

DZone, Inc. | www.dzone.com

By Masoud Kalali

About Oracle Berkeley DB

O
ra

cl
e

 B
er

ke
le

y
D

B

w
w

w
.d

zo
n

e.
co

m

G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#68

Getting Started with
Oracle Berkeley DB

CONTENTS INCLUDE:
n	 Oracle Berkeley DB Family
n	 Berkeley DB Java Edition Features
n	 BDB JE Base API and Collections API
n	 BDB JE Direct Persistent Layer
n	 BDB JE Transaction Support and Performance Tuning
n	 BDB JE Backup and Recovery
n	 Hot Tips and more...

The Oracle Berkeley DB (BDB) family consists of three open
source data persistence products which provide developers
with fast, reliable, high performance, enterprise ready local
databases implemented in the ANSI C and Java programming
languages. The BDB family typically stores key-value pairs but
is also flexible enough to store complex data models. BDB and
BDB Java Edition share the same base API, making it possible
to easily switch between the two.

We will review the most important aspects of Oracle BDB
family briefly. Then we will dig deep into Oracle BDB Java
Edition and see what its exclusive features are. We discuss
Based API and Data Persistence Layer API. We will see how
we can manage transactions DPL and Base API in addition
to persisting complex objects graph using DPL will form the
overall development subjects. Backup recovery, tuning, and
data migration utilities to migrate data between different
editions and installations forms the administrations issues
which we will discuss in this Refcard.

The BDB Family

Oracle BDB Core Edition
Berkeley DB is written in ANSI C and can be used as a library
to access the persisted information from within the parent
application address space. Oracle BDB provides multiple
interfaces for different programming languages including
ANSI C, the Java API through JNI in addition to Perl, PHP, and
Python.

Oracle BDB XML Edition
Built on top of the BDB, the BDB XML edition allows us to
easily store and retrieve indexed XML documents and to use
XQuery to access stored XML documents. It also supports
accessing data through the same channels that BDB supports.

BDB Java Edition
BDB Java Edition is a pure Java, high performance, and flexible
embeddable database for storing data in a key-value format. It
supports transactions, direct persistence of Java objects using
EJB 3.0-style annotations, and provides a low level key-value
retrieval API as well as an “access as collection” API.

Key Features

Each of the BDB family members supports different feature
sets. BDB XML edition enjoys a similar set of base features
as the Core BDB. BDB Java edition on the other hand is
implemented in a completely different environment with an

entirely different set of features and characteristics (See Table
4). The base feature sets are shown in Table 1.

Table 1: Family Feature Sets

Feature Set Description

Data Store (DS) Single writer, multiple reader

Concurrent Data Store (CDS) Multiple writers, multiple snapshot readers

Transactional Data Store (TDS) Full ACID support on top of CDS

High Availability (HA) Replication for fault tolerance. Fail over recovery support

Table 2 shows how these features are distributed between the
different BDB family members.

Table 2: Different Editions’ Feature Sets DS CDS TS HA

BDB/BDB XML Edition    

BDB Java Edition  

Additional Features

The BDB family of products has several special features and
offers a range of unique benefits which are listed in Table 3.

Table 3: Family Features and Benefits

Feature Benefit

Locking High concurrency

Data stored in application-native format Performance, no translation required

Programmatic API, no SQL Performance, flexibility/control

In process, not client-server Performance, no IPC required

Zero administration Low cost of ownership

ACID transactions and recovery Reliability, data integrity

Dual License Open/Closed source distributions

n 	Authoritative content
n 	Designed for developers
n 	Written by top experts
n 	Latest tools & technologies
n	 Hot tips & examples
n 	Bonus content online
n 	New issue every 1-2 weeks

Subscribe Now for FREE!
Refcardz.com

Get More Refcardz
(They’re free!)

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

2
Oracle Berkeley DB

In memory or on disk operation Transacted caching/ persisted data store

Similar data access API Easy switch between JE and BDB

Just a set of library Easy to deploy and use

Very large databases Virtually no limit on database size

Features unique to BDB Java Edition are listed in Table 4.

Table 4: BDB Java Edition Exclusive Features

Feature Benefit

Fast, indexed, BTree Ultra fast data retrieval

Java EE JTA and JCA support Integration with Java EE application servers

Efficient Direct Persistence Layer EJB 3.0 like annotation to store Java Objects graph

Easy Java Collections API Transactional manipulation of Base API through
enhanced Java Collections

Low Level Base API Work with dynamic data schema

JMX Support Monitor able from within parent application

These features, along with a common set of features, make the
Java edition a potential candidate for use cases that require
caching, application data repositories, POJO persistence,
queuing/buffering, Web services, SOA, and Integration.

Introducing Berkeley DB java Edition

Installation
You can download BDB JE from http//bit.ly/APfJ5. After
extracting the archive you’ll see several directories with self-
describing names. The only file which is required to be in the
class path to compile and run the included code snippet is je-
3.3.75.jar (the exact file name may vary) which is placed inside
the lib directory. Notice that BDB JE requires J2SE JDK version
1.5.0_10 or later.

Hot
Tip

All editions of Berkeley DB are freely available for download
and can be used in open source products which are
not distributed to third parties. A commercial license is
necessary for using any of the BDB editions in a closed
source and packaged product. For more information about
licensing visit: http://bit.ly/17pMwZ

Access APIs
BDB JE provides three APIs for accessing persisted data. The
Base API provides a simple key-value model for storing and
retrieving data. The Direct Persistence Layer (DPL) API lets
you persist any Java class with a default constructor into the
database and retrieve it using a rich set of data retrieval APIs.
And finally the Collections API which extends the well known
Java Collections API with data persistence and transaction
support over data access.

Base API sample
The Base API is the simplest way to access data. It stores a key
and a value which can be any serializable Java object.

EnvironmentConfig envConfig = new EnvironmentConfig();
envConfig.setAllowCreate(true);
Environment dbEnv = new Environment(new File(“/home/masoud/dben”),
envConfig);
DatabaseConfig dbconf = new DatabaseConfig();
dbconf.setAllowCreate(true);
dbconf.setSortedDuplicates(false);//allow update
Database db = dbEnv.openDatabase(null, “SampleDB “, dbconf);
DatabaseEntry searchEntry = new DatabaseEntry();
DatabaseEntry dataValue = new DatabaseEntry(“ data content”.
getBytes(“UTF-8”));
DatabaseEntry keyValue = new DatabaseEntry(“key content”.
getBytes(“UTF-8”));
db.put(null, keyValue, dataValue);//inserting an entry

db.get(null, keyValue, searchEntry, LockMode.DEFAULT);//retrieving
record
String foundData = new String(searchEntry.getData(), “UTF-8”);
dataValue = new DatabaseEntry(“updated data content”.
getBytes(“UTF-8”));
db.put(null, keyValue, dataValue);//updating an entry
db.delete(null, keyValue);//delete operation
db.close();
dbEnv.close();

There are multiple overrides for the Database.put method to
prevent duplicate records from being inserted and to prevent
record overwrites.

DPL Sample
DPL sample consists of two parts, the entity class and the
entity management class which handle CRUD over the entity
class.

Entity Class
@Entity
public class Employee {
 @PrimaryKey
 public String empID;
 public String lastname;
 @SecondaryKey(relate = Relationship.MANY_TO_MANY,
 relatedEntity = Project.class,onRelatedEntityDelete =
DeleteAction.NULLIFY)
 public Set<Long> projects;
 public Employee() { }
 public Employee(String empID, String lastname, Set<Long> projects)
{
 this.empID = empID;
 this.lastname = lastname;
 this.projects = projects;
 }
 }}

This is a simple POJO with few annotations to mark it as an
entity with a String primary key. For now ignore the
@Secondarykey annotation, we will discuss it later.

The data management Class
EnvironmentConfig envConfig = new EnvironmentConfig();
envConfig.setAllowCreate(true);
Environment dbEnv = new Environment(new File(“/home/masoud/dben-
dpl”), envConfig);
StoreConfig stConf = new StoreConfig();
stConf.setAllowCreate(true);

EntityStore store = new EntityStore(dbEnv, “DPLSample”, stConf);

PrimaryIndex<String, Employee> userIndex;
userIndex = store.getPrimaryIndex(String.class, Employee.class);
userIndex.putNoReturn(new Employee(“u180”, “Doe”, null));//insert
Employee user = userIndex.get(“u180”);//retrieve
userIndex.putNoReturn(new Employee(“u180”, “Locke”, null));//
Update
userIndex.delete(“u180”);//delete

store.close();
dbEnv.close();

These two code snippets show the simplest from of performing
CRUD operation without using transaction or complex object
relationships.

Sample code description
An Environment provides a unit of encapsulation for one or
more databases. Environments correspond to a directory on
disk. The Environment is also used to manage and configure
resources such as transactions. EnvironmentConfig is used to
configure the Environment, with options such as transaction
configuration, locking, caching, getting different types of
statistics including database, locks and transaction statistics, etc.

One level closer to our application is DatabaseConfig and
Database object when we use Base API. When we use DPL
these objects are replaced by StoreConfig and EntityStore.

In Base API DatabaseConfig and Database objects provide
access to the database and how the database can be accessed.

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

3
Oracle Berkeley DB

Hot
Tip

When closing an Environment or Database or when we
commit a Transaction in a multi thread application we
should ensure that no thread still has in-progress tasks.

BDB Java edition environment anatomy

A BDB JE database consists of one or more log files which are
placed inside the environment directory.

The log files are named NNNNNNNN.jdb where NNNNNNNN
is an 8-digit hexadecimal number that increases by 1 (starting
from 00000000) for each log file written to disk. BDB JE rolls
to next file when the current file size reaches the predefined
configurable size. The predefined size is 10MB.

A BDB database can be considered like a relational table in an
RDBMS. In Base API we directly use the database we need to
access, while in DPL we use an EntityStore which may interact
with multiple databases under the hood.

Each BDB environment can contain tens of databases and all of
these databases will be stored in a single row of log files. (No
separate log files per-database). Figure 1 shows the concept
visually.

Hot
Tip

To create in-memory database we can use DatabaseConfig.
setTemporary(true) and StoreConfig.setTemporary(true)
to get an in-memory instance with no data persisted
beyond the current session.

Figure 1: BDB JE environment and log files.

Hot
Tip

The environment path should point to an already
existing directory, otherwise the application will face and
exception. When we create an environmnt object for the
first time, necessary files are created inside that direcory.

BDB Java edition environment anatomy

Table 5 shows Base API characteristics and benefits. The key-
value access model provides the most flexibility.

Transaction Support

Transaction Support is an inseparable part of enterprise
software development. BDB JE supports transaction and
provides concurrency and record level locking. To add
transaction support to DPL in our DPL sample code we can
introduce the following changes:

...
envConfig.setTransactional(true);
stConf.setTransactional(true);
TransactionConfig txConf = new TransactionConfig();
stConf.setTransactional(true);
txConf.setReadCommitted(true);
Transaction tx= dbEnv.getThreadTransaction();
dbEnv.beginTransaction(tx, txConf);
...
userIndex.putNoReturn(tx, new Employee(“u180”, “Doe”, null));//
insert
...
tx.commit();
...

The simplicity of BDB JE Transaction Support makes it very
suitable for transactional cache systems. The isolation level,
deferrable and manual synchronization of transactional
data with hard disk (Durability), replication policy, and
transaction lock request and transaction lifetime timeout can
be configured using the Transaction and TransactionConfig
objects.

Configurations like read-only access, record duplication
handling, creating in-memory databases, transaction support,
etc. are provided through DatabaseConfig.

In DPL StoreConfig and EntityStore objects provide access to
object storage and how the object storage can be accessed.
Configurations such as read only access, data model mutation,
creating in-memory databases, transaction support, etc. are
provided through StoreConfig.

The PrimaryIndex class provides the primary storage and
access methods for the instances of a particular entity class.
There are multiple overrides for the PrimaryIndex.put method
to prevent duplicate entity insertion and provide entity
overwrite prevention.

 

Hot
Tip

Environment, Database, and EntityStore are thread safe
meaning that we can use them in multiple threads without
manual synchronization

Table 5: Base API Features

Key value store retrieval, value can be anything

Cursor API to traverse in a dataset forward and backward

JCA (Java Connectivity Architecture) support

JMX (Java Management eXtension) support

Table 6 shows most important DPL API characteristics and
capabilities. Annotation and Object Mapping make rapid
application development possible.

Table 6: DPL API Features

Type Safe access to persisted objects

Updating classes with adding new fields is supported

Persistent class fields can be private, package-private, protected or public

Automatic and extendable data binding between Objects and underlying storage

Index fields can be accessed using a standard java.util collection.

Java annotations are used to define metadata like relations between objects

Field refactoring is supported without changing the stored date.(Called mutation)

Table 6 and Table 7 list the features that mostly determine
when we should use which API. Table 7 lists possible use cases
for each API.

Table 7: Which API is suitable for your case

Use case characteristics Suitable API

Data model is highly dynamic and changing Base API

Data model has complex object model and relationships DPL

Need application portability between Java Edition and Core Edition DPL, Base API

Transaction support in Base API is a bit different, as in Base
API we directly deal with databases while in DPL we deal with
environment and EntityStore objects. The following changes
will allow transaction support in Base API.

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

4
Oracle Berkeley DB

Hot
Tip

Once a transaction is committed, the transaction handle is
no longer valid and a new transaction object is required for
further transactional activities.

Persisting Complex Object Graph using DPL

For this section we leave Base API alone and focus on using
DPL for complex object graphs. We continue with introducing
secondary index and many-to-many mapping.

Let’s look at some important annotations that we have for
defining the object model.

Table 8: BDB JE annotations

Annotation Description

@Entity Declares an entity class; that is, a class with a primary index and optionally
one or more indices.

@PrimaryKey Defines the class primary key and must be used one and only one time for
every entity class.

@SecondaryKey Declares a specific data member in an entity class to be a secondary key for
that object. This annotation is optional, and can be used multiple times for
an entity class.

@Persistent Declares a persistent class which lives in relation to an entity class.

@NotTransient Defines a field as being persistent even when it is declared with the transient
keyword.

@NotPersistent Defines a field as being non-persistent even when it is not declared with the
transient keyword.

@KeyField Indicates the sorting position of a key field in a composite key class when
the Comparable interface is not implemented. The KeyField integer
element specifies the sort order of this field within the set of fields in the
composite key.

We used two of these annotations in practice and you saw
@SecondaryKey in the Employee class. Now we are going to see
how the @SecondaryKey annotation can be used. Let’s create
the Project entity which the Employee class has a many-to-many
relation with.

@Entity
public class Project {

 public String projName;
 @PrimaryKey(sequence = «ID»)
 public long projID;

 public Project() {
 }
 public Project(String projName) {
 this.projName = projName;
 }
}

The @PrimaryKey annotation has a string element to define
the name of a sequence from which we can assign primary
key values automatically. The primary key field type must be

numerical and a named sequence can be used for multiple
entities.

Now let’s see how we can store and retrieve an employee with
its related project objects.

...
PrimaryIndex<String, Employee> empByID;
PrimaryIndex<Long, Project> projByID;

empByID = store.getPrimaryIndex(String.class, Employee.class);
projByID = store.getPrimaryIndex(Long.class, Project.class);

SecondaryIndex<Long, String, Employee> empsByProject;
empsByProject = store.getSecondaryIndex(empByID, Long.class,
“projects”);

Set<Long> projects = new HashSet<Long>();
Project proj = null;

proj = new Project(“Develop FX”);
projByID.putNoReturn(proj);
projects.add(proj.projID);
proj = new Project(“Develop WS”);
projByID.putNoReturn(proj);
projects.add(proj.projID);

empByID.putNoReturn(new Employee(“u146”, “Shephard”, projects));//
insert
empByID.putNoReturn(new Employee(“u144”, “Locke”, projects));//
insert

EntityIndex<String, Employee> projs = empsByProject.subIndex(proj.
projID);
EntityCursor<Employee> pcur = projs.entities();
for (Employee entity : pcur) {
 //process the employees
}

EntityCursor<Employee> emplRange = empByID.entities(“e146”, true,
“u148”, true);
for (Employee entity : emplRange) {
 //process the employees
}

emplRange.close();
pcur.close();
store.close();
dbEnv.close();

The Environment and EntityStore definitions are omitted.
The SecondaryIndex provides primary methods for retrieving
objects related to the Secondary Key of a particular object.
The SecondaryIndex can be used to retrieve the related objects
through a traversable cursor. We can also use SecondaryIndex
to query for a specific range of objects in a given range for its
primary key.

Table 9: Supported Object Relation

Relation Description

ONE_TO_ONE A single entity is related to a single secondary key value.

ONE_TO_MANY A single entity is related to one or more secondary key values.

MANY_TO_ONE One or more entities are related to a single secondary key value.

MANY_TO_MANY One or more entities are related to one or more secondary key values.

A SecondaryIndex can be used to traverse over the collection
of secondary key’s values to retrieve the secondary objects.

Hot
Tip

Multiple processes can open a database as long as
only one process opens it in read-write mode and other
processes open the database in read-only mode. The read-
only processes get an open-time snapshot of the database
and won’t see any changes coming from other process.

...
envConfig.setTransactional(true);
dbconf.setTransactional(true);
TransactionConfig txConf = new TransactionConfig();
txConf.setSerializableIsolation(true);
txConf.setNoSync(true);
Transaction tx = dbEnv.getThreadTransaction();
tx.setLockTimeout(1000);
tx.setTxnTimeout(5000);
Database db = dbEnv.openDatabase(tx, «SmpleDB», dbconf);
dbEnv.beginTransaction(tx, txConf);
...
db.put(tx, keyValue, dataValue);//inserting an entry
...
tx.commit();

More transaction related supported features are demonstrated
in this snippet. Environment, Database, EntityStore, etc.
configuration is omitted from these snippet for sake of
simplicity.

The only different between using BDB JE collections API and
classic collections is the fact that when we use BDB JE Collections
API we are accessing persisted objects instead of in-memory

BDB JE Collections API

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

5
Oracle Berkeley DB

BDB JE Backup/Recovery and Tuning

Backup and Recovery
We can simply backup the BDB databases by creating an
operating system level copy of all jdb files. When required we
can put the archived files back into the environment directory
to get a database back to the state it was at. The best option is
to make sure all transactions and the write process are finished
to have a consistent backup of the database.

The BDB JE provides a helper class located at com.sleepycat.
je.util.DbBackup to perform the backup process from within
a Java application. This utility class can create an incremental
backup of a database and later on can restore from that
backup. The helper class ideally freezes the BDB JE activities
during the backup to ensure that the created backup exactly
represents the database state when the backup process
started.

Tuning
Berkeley DB JE has 3 daemon threads and configuring these
threads affects the overall application performance and
behavior. These 3 threads are as follow:

Cleaner Thread Responsible for cleaning and deleting unused log files. This thread is
run only if the environment is opened for write access.

Checkpointer Thread Basically keeps the BTree shape consistent. Checkpointer thread is
triggered when environment opens, environment closes, and database
log file grows by some certain amount.

Compressor Thread For cleaning the BTree structure from unused nodes.

These threads can be configured through a properties file
named je.properties or by using the EnvironmentConfig and
EnvironmentMutableConfig objects. The je.properties file,
which is a simple key-value file, should be placed inside the
environment directory and override any further configuration
which we may make using the EnvironmentConfig and
EnvironmentMutableConfig in the Java code.

The other performance effective factor is cache size. For on-
disk instances cache size determines how often the application
needs to refer to permanent storage in order to retrieve some
data bucket. When we use in-memory instances cache size
determines whether our database information will be paged
into swap space or it will stay in the main memory.

objects which we usually access in classic collection APIs.

The Collections API Characteristics

An implementation Map, SortedMap, Set, SortedSet, and Iterator.

To stay compatible with Java Collections, Transaction is supported using TransactionWorker
and TransactionRunner which the former one is the interface which we can implement to
execute our code in a transaction and later one process the transaction.

Keys and values are represented as Java objects. Custom binding can be defined to bind the
stored bytes to any type or format like XML, for example.

Data binding should be defined to instruct the Collections API about how keys and values are
represented as stored data and how stored data is converted to and from Java objects. We can
use one of the two (SerialBinding, TupleBinding) default data bindings or a custom data binding.

Environment, EnvironmentConfig, Database and DatabaseConfig stay the same as it was for
Base API.

Collections API extends Java serialization to store class description separately to make data
records much more compact.

To get a real sense about BDB JE Collections API think of it as
we can persist and retrieve objects using a collection class like
SortedMap’s methods like tailMap, subMap or put, putall, get,
and so on.

But before we use the SortedMap object to access the stored
data, we need to initialize the base objects like Database and
Environment; we should create the ClassCatalog object, and
finally we should define bindings for our key and value types.

Collections API sample
Now let’s see how we can store and retrieve our our objects
using Collections API. In this sample we are persisting a pair of
Integer key and String value using SortedMap.

First lets analyze the TransactionWorker implementation.

public class TransWorker implements TransactionWorker {
 private ClassCatalog catalog;
 private Database db;
 private SortedMap map;
 public TransWorker(Environment env) throws Exception {
 DatabaseConfig dbConfig = new DatabaseConfig();
 dbConfig.setTransactional(true);
 dbConfig.setAllowCreate(true);
 Database catalogDb = env.openDatabase(null, “catalog”, dbConfig);
 catalog = new StoredClassCatalog(catalogDb);
 // use Integer tuple binding for key entries
 TupleBinding keyBinding =
 TupleBinding.getPrimitiveBinding(Integer.class);
 // use String serial binding for data entries
 SerialBinding dataBinding = new SerialBinding(catalog,
String.class);
 db = env.openDatabase(null, “dben-col”, dbConfig);
 map = new StoredSortedMap(db, keyBinding, dataBinding,
true);
 }
 /** Performs work within a transaction. */
 public void doWork() throws Exception {
 // check for existing data and writing
 Integer key = new Integer(0);
 String val = (String) map.get(key);
 if (val == null) {
 map.put(new Integer(10), “Second”);
 }
 //Reading Data
 Iterator iter = map.entrySet().iterator();
 while (iter.hasNext()) {
 Map.Entry entry = (Map.Entry) iter.next();
 //Process the entry
 }
 }
}

TransWorker implements TransactionWorker which makes
it necessary to implement the doWork method. This method
is called by TransactionRunner when we pass an object of
TransWorker to its run method. The TransWorker constructor
simply receive an Environment object and construct other
required objects . Then it opens the database in Collection
mode, creates the required binding for the key and values
we want to store in the database and finally it creates the
SortedMap object which we can use to put and retrieve objects
using it.

Now let’s see the driver code which put this class in action.

public class CollectionSample {
 public static void main(String[] argv)
 throws Exception {
 // Creating the environment
 EnvironmentConfig envConfig = new EnvironmentConfig();
 envConfig.setTransactional(true);
 envConfig.setAllowCreate(true);
 Environment dbEnv = new Environment(new File(“/home/
masoud/dben-col”), envConfig);
 // creating an instance of our TransactionWorker
 TransWorker worker = new TransWorker(dbEnv);
 TransactionRunner runner = new TransactionRunner(dbEnv);
 runner.run(worker);
 }
}

The steps demonstrated in the CollectionSample are
self describing. The only new object in this snippet is
the TransactionRunner object which we used to run the
TransWorker object. I omit many of the safe programming
portions to keep the code simple and conscious. we need
exception handling and properly closure of all BDB JE objects
to ensure data integrity

http://www.dzone.com
http://www.refcardz.com

Design Patterns

By Jason McDonald

CONTENTS INCLUDE:

n	 Chain of Responsibility

n	 Command

n	 Interpreter

n	 Iterator

n	 Mediator

n	 Observer

n	 Template Method and more...

DZone, Inc. | w
ww.dzone.com

D
es

ig
n

Pa
tt

er
ns

 w

w
w

.d
zo

ne
.c

om

 G
et

 M
o

re
 R

ef
ca

rz
!

V
is

it
 r

ef
ca

rd
z.

co
m

#8

Brought to you by...

Inspired

by the

GoF

Bestseller

This Design Patterns refcard provides a quick reference to the

original 23 Gang of Four (GoF) design patterns, as listed in

the book Design Patterns: Elements of Reusable Object-

Oriented Software. Each pattern includes class diagrams,

explanation, usage information, and a real world example.

Chain of Responsibility
, continued

Object Scope: Deals with object relationships that can

be changed at runtime.

Class S
cope: Deals with class relationships that can be

changed at compile time.

C Abstract Factory

S Adapter

S Bridge

C Builder

B Chain of

Responsibility

B Command

S Composite

S Decorator

S Facade

C Factory Method

S Flyweight

B Interpreter

B Iterator

B Mediator

B Memento

C Prototype

S Proxy

B Observer

C Singleton

B State

B Strategy

B Template Method

B Visito
r

ABOUT DESIGN PATTERNS

Creational Patterns: U
sed to construct objects such

that they can be decoupled from their im
plementing

system.

Structural Patterns: U
sed to form large object

structures between many disparate objects.

Behavioral Patterns: U
sed to manage algorithms,

relationships, and responsibilitie
s between objects.

CHAIN OF RESPONSIBILITY

 O
bject Behavioral

COMMAND

 O

bject Behavioral

successor

Client

<<interface>>

Handler

+handlerequest()

ConcreteHandler 1

+handlerequest()

ConcreteHandler 2

+handlerequest()

Purpose
Gives more than one object an opportunity to handle a request by linking

receiving objects together.

Use

When

n
	Multiple objects may handle a request and the handler doesn’t have to

 be a specific object.

n
	A set of objects should be able to handle a request with the handler

 determined at runtime.

n
	A request not being handled is an acceptable potential outcome.

Example
Exception handling in some languages implements this pattern. When an

exception is thrown in a method the runtime checks to see if th
e method

has a mechanism to handle the exception or if it
 should be passed up the

call stack. When passed up the call stack the process repeats until code to

handle the exception is encountered or until th
ere are no more parent

objects to hand the request to.

Receiver

Invoker

Command

+execute()

Client
ConcreteCommand

+execute()

Purpose
Encapsulates a request allowing it to

 be treated as an object. This allows

the request to be handled in traditionally object based relationships such

as queuing and callbacks.

Use

When

n
	You need callback functionality.

n
	Requests need to be handled at variant tim

es or in variant orders.

n
	A history of requests is needed.

n
	The invoker should be decoupled from the object handling the invocation.

Example
Job queues are widely used to facilitate the asynchronous processing

of algorithms. By utilizing the command pattern the functionality to be

executed can be given to a job queue for processing without any need

for the queue to have knowledge of the actual implementation it is

invoking. The command object that is enqueued implements its particular

algorithm within the confines of the interface the queue is expecting.

Upcoming Titles
Expression Web
Eclipse Plug-In Development
Adobe Live Cycle
Adobe Flash Builder 4
Java Performance Tuning
WPF
F#

Most Popular
Spring Configuration
jQuery Selectors
Windows Powershell
Dependency Injection with EJB 3
Netbeans IDE JavaEditor
Getting Started with Eclipse
Very First Steps in Flex

“Exactly what busy developers need:
simple, short, and to the point.”

James Ward, Adobe Systems

Download Now

Refcardz.com

Professional Cheat Sheets You Can Trust

DZone, Inc.
1251 NW Maynard
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2009 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher. Reference:

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to

more than 3.3 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheatsheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

6
Oracle Berkeley DB

RECOMMENDED BookABOUT the Author

ISBN-13: 978-1-934238-62-2
ISBN-10: 1-934238-62-7

9 781934 238622

50795

Masoud Kalali holds a software engineering degree and has
been working on software development projects since 1998. He
has experience with a variety of technologies (.Net, J2EE, CORBA,
and COM+) on diverse platforms (Solaris, Linux, and Windows).
His experience is in software architecture, design and server side
development. Masoud has several articles in Java.net. He is one of
founder members of NetBeans Dream Team. Masoud’s main area of
research and interest includes Web Services and Service Oriented

Architecture along with large scale and high throughput systems’ development and
deployment.

Blog: http://weblogs.java.net/blog/kalali/
Contact: Kalali@gmail.com

The Berkeley DB Book is a practical guide to the intricacies
of the Berkeley DB. This book covers in-depth the complex
design issues that are mostly only touched on in terse
footnotes within the dense Berkeley DB reference manual. It
explains the technology at a higher level and also covers the
internals, providing generous code and design examples.

je.cleaner.
minUtilization

Ensures that a minimum amount of space is occupied by live records by
removing obsolete records. Default occupied percentage is 50%.

je.cleaner.
expunge

Determines the cleaner behavior in the event that it is able to remove
an entire log file. If “true” the log file will be deleted, otherwise it will be
renamed to nnnnnnnn.del

je.checkpointer.
bytesInterval

Determines how often the Checkpointer should check the BTree structure. If
it performs the checks little by little it will ensure a faster application startup
but will consume more resources specially IO.

je.maxMemory
Percent

Determines what percentage of JVM maximum memory size can be used
for BDB JE cache. To determine the ideal cache size we should put the
application in the production environment and monitor its behavior.

A complete list of all configurable properties, with
explanations, is available in EnvironmentConfig Javadoc. The
list is comprehensive and allows us to configure the BDB JE at
granular level.

All of these parameters can be set from Java code using the
EnvironmentConfig object. The properties file overrides the
values set by using EnvironmentConfig object.

Helper Utilities
Three command line utilities are provided to facilitate dumping
the databases from one environment, verifying the database

Hot
Tip

A very good set of tutorials for different set of BDB JE APIs
are available inside the docs folder of BDB JE package.
Several examples for different set of functionalities are
provided inside the examples directory of the BDB JE
package.

structure, and loading the dump into another environment.

DbDump Dumps a database to a user-readable format.

DbLoad Loads a database from the DbDump output.

DbVerify Verifies the structure of a database.

To run each of these utilities, switch to BDB JE directory,
switch to lib directory and execute as shown in the following
command:

java -cp je-3.3.75.jar com.sleepycat.je.util.DbVerify

The JAR file name may differ depending on your version of
BDB JE. These commands can also be used to port a BDB JE
database to BDB Core Edition.

BUY NOW
books.dzone.com/books/berkeley-db

http://refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.refcardz.com
http://books.dzone.com/books/berkeley-db

