

DZone, Inc. | www.dzone.com

By Terry Ryan

C
o

ld
F

u
si

o
n

 9

 w

w
w

.d
zo

n
e.

co
m

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#66

Getting Started with

ColdFusion 9
CONTENTS INCLUDE:
n	 About Adobe ColdFusion
n	 Parts to ColdFusion
n	 Basics
n	 Working with Data
n	 Displaying Data
n	 Interacting with Other Technologies
n	 Hot Tips and more...

AbOUT ADObE COLDFUSION

Adobe ColdFusion is a rapid application development toolkit
that is written in Java and runs on top of the JVM. Its core
philosophies are: make things easy, and provide RAD without
restricting developers.

This Refcard will take you through getting started with
ColdFusion 9. It will take you through the various pieces and
languages that comprise ColdFusion. It will also list various
ways of communicating with databases, other tools, services,
and languages. This Refcard is aimed at programmers in other
languages that are considering taking a look at ColdFusion.

ColdFusion 9
ColdFusion 9 is currently in public beta and scheduled to be
released before then end of 2009. It is a significant release
in that it includes substantial additions to the feature set,
including: Hibernate, Ehcache, full language support for
scripting, interactivity with Java portal servers, Microsoft
SharePoint, and Microsoft Office documents

GETTING STArTED

Installing ColdFusion
You can download a free version of ColdFusion 9 Developer
from http://adobe.com/go/centaur. Download the appropriate
version for your OS, and install. The installer will take you
through a few methods of install:

Standard
This installs ColdFusion as a stand-alone server. Despite the
fact that ColdFusion runs on a J2EE server the stand-alone
version bundles the J2EE server. This makes the J2EE server
inaccessible, but the whole package easier to administer for
newcomers to J2EE. This is the easiest way to get started with
ColdFusion.

Multiserver
This will install ColdFusion as a single instance running on
JRun. This will allow you to install multiple ColdFusion servers
on your box if you wish. Additionally, JRun is a J2EE server
capable of running other EAR or WAR files.

EAR/WAR file
This will package ColdFusion and your installation options into
a J2EE EAR or WAR file. This file can then be deployed to the
J2EE server of your choice.

PArTS TO COLDFUSION

ColdFusion consists of two parts: the server that runs
ColdFusion, and the code you run on it. The server is a little

more significant to the toolkit than server components in most
other competing products.

Server
The server component of ColdFusion consists of an executable
server that can run as a service or daemon on your OS. This
server component handles processing ColdFusion requests but
also stores a lot of configuration for your applications centrally.
This allows you to configure your datasources in one place, and
then just refer to them by alias in your code. You can also set
things like mail server defaults, central code collections, path
mappings, third party licenses, etc. Most of what you can set
here can be overridden at the application level, but by setting
it here, you can avoid having to store that information in your
applications.

Code
ColdFusion uses two languages for writing code:

CFML
CFML is a tag-based language that prefixes all ColdFusion
specific calls with “cf.” Some developers use CFML to write
their entire application. Others however, use CFML for front
end code, display code where CFML mixes well with HTML and
use scripting for their business logic. Most examples of code
in this Refcard will be given in CFML except where showing
the script version is particularly important, but they all have
CFscript analogues.

CFScript
CFScript most closesly resembles JavaScript, but is influenced
by a few different styles of scripting including C, JavaScript and
ActionScript. Until recently, CFscript was not as fully featured
as CFML. As of ColdFusion 9, one should be able to do
anything they can do in CMFL in CFScript.

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com
http://ad.doubleclick.net/clk;217151540;40244636;u

DZone, Inc. | www.dzone.com

2
Getting Started with ColdFusion 9

bASICS

Types
ColdFusion is weakly typed. Variables themselves have no
concept of type, but the underlying data does. This means
that the same variable may act as multiple classical types
without having to be set for them. For example:

<cfset test = 1 />

The variable test can act like a numeric:

<cfset newTest = test + test />.

However it can also act like a string in the call:

<cfset stringLen = len(test) />.

There are two classes of variables by type in ColdFusion:
Simple and Complex.

Simple
Simple variables are variables that are limited to one
unstructured value. They include: String, Numeric, Boolean, or
DateTime.

Complex
Complex variables are those that either contain structured
elements or binary data. They include: structs, arrays, queries,
XML, images, and objects.

Scopes
All variables in ColdFusion live in a scope. The scopes are just
collections of variables that share similar sources or audiences.
They are all ColdFusion struct variables.

Single Request Scopes
These scopes only exist for the life of one page. They can only
be accessed by calls made in that page.

CGI Contains variables created by the Web server. It gives information like requesting
host, ip address, and complete URI information.

Form These are values passed by a form Post to a page.

Request Prefixing variables with “request” creates this scope. It exists across all calls,
functions, or custom tags, contained within one single request.

URL These are values passed by a form GET to a page or appended as a query
parameter on the tail end of URL request.

Variables This is the default scope for variables in a request that are not in another scope. It
is only accessible within the main flow of the request, and not directly in any other
call like a custom tag or object call.

Persistent Scopes
The following scopes exists for more than the life of one request.
They are often the place for storing variables which are used
across the life of a user’s session or an application’s life.

Application Variables persist across the life of an application. They are accessible by any
request that has the same application name.

Client Variables persist across the life of a user’s session in a particular application.
They are accessible from any call for a particular user in a particular application.
Unlike every other scope, its values can be stored on disk or database.

Cookie Variables persist either across the life of the user’s browser session, or according
to a date that is specified when set.

Server Variables persist across the life of the server. They are accessible by any call
anywhere on the server. Also contains information about the server instance of
ColdFusion, like version, OS, etc.

Session Variables persist across the life of a user’s session in a particular application.
They are accessible from any call for a particular user in a particular application.
Unlike the Client scope, the values are stored in server memory.

Component and UDF Scopes
The following scopes are used with CFCs and user defined
functions (UDFs.)

Arguments Variables that are passed in as arguments to a UDF. Values set here accessible
only to the currently running call of the UDF and are therefore thread-safe.

This In CFC the variables scope is accessible externally and to any of the internal
methods. It persists across the life of the instance of the CFC. Not thread-safe.

Local Private scope for a UDF . Values set here accessible only to the currently running
call of the UDF and are therefore thread-safe. Created by prefixing variables
with “local” or by setting with “var” keyword.

Variables In CFC the variables scope is accessible internally to the any of the methods and
persists across the life of the instance of the CFC. Not thread-safe.

Custom Tag Scopes
The following scopes are used custom tags.

Attributes Variables that are passed into a custom tag. Values set here accessible only to
the currently running call of the custom tag and are therefore thread-safe.

Caller An alias for the variables scope of the calling page of a custom tag.

Variables The default scope for variables in a custom tag. Values here are only accessible
in the custom tag itself.

Variables do not have to be explicitly scoped when referenced,
but this is usually preferable for readability and performance.
An unscoped variable call searches the following scope for
existence:

 1) Local (UDFs and CFCs only) Arguments (UDFs and CFCs only)

 2) Variables

 3) CGI

 4) URL

 5) Form

 6) Cookie

 7) Client

Session, Application, Server, and Request scopes will not yield
their values without an explicit reference to them.

Types of ColdFusion Files
Page
A page is your basic ColdFusion file. Its file extension is “.cfm.”

Here is a traditional “Hello World” page.

<cfset variable = “Hello World” />
<cfoutput>#variable#</cfoutput>

Custom Tag
A custom tag is a special type of page. It encapsulates
commonly used code, and allows you to call it using
<cfmodule>, or with the prefix <cf_. Its file extension is “.cfm.”

Here is a basic custom tag named DisplayDate.cfm:

<cfparam name=”attributes.date” default=”#now()#”/>
<cfoutput>
<p>#DateFormat(attributes.date, “mmmm d, yyyy”)#</p>
</cfoutput>

It takes a date that is passed in and formats it. If no date is
passed in it sets the date to Now().

You would call it like this:

<cf_displayDate >
<cf_displayDate date =”#CreateDate(2009,7,8)#”>

It would display like this:

July 15, 2009

July 8, 2009

Component
A ColdFusion Component, or CFC for short, is a collection of
properties and UDFs wrapped together. It is analogous to but

http://www.dzone.com
http://www.refcardz.com
http://ad.doubleclick.net/clk;217151540;40244636;u

DZone, Inc. | www.dzone.com

3
Getting Started with ColdFusion 9

not exactly the same as a Java Class. Its file extension is “.cfm.”

As of ColdFusion 9, properties yield implicit getters and setters.

They can be defined either in CFML:

<cfcomponent>
<cfproperty name=”firstName” />
<cfproperty name=”lastName” />
<cfproperty name=”email”/>
<cffunction name=”getDisplayName” returntype=”string”>
<cfreturn This.getFirstName() & “ “ & This.getLastName() />
</cffunction>
</cfcomponent>

Or in CFScript:

component{
property firstName;
property lastName;
property email;
string function getDisplayName(){
return This.getFirstName() & “ “ & This.getLastName();
}
}

Either version of the CFC would be called like this:

<cfset person = New cfcScriptExample() />
<cfset person.setfirstName(‘Terry’) />
<cfset person.setlastName(‘Ryan’) />
<cfset person.setEmail(‘terry@terrenceryan.com’) />
<cfoutput>
<p>#person.getDisplayName()#</p>
<p>#person.getEmail()#</p>
</cfoutput>

And they would display this:

Terry Ryan

terry@terrenceryan.com

Application Framework
ColdFusion code is packaged into Applications. Applications
are comprised of folders, files, and an Application.cfc. The
Application.cfc stores settings that allow a developer to handle
the behavior of applications, sessions and requests. There are a
number of methods that ColdFusion can respond to in this file:

onApplicationEnd Is not triggered when the application times outs or the server
shuts down gracefully.

onApplicationStart Is triggered the first time an application is called. You can use this
function to initialize application variables.

onError Is triggered whenever an uncaught exception is raised anywhere
in the application.

onMissingTemplate Triggered whenever a request is made for a cfm or cfc that doesn’t
exist in the application. Can be used to simulate virtual files.

onRequest Replaces a request. If you use this method, you have to explicitly
include the intended page or cfc. Useful for wrapping layout and
formatting features around an application.

onRequestEnd Triggered by the end of a request.

onRequestStart Triggered by the start of a request.

onSessionEnd Triggered the first time a particular user calls a URL in the
application. Useful for setting session scoped variables.

onSessionStart Triggered when user session ends, usually because the session
timed out.

wOrkING wITh DATA

ColdFusion was originally designed to be a language to bridge
backend databases to Web pages. As such, handing record
sets from database is a key part to using ColdFusion.

RDBMS
ColdFusion has built in support for many flavors of database
including: Microsoft SQL, MySQL, Oracle, Derby, DB, and

Postegres. However ColdFusion can interact with any RDBMS
with a JDBC driver.

Datasources
In order to work with a particular database in ColdFusion, you
must first create a datasource. A datasource is the collection
of settings you use to communicate with a database, such as
database type, sever, port, tablespace, or database, username
and password. You collect all of these settings and give them
a meaningful name. ColdFusion then allows you to refer to
just the datasource name when connecting to the database.
The server will handle maintaining connections, closing them,
persisting them. In short ColdFusion abstracts database
connections into datasources.

Queries
A recordset returned from a database will be turned into
a special type of variables called, in ColdFusion, a query
variable. <cfloop> and <cfoutput> along with a number of other
tags allow you to pass a query attribute in for easy iteration.
Within one of those iterators you can just refer to the column
you are calling:

<cfloop query=”personRS”>
<cfset fullname = lastName & “, “ & firstName />
</cfloop>

Alternately you can choose to manually loop through the query
(broken up for readability):

<cfloop index=”i” from=”1” to=”# personRS.recordCount#”>
<cfset fullname = personRS .lastName[i] />
<cfset fullname = fullname & “, ” />
<cfset fullname = fullname & personRS .firstName[i] />
</cfloop>

In order to help looping and paging, queries have a few
special properties.

ColumnList A comma delimited list of columns in the query.

CurrentRow The current row that is being accessed in the context of a cfoutput or cfloop
call.

RecordCount The total number of records.

SQL
Calling SQL is a matter of using <cfquery> with a datasource:

<cfquery name=”resultSet” datasource=”cfartgallery”>
SELECT * FROM artists
</cfquery>

Additionally ColdFusion allows you to do parameterized
queries using the cfqueryparam tag.

<cfquery name=”resultSet” datasource=”cfartgallery”>
SELECT *
FROM artists
WHERE artistid =
<cfqueryparam cfsqltype=”cf_sql_integer” value=”1” />
</cfquery>

Stored Procedure
Stored procedures can also be called from ColdFusion using
the <cfstoredproc> tag.

ORM
As of ColdFusion 9, Hibernate is baked into ColdFusion and
allows CFCs to be mapped to database tables.

Enabling ORM
To enable ORM for an application, the following settings are
required in the Application.cfc:

http://www.dzone.com
http://www.refcardz.com
http://ad.doubleclick.net/clk;217151540;40244636;u

DZone, Inc. | www.dzone.com

4
Getting Started with ColdFusion 9

This.datasource The name of the datasource to use for ORM CFCs.

This.ormenabled A Boolean which turns on ORM.

Basics
Assuming that a table named “person” with columns
firstName, lastName, and email exists, and that there is a
primary key personID, here is the code for a CFC named
person.cfc that is mapped to the table:

<cfcomponent persistent=”true”>
<cfproperty name=”personID” fieldtype=”id” />
<cfproperty name=”firstName” />
<cfproperty name=”lastName” />
<cfproperty name=”email”/>
</cfcomponent>

Data from the table can then be retrieved using the
EntityLoad() function:

<cfset resultSet = entityLoad(“artists”) />

Or one record (with id = 5) can be requested:

<cfset resultSet = entityLoad(“artists”, 5) />

Creating a new record uses the EntityNew() function:

<cfset person = entityNew(“artists”) />

Then whether you are creating or updating a record, the code
is the same:

<cfset person.setFirstName(“Terry”) />
<cfset person.setLastName(“Ryan”) />
<cfset person.setEmail(“terry@terrenceryan.com”) />
<cfset EntitySave(person) />

Deleting records would use the EntityDelete() Function:

<cfset EntityDelete(person) />

Relationships
CFCs support Hibernate relationships, and allow you to setup
one-to-one, one-to-many, many-to-one, and many-to-many
relationships.

Mappings
CFCs also support more advanced features of Hibernate
including: Join Mapping, Collection Mapping, Inheritance
Mapping, and Embedded Mapping.

Hibernate Options
In additional to all of the features that ColdFusion enables
through CFCs, it also can take hbm.xml files to model your
objects.

Also ColdFusion allows for making queries against the object
model using HQL, Hibernate’s SQL-like query language.

DISPLAyING DATA

Output
The <cfoutput> tag handles basic output of variables.

<cfset variable = “Hello World” />
<cfoutput>#variable#</cfoutput>

Pound Signs
You might notice the use of pounds signs. Pound signs
are used to display or pass the literal value of a variable or
operation. So normally when you set a variable to another
variable, you just pass the variable:

 <cfset displayName = FirstName & “ “ & LastName />

You can also pass the literal value:

<cfset displayName = “#FirstName# #LastName#” />

Dumping Data
One of the most helpful debugging tags in ColdFusion is
<cfdump>. It will just output the value of the variable. For
simple variables, this looks exactly like <cfoutput>, but for
complex variables, <cfdump> will format a representation of the
data to make it easy to understand. Take for example a call to
a page:
http://localhost/index.cfm?action=edit&id=1

Those query parameters get passed to the URL scope as
discussed Scopes. You can dump the URL scope because it is
a struct:

<cfdump var=”#url#”/>

It yields figure 1.

If we were to dump a query:

<cfquery name=”rs” datasource=”cfartgallery” maxrows=”5” >
SELECT firstName, lastName, City, State
FROM artists
</cfquery>
<cfdump var=”#rs#”>

It yields figure 2.

UI Components
In addition to being able to output variables to HTML
templates, ColdFusion has built in a number of UI controls for
handling of complex data.

INTErACTING wITh OThEr TEChNOLOGIES

ColdFusion can communicate with a large number of servers,
products and languages using built-in tags.

Common Services
Mail Servers <cfmail>,<cfimap>, <cfpop>

Web Servers <cfhttp> (support SSL)

FTP Servers <cfftp> (support FTPS and SFTP)

Directory Servers <cfldap>,<cfntauthenticate>

http://www.dzone.com
http://www.refcardz.com
http://ad.doubleclick.net/clk;217151540;40244636;u

DZone, Inc. | www.dzone.com

5
Getting Started with ColdFusion 9

Microsoft Servers
Exchange <cfexchangeconnection>, <cfexchangecalender>,

<cfexchangeccontact>, <cfexchangefilter>,
<cfexchangetask>, <cfexchangemail>

SharePoint <cfsharepoint>

Documents
PDF <cfdocument>, <cfpdf>

Office Documents <cfdocument>, <cfspreadsheet>, <cfpresentation>

Languages
Using the tag <cfobject> or the function CreateObject() you
can create completely accessible objects for the Java, or .Net.
For example you can pass info from .Net to Java in two lines of
code:

<cfset pwd = CreateObject(“.Net”, “System.IO.Directory”).
getCurrentDirectory() />
<cfset jStr = CreateObject(“java”, “java.lang.String”).init(pwd)
/>

In addition, the object tools allow you to interface COM and
CORBA.

SErvICES

A large part of current Web development is programming to
and against service APIs. ColdFusion has a number of built in
tools to consume and produce services using either SOAP or
REST.

Consuming
SOAP
ColdFusion is able to consume SOAP Web services, by using
either the <cfinvoke> or <cfobject> tags. You simply point
them at the WDSL of the service.

Assume a Web service that provides nuggets of data with a
method browse that takes a parameter named age. The idea is
to give me the content that is age days old. It has a wsdl URL
of http://forta.com/cf/tips/syndicate.cfc?wsdl. Here’s how I
would use it:

<cfset wsURL=”http://forta.com/cf/tips/syndicate.cfc?wsdl” />
<cfinvoke webservice=”#wsURL#”
method=”browse”
returnvariable=”result”>
<cfinvokeargument name=”age” value=”0” />
</cfinvoke>
<cfdump var=”#result#”>

This yields figure 3.

REST
REST Web services can be consumed by using <cfhttp>.

<cfset restURL = “http://search.twitter.com/search.json” />
<cfset searchTerm = “ColdFusion” />
<cfhttp url=”#restURL#?q=#searchTerm#” result=”response” />

The result will be a ColdFusion struct with a number of keys.
The json response will be the key fileContent. It will be in the
json format and will have to be parsed into a ColdFusion XML
variable:

<cfset serverResponse = “#deserializeJSON(response.fileContent)#”
/>
<cfdump var=”#serverResponse#”>

This yields figure 4.

<cfhttp> supports the HTTP verbs that usually get used with
REST: get, put, post, delete.

Formats
ColdFusion can parse the various formats that come back from
Web services:

XML <cfxml>, XmlParse()

JSON DeserializeJSON()

RSS/Atom cfxml>, <cffeed>, XmlParse()

Providing
SOAP
Any CFC can be turned into a SOAP Web service by adding
access=”remote” to a method:

<cfcomponent>
<cffunction name=”now” access=”remote” returntype=”date”>
<cfreturn Now() />
</cffunction>
</cfcomponent>

ColdFusion will autogenerate the wsdl for you if you append
“?wsdl” to the URL of the CFC: http://localhost/ws.cfc?wsdl

REST
CFCs with remote methods can also be called as REST service.
To call the Web service created in the preceding SOAP section
you just append the method to the URL:

http://localhost/ws.cfc?method=now

However this might not strike some people as RESTful enough.

http://www.dzone.com
http://www.refcardz.com
http://ad.doubleclick.net/clk;217151540;40244636;u

Design Patterns

By Jason McDonald

CONTENTS INCLUDE:

n	 Chain of Responsibility

n	 Command

n	 Interpreter

n	 Iterator

n	 Mediator

n	 Observer

n	 Template Method and more...

DZone, Inc. | w
ww.dzone.com

D
es

ig
n

Pa
tt

er
ns

 w

w
w

.d
zo

ne
.c

om

 G
et

 M
o

re
 R

ef
ca

rz
!

V
is

it
 r

ef
ca

rd
z.

co
m

#8

Brought to you by...

Inspired

by the

GoF

Bestseller

This Design Patterns refcard provides a quick reference to the

original 23 Gang of Four (GoF) design patterns, as listed in

the book Design Patterns: Elements of Reusable Object-

Oriented Software. Each pattern includes class diagrams,

explanation, usage information, and a real world example.

Chain of Responsibility
, continued

Object Scope: Deals with object relationships that can

be changed at runtime.

Class S
cope: Deals with class relationships that can be

changed at compile time.

C Abstract Factory

S Adapter

S Bridge

C Builder

B Chain of

Responsibility

B Command

S Composite

S Decorator

S Facade

C Factory Method

S Flyweight

B Interpreter

B Iterator

B Mediator

B Memento

C Prototype

S Proxy

B Observer

C Singleton

B State

B Strategy

B Template Method

B Visito
r

ABOUT DESIGN PATTERNS

Creational Patterns: U
sed to construct objects such

that they can be decoupled from their im
plementing

system.

Structural Patterns: U
sed to form large object

structures between many disparate objects.

Behavioral Patterns: U
sed to manage algorithms,

relationships, and responsibilitie
s between objects.

CHAIN OF RESPONSIBILITY

 O
bject Behavioral

COMMAND

 O

bject Behavioral

successor

Client

<<interface>>

Handler

+handlerequest()

ConcreteHandler 1

+handlerequest()

ConcreteHandler 2

+handlerequest()

Purpose
Gives more than one object an opportunity to handle a request by linking

receiving objects together.

Use

When

n
	Multiple objects may handle a request and the handler doesn’t have to

 be a specific object.

n
	A set of objects should be able to handle a request with the handler

 determined at runtime.

n
	A request not being handled is an acceptable potential outcome.

Example
Exception handling in some languages implements this pattern. When an

exception is thrown in a method the runtime checks to see if th
e method

has a mechanism to handle the exception or if it
 should be passed up the

call stack. When passed up the call stack the process repeats until code to

handle the exception is encountered or until th
ere are no more parent

objects to hand the request to.

Receiver

Invoker

Command

+execute()

Client
ConcreteCommand

+execute()

Purpose
Encapsulates a request allowing it to

 be treated as an object. This allows

the request to be handled in traditionally object based relationships such

as queuing and callbacks.

Use

When

n
	You need callback functionality.

n
	Requests need to be handled at variant tim

es or in variant orders.

n
	A history of requests is needed.

n
	The invoker should be decoupled from the object handling the invocation.

Example
Job queues are widely used to facilitate the asynchronous processing

of algorithms. By utilizing the command pattern the functionality to be

executed can be given to a job queue for processing without any need

for the queue to have knowledge of the actual implementation it is

invoking. The command object that is enqueued implements its particular

algorithm within the confines of the interface the queue is expecting.

Upcoming Titles
RichFaces
Agile Software Development
BIRT
JSF 2.0
Adobe AIR
BPM&BPMN
Flex 3 Components

Most Popular
Spring Configuration
jQuery Selectors
Windows Powershell
Dependency Injection with EJB 3
Netbeans IDE JavaEditor
Getting Started with Eclipse
Very First Steps in Flex

“Exactly what busy developers need:
simple, short, and to the point.”

James Ward, Adobe Systems

Download Now

Refcardz.com

Professional Cheat Sheets You Can Trust

DZone, Inc.
1251 NW Maynard
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2009 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher. Reference: Adobe ColdFusion 8 Web Application Construction Kit, Volume 1: Getting Started, Ben Forta, Raymond
Camden, Charlie Arehart, Adobe Press, September 2007

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to

more than 3.3 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheatsheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

6
Getting Started with ColdFusion 9

ISBN-13: 978-1-934238-87-5
ISBN-10: 1-934238-87-2

9 781934 238875

50795

Instead you should write an intermediate page between the
CFC and the caller that uses the HTTP verb to determine the
method to take. This can be done either by introspecting the
CGI scope or using the GetHTTPHeaders() function.

AJAX
While not a protocol per se, ColdFusion has a tag that allows
remote methods to be called from JavaScript. <cfajaxproxy>
create a JavaScript proxy for a specified CFC and call methods
on it from JavaScript as a JavaScript object. Using the Web
service created in the preceding SOAP we can call it and pass
the value to alert:

<cfajaxproxy cfc=”ws” jsclassname=”ws” />
<script type=”text/javascript”>
wsInstance = new ws();
alert(wsInstance.now());
</script>

Format
The returnformat of any remote method can be configured to
a couple of options:

plain Just the output, assuming it is a simple variable type.

JSON Serializes the results as JSON

RSS/Atom Serializes the results as WDDX

AMF
Finally, any remotely exposed service is also available as a
Flash Remoting or AMF service. This means that it can be
consumed in Adobe Flex using the RemoteObject interface.

Adobe ColdFusion Site

(Download and Licensing Information)

http://adobe.com/go/coldfusion

ColdFusion Developer Center

(Articles and Tutorials)

http://adobe.com/devnet/coldfusion/

ColdFusion Bloggers Aggregator

(ColdFusion Community)

http://coldfusionbloggers.org/

RIAForge

(Open Source ColdFusion Projects)

http://riaforge.com

ColdFusion on Twitter

(Announcements)

http://twitter.com/coldfusion

rECOMMENDED bOOkAbOUT ThE AUThOr

This Getting Started volume starts with Web and Internet
fundamentals and database concepts and design, and
then progresses to topics including creating data-driven
pages, building complete applications, implementing
security mechanisms, integrating with e-mail, building
reusable functions and components, generating data-
driven reports and graphs, building Ajax-powered user

interfaces, and much more.

Terry ryan is currently an Adobe Platform Evangelist for
ColdFusion. His job is to drum up support and excitement
among developers for Adobe ColdFusion. He has been
working with it for over 10 years. He’s presented at various
Adobe ColdFusion events including cf.Objective, webDU,
and Adobe Max. Prior to joining Adobe, Terry worked for the
Wharton School of Business at the University of Pennsylvania

in various roles around ColdFusion from Application Developer to System
Administrator.

Terrence Ryan | Adobe Platform Evangelist | http://terrenceryan.com

bUy NOw
books.dzone.com/books/adobe-coldfusion-8-web

http://refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.refcardz.com
http://ad.doubleclick.net/clk;217151540;40244636;u
http://books.dzone.com/books/adobe-coldfusion-8-web

