to

handle the exception is encountered or until th
ere are no more parent

objects to hand the request to.

Receiver

Invoker

Command

+execute()

Client
ConcreteCommand

+execute()

Purpose
Encapsulates a request allowing it to

 be treated as an object. This allows

the request to be handled in traditionally object based relationships such

as queuing and callbacks.

Use

When

n
	You need callback functionality.

n
	Requests need to be handled at variant tim

es or in variant orders.

n
	A history of requests is needed.

n
	The invoker should be decoupled from the object handling the invocation.

Example
Job queues are widely used to facilitate the asynchronous processing

of algorithms. By utilizing the command pattern the functionality to be

executed can be given to a job queue for processing without any need

for the queue to have knowledge of the actual implementation it is

invoking. The command object that is enqueued implements its particular

algorithm within the confines of the interface the queue is expecting.

Upcoming Titles
RichFaces
Agile Software Development
BIRT
JSF 2.0
Adobe AIR
BPM&BPMN
Flex 3 Components

Most Popular
Spring Configuration
jQuery Selectors
Windows Powershell
Dependency Injection with EJB 3
Netbeans IDE JavaEditor
Getting Started with Eclipse
Very First Steps in Flex

“Exactly what busy developers need:
simple, short, and to the point.”

James Ward, Adobe Systems

Download Now

Refcardz.com

Professional Cheat Sheets You Can Trust

DZone, Inc.
140 Preston Executive Dr.
Suite 100
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2009 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher. Reference:

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to

more than 3.3 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheatsheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

6
 Getting Started with ServiceMix 4.0

RECOMMENDED BookABOUT the Author

Soap-Consumer A JMS consumer that is optimized to work with SOAP messages.

Soap-Provider A JMS provider that is optimized to work with SOAP messages.

JCA-Consumer A JMS consumer that uses JCA to connect to the JMS broker.

ServiceMix Mail

Poller An endpoint which can be used to retrieve messages.

Sender An endpoint which you can use to send messages.

ServiceMix OSWorkflow

Endpoint This endpoint can be used to start an OSWorkflow proces.

ServiceMix Quartz

Endpoint The Quartz endpoint can be used to fire messages into the NMR at
specific intervals.

ServiceMix Saxon

XSLT With the XSLT endpoint you can apply an XSLT transformation to the
received message.

Proxy The proxy component allows you to transform an incoming message
and send it to an endpoint. You can also configure a transformation that
needs to be applied to the result of that invocation.

XQuery The XQuery endpoint can be used to apply a selected XQuery to the
input document.

ServiceMix Scripting

Endpoint With the scripting endpoint you can create a service which is
implemented using a scripting language. The following languages are
supported: Groovy, JRuby, Rhino JavaScript

ServiceMix SMPP

Consumer A polling component which bind with jSMPP and receive SMPP
messages and sends the SMPPs into the NMR as messages.

Provider A provider component receives XML message from the NMR and
converts into SMPP packet and sends it to SMPP server.

ServiceMix SNMP

Poller With this poller you can receive SNMP events by using the SNMP4J
library.

ServiceMix Validation

Endpoint With this endpoint you can provide schema validation of documents
using JAXP 1.3 and XMLSchema or RelaxNG.

ServiceMix-VFS

Poller An polling endpoint that looks for a file or files in a virtual file system
(based on Apache commons-vfs) and sends the files to a target service.

Sender An endpoint which receives messages from the NMR and writes the
message to the virtual file system.

ServiceMix-wsn2005

Create-pull-
point

Lets you create a WS-Notification pull point that can be used by a
requester to retrieve accumulated notification messages.

Publisher Sends messages to a specific topic.

Register-
publisher

An endpoint that can be used by publishers to register themselves.

Subscribe Lets you create subscriptions to a specific topic using the WSNotification
specification.

Jos Dirksen is a software architect for Atos Origin,
where he has been the architect for a number of large
integration projects over the last couple of years. Jos has
worked with various integration products, commercial and
open source, for the last five years. He co-authored the
book Open Source ESBs in Action, and regularly presents
on topics ranging from enterprise integration patterns
to JavaFX and OSGi, at such conferences as Devoxx and
JavaOne.

Open-Source ESBs in Action
describes how to use ESBs in real-
world situations. You will learn how
the various features of an ESB such
as transformation, routing, security,
connectivity, and more can be
implemented on the example of two
open-source ESB implementations:
Mule and ServiceMix.

BUY NOW
books.dzone.com/books/opensource-esb

ISBN-13: 978-1-934238-65-3
ISBN-10: 1-934238-65-1

9 781934 238653

50795

http://refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.refcardz.com
http://books.dzone.com/books/opensource-esb

