

DZone, Inc. | www.dzone.com

By Simone Chiaretta and Keyvan Nayyeri

IntroductIon

A
S

P.
n

E
t

 M
V

c
 1

.0

 w

w
w

.d
zo

n
e.

co
m

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#69

Getting Started with
ASP.NET MVC 1.0

ASP.NET MVC is a new framework for building Web
applications developed by Microsoft; it was found that the
traditional WebForm abstraction, designed in 2000 to bring
a “desktop-like” development experience to the Web, was
sometimes getting in the way, and could not provide proper
separation of concerns, so it was difficult to test. Therefore
a new, alternative framework was built in order to address
the changing requirements of developers. It was built with
testability, extensibility and freedom in mind.

This Refcard will first explain how to setup your environment to
work with ASP.NET MVC and how to create an ASP.NET MVC
Web application. Then it will go deeper in details explaining
the various components of the framework and showing the
structure of the main API. Finally, it will show a sample of
standard operation that developers can do with ASP.NET MVC.

contEntS IncLudE:
n	 Introduction
n	 Prerequisites
n	 Installation
n	 Build Your First Application
n	 The Fundamentals of ASP.NET MVC
n	 Routing and more...

n Authoritative content
n Designed for developers
n Written by top experts
n Latest tools & technologies
n Hot tips & examples
n Bonus content online
n New issue every 1-2 weeks

Subscribe Now for FREE!
Refcardz.com

Get More Refcardz
(They’re free!)

Starting the developing of an ASP.NET MVC application is easy.
From Visual Studio just use the “File > New Project” menu

PrErEquISItES

The ASP.NET MVC is a new framework, but it’s based on
ASP.NET core API: in order to understand and use it, you have
to know the basic concepts of ASP.NET. Furthermore, since it
doesn’t abstract away the “Web” as the traditional WebForm
paradigm does, you have to know HTML, CSS and JavaScript in
order to take full advantage of the framework.

InStALLAtIon

To develop a Web site with ASP.NET MVC, all you need is
Visual Studio 2008 and the .NET Framework 3.5 SP1. If you are
an hobbyist developer you can use Visual Web Developer 2008
Express Edition, which can be downloaded for free at the URL:
http://www.microsoft.com/express/vwd/.

You also need to install the ASP.NET MVC library, which can be
downloaded from the official ASP.NET Web site at
http://www.asp.net/mvc/download.

You can also download everything you need, the IDE, the
library, and also a free version of SQL Server (Express Edition)
through the Web Platform Installer, available at:
http://www.microsoft.com/web/.

thE MVc PAttErn

As you probably have already guessed from the name, the
framework implements the Model View Controller (MVC)
pattern.

The UI layer of an application is made up of 3 components:

MVC Component Description

Model The component responsible for data interactions with data storage
system (typically a database) and main business logic implementations.

View The component responsible for displaying data passed from
Controller to it which also renders the user interface of the site.

Controller The component that acts like a bridge between the model and the
view to load data based on the request and pass them to view, or
pass the data input by user to the model.

And the flow of an operation is depicted in the diagram:

 1. The request hits the Controller.

 2. The Controller delegates the execution of “main” operation to the

 Model.

 3. The Model sends the results back to the Controller.

 4. The Controller formats the data and sends them to the View.

 5. The View takes the data, renders the HTML page, and sends it to the

 browser that requested it.

BuILd your fIrSt APPLIcAtIon

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

2
Getting Started with ASP.nEt MVc 1.0

command, and select the ASP.NET MVC Project template (as
shown in the following figure).

Type in the name of the project and press the “OK” button. It
will ask you whether you want to create a test project (I suggest
choosing Yes), then it will automatically create a stub
ASP.NET MVC Web site with the correct folder structure that
you can later customize for your needs.

As you can see, the components of the applications are well-
separated in different folders.

Folder Name Contains

/Content Static contents for your site, like CSS and images

/Controllers All the Controllers of the application, one per file

/Models The classes that encapsulate the interaction with the Model

/Scripts The JavaScript files used by your application (by default it contains jQuery)

/Views All the views of the application, in sub-folders that are related one to one
with the controllers

thE fundAMEntALS of ASP.nEt MVc

One of the main design principles of ASP.NET MVC is
“convention over configuration”, which allows components
to fit nicely together based on their naming conventions and
location inside the project structure.

The following diagram shows how all the pieces of an

routIng

The routing engine is not part of the ASP.NET MVC framework,
but is a general component introduced with .NET 3.5 SP1.
It is the component that is first hit by a request coming from
the browser. Its purpose is to route all incoming requests to
the correct handler and to extrapolate from the URL a set of
data that will be used by the handler (which, in the case of an
ASP.NET MVC Web application, is always the MvcHandler) to
respond to the request.

To accomplish its task, the routing engine must be configured
with rules that tell it how to parse the URL and how to get
data out of it. This configuration is specified inside the
RegisterRoutes method of the Global.asax file, which is in the
root of the ASP.NET MVC Web application.

public static void RegisterRoutes(RouteCollection routes)
{
 routes.MapRoute(
 “Default”, //Route Name
 “{controller}/{action}/{id}”, //Route Formats
 new { controller = “Home”, action = “Index”, id = “” } //Defaults
);
}

The snippet above shows the default mapping rule for each
ASP.NET MVC application: every URL is mapped to this route,
and the first 3 parts are used to create the data dictionary
sent to the handler. The last parameter contains the default
values that must be used if some of the URL tokens cannot
be populated. This is required because, based on the default
convention, the data dictionary sent to the MvcHandler must
always contain the controller and the action keys.

Examples of other possible route rules:

URL Rule Data Dictionary

/Posts/Show/5 Format: “{controller}/
{action}/{id}”
Default: new { controller
= “Home”, action = “Index”,
id = “” }

Controller = Posts
Action = Show
Id = 5

/archive/2009-10-02/
MyPost

Format: /archive/{date}/{title}
Default: { controller = “Posts”, action
= “show”}

Controller = Posts
Action = Show
Date = 2009-10-02
Title = My post

ASP.NET MVC application fit together based on their naming
conventions:

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

3
Getting Started with ASP.nEt MVc 1.0

ModEL

ASP.NET MVC, unlike other MVC-based frameworks like Ruby
on Rails (RoR), doesn’t enforce a convention for the Model.
So in this framework the Model is just the name of the folder
where you are supposed to place all the classes and objects
used to interact with the Business Logic and the Data Access
Layer. It can be whatever you prefer it to be: proxies for Web
services, ADO.NET Entity Framework, NHibernate, or anything
that returns the data you have to render through the views.

controLLEr

The controller is the first component of the MVC pattern that
comes into action. A controller is simply a class that inherits
from the Controller base class whose name is the name of a
controller and ends with “Controller,” and is located in the
Controllers folder of the application folder structure. Using
that naming convention, the framework automatically calls the
specified controller based on the parameter extrapolated by
the URL.

namespace MyMvcApp.Controllers
{
 public class PageController : Controller
 {
 //Controller contents.
 }
}

The real work, however, is not done by the class itself, but
by the method that lives inside it. These are called Action
Methods.

ActIon MEthod

An action method is nothing but a public method inside a
Controller class. It usually returns a result of type ActionResult
and accepts an arbitrary number of parameters that contain the
data retrieved from the HTTP request.

Here is what an action method looks like:

public ActionResult Show(int id)
{
 //Do stuff
 ViewData[“myKey”]=myValue;
 return View();
}

The ViewData is a hash-table that is used to store the
variables that need to be rendered by the view: this object is
automatically passed to the view through the ActionResult
object that is returned by the action. Alternatively, you can
create your own view model, and supply it to the view.

public ActionResult Show(int id)
{
 //Do stuff
 return View(myValue);
}

This second approach is better because it allows you to work
with strongly-typed classes instead of hash-tables indexed
with string values. This brings compile-time error checking and
Intellisense.

Once you have populated the ViewData or your own custom
view model with the data needed, you have to instruct the

framework on how to send the response back to the client. This
is done with the return value of the action, which is an object
that is a subclass of ActionResult. There are various types of
ActionResult, each with its specific way to return it from the
action.

ActionResult Type Method Purpose

ViewResult View() Renders a view whose path is
inferred by the current controller
and action:
/View/controllerName/
ActionName.aspx

ViewResult View(viewName) Renders a view whose name is
specified by the parameter:
/View/controllerName/
viewName.aspx

ViewResult View(model) Renders the view using the default
path, also passing a custom View
Model that contains the data that
needs to be rendered by the view.

PartialViewResult PartialView() Same as View, but doesn’t return
a complete HTML page, only a
portion of it. Looks for the file at
following the path:
/View/controllerName/
ActionName.ascx

PartialViewResult PartialView(
viewName)

Renders a partial view whose name
is specified by the parameter:
/View/controllerName/
viewName.ascx

PartialViewResult PartialView(
model)

Renders a partial view using the
default path, also passing a custom
View Model that contains the data
that needs to be rendered by the
partial view.

RedirectResult Redirect(url) Redirects the client to the URL
specified.

RedirectToRouteResult RedirectToAction(
actionName)

Redirects the client to the
action specified. Optionally you
can specify also the controller
name and an additional list of
parameters.

RedirectToRouteResult RedirectToRoute(
routeName)

Redirects the client to the route
specified. Optionally you can
specify an additional list of
parameters.

ContentResult Content(content) Sends to the content specified
directly to the client. Optionally
you can specify the content type
and encoding.

JsonResult Json(data) Serializes the data supplied in Json
format and sends the Json string
to the client.

FileResult File(filename,
contenttype)

Sends the specified file directly
to the client. Optionally you can
provide a stream or a byte array
instead of a physical path.

JavaScriptResult JavaScript(
javascript)

Sends the script provided as
external JavaScript file.

EmptyResult new EmptyResult() Doesn’t do anything: use this
in case you handle the result
directly inside the action (not
recommended).

ModEL BIndEr

Using the ActionResults and the ViewData object (or your
custom view model), you can pass data from the Action to the
view. But how can you pass data from the view (or from the
URL) to the Action? This is done through the ModelBinder. It
is a component that retrieves values from the request (URL
parameters, query string parameters, and form fields) and
converts them to action method parameters.

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

4
Getting Started with ASP.nEt MVc 1.0

But the Model Binder works not only with simple values
(string and numbers), but also with composite types, like
your own objects (for example the ubiquitous User object). In
this scenario, when the Model Binder sees that an object is
composed by other sub-objects, it looks for variables whose
name matches the name of the properties of the custom type.
Here it’s worth taking a look at a diagram to make things clear:

VIEw

The next and last component is the view. When using the
default ViewEngine (which is the WebFormViewEngine) a view
is just an aspx file without code-behind and with a different
base class.

Views that are going to render data passed only through the
ViewData dictionary have to start with the following Page
directive:

<%@ Page Language=”C#” MasterPageFile=”~/Views/Shared/Site.Master”
Inherits=”System.Web.Mvc.ViewPage” %>

If the view is also going to render the data that has been
passed via the custom view model, the Page directive is a bit
different, and it also specifies the type of the view model:

<%@ Page Language=”C#” MasterPageFile=”~/Views/Shared/Site.Master”
Inherits=”System.Web.Mvc.ViewPage<PageViewModel>” %>

You might have noticed that, as with all normal aspx files, you
can include a view inside a master page. But unlike traditional
Web forms, you cannot use user controls to write your HTML
markup: you have to write everything manually. However, this
is not entirely true: the framework comes with a set of helper
methods to assist with the process of writing HTML markup.
You’ll see more in the next section.

Hot
Tip

Another thing you have to handle by yourself is the
state of the application: there is no ViewState and no
Postback.

htML hELPEr

You probably don’t want to go back writing the HTML manually,
and neither does Microsoft want you to do it. Not only to help
you write HTML markup, but also to help you easily bind the
data passed from the controller to the view, the
ASP.NET MVC Framework comes with a set of helper methods
collectively called HtmlHelpers. They are all methods attached
to the Html property of the ViewPage. For example, if you want
to write the HTML markup for a textbox you just need to write:

<%= Html.Textbox(“propertyName”)%>

And this renders an HTML input text tag, and uses the value
of the specified property as the value of the textbox. When
looking for the value to write in the textbox, the helper takes
into account both the possibilities for sending data to a view:
it first looks inside the ViewData hash-table for a key with the
name specified, and then looks inside the custom view model,
for a property with the given name. This way you don’t have to
bother assigning values to input fields, and this can be a big
productivity boost, especially if you have big views with many
fields.

Let’s see the HtmlHelpers that you can use in your views:

Helper Purpose

Html.ActionLink(text,
actionName, …)

Renders a HTML link with the text specified,
pointing to the URL that represents the action
and the other optional parameters specified
(controller and parameters). If no optional
parameters are specified, the link will point to
the specified action in the current controller.

Html.RouteLink(text,
routeValues, …)

Renders a HTML link as the method ActionLink,
but now using the route values, and optionally
the route name, as input.

Html.BeginForm(actionName,…) Renders the beginning HTML form tag, setting
as action of the form the URL of the action
specified. The URL creation works exactly the
same as the ActionLink method.

Html.EndForm() Renders the form closing tag.

Html.Textbox(name) Renders a form input text box, populating it
with the value retrieved from the ViewData or
custom view model object. Optionally you can
specify a different value for the field, or specify
additional HTML attributes.

Html.TextArea(name, rows,
cols, …)

Same as Textbox, but renders a textarea, of the
specified row and column size.

Html.Checkbox(name) Renders a checkbox.

Html.RadioButton(name, value) Renders a radio button with the given name,
the given value and optionally specifying the
checked state.

Html.Hidden(name) Renders a form input field of type hidden.

Html.DropDownList(name,
selectList,…)

Renders a select HTML element, reading the
options from the selectList variable, which is a
list of name-value pairs.

Html.ListBox(name,
selectList,…)

Same as the DropDownList method, but
enables the ability to select multiple options.

Html.
ValidationMessage(modelName, …)

Displays a validation message if the specified
field contains an error (handled via the
ModelState).

Html.ValidationSummary(…) Displays the summary with all the validation
messages of the view.

Html.
RenderPartial(partialViewName)

Renders on the view the contents of the
specified partial view.

As alternative to writing Html.BeginForm and Html.CloseForm
methods, you can write an HTML form by including all its
elements inside a using block:

 <% using(Html.BeginForm(“Save”)) { %>
 <!—all form elements here -->
<% } %>

As everything in ASP.NET MVC, it’s driven by conventions: if
the action takes an input parameter named Title, the default
Model Binder will look for a variable named Title in the URL
parameters, in the query string, and among the values supplied
as form fields.

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

5
Getting Started with ASP.nEt MVc 1.0

To give you a better idea of how a view that includes an editing
form looks like, here is a sample of a complete view for editing
an address book element:

<%@ Page Language=”C#” MasterPageFile=”~/Views/Shared/Site.Master”
Inherits=”System.Web.Mvc.ViewPage<EditContactViewModel>” %>
<% using(Html.BeginForm(“Save”)) { %>
 Name: <%= Html.Textbox(“Name”) %>

 Surname: <%= Html.Textbox(“Surname”) %>

 Email: <%= Html.Textbox(“Email”) %>

 Note: <%= Html.TextArea(“Notes”, 80, 7, null) %>

 Private <%= Html.Checkbox(“IsPrivate”) %>

 <input type=”submit” value=”Save”>
<% } %>

t4 tEMPLAtES

But there is more: bundled with Visual Studio there is a
template engine (made T4 as in Text Template Transformation
Toolkit) that helps automatically generate the HTML of your
views based on the ViewModel that you want to pass to the view.

The “Add View” dialog allows you to choose with which
template and based on which class you want the views to be
generated

Template Name Purpose

Create Generates a form to create a new instance of the item you selected

Details Generates a view that shows all the properties of the item you selected

Edit Generates a form to edit a instance of the item you selected

Empty Generates an empty view, only with the declaration of the class it’s based on

List Generates a view with a list of the items you selected

What these templates do is mainly iterating over all the
properties of the ViewModel class and generating the same
code you would have probably written yourself, using the
HtmlHelper methods for the input fields and the validation
messages.

For example, if you have a view model class with two
properties, Title and Description, and you choose the Edit
template, the resulting view will be:

<%@ Page Title=”” Language=”C#” MasterPageFile=”~/Views/Shared/Site.
Master”
Inherits=”System.Web.Mvc.ViewPage<IssueTracking.Models.Issue>” %>
<asp:Content ID=”Content1” ContentPlaceHolderID=”TitleContent”
runat=”server”>
 Edit
</asp:Content>

AjAx

The last part of ASP.NET MVC that is important to understand
is AJAX. But it’s also one of the easiest aspects of the
framework.

First, you have to include the script references at the top of the
page where you want to enable AJAX (or in a master page if
you want to enable itfor the whole site):

<script src=”/Scripts/MicrosoftAjax.js” type=”text/javascript”><script>
<script src=”/Scripts/MicrosoftMvcAjax.js” type=”text/javascript”></script>

And then you can use the only 2 methods available in the
AjaxHelper: ActionLink and BeginForm.

They do the exact same thing as their HtmlHelper counterpart,
just asynchronously and without reloading the page. To make
the AJAX features possible, a new parameter is added to
configure how the request and the result should be handled.
It’s called AjaxOptions and is a class with the following
properties:

Parameter Name Purpose

UpdateTargetId The id of the html element that will be updated

InsertionMode Where the new content will be inserted:
 • Replace: new content will replace old one
 • InsertAfter: new content will be placed after the current one
 • InsertBefore: new content will be placed before

Confirm The question that will be asked to the user to confirm their will to
proceed

OnBegin Generates an empty view, only with the declaration of the class it’s
based on

OnSuccess Generates a view with a list of the items you selected

OnFailure Name of the JavaScript function to be called before the request starts

OnComplete Name of the JavaScript function to be called when the request is
complete, either with a success or a failure

Url The URL to sent the request to, if you want to override the URL
calculated via the usual actionName and controllerName parameters

LoadingElementId The id of the HTML element that will be made visible during the
execution of the request

For example, here is a short snippet of code that shows how to
update a list of items using the AJAX flavor of the BeginForm
method:

<asp:Content ID=”Content2” ContentPlaceHolderID=”MainContent”
runat=”server”>
 <h2>Edit</h2>
 <%= Html.ValidationSummary(“Edit was unsuccessful. Please correct
the errors and try again.”) %>

 <% using (Html.BeginForm()) {%>
 <fieldset>
 <legend>Fields</legend>
 <p>
 <label for=”Title”>Title:</label>
 <%= Html.TextBox(“Title”, Model.Title) %>
 <%= Html.ValidationMessage(“Title”, “*”) %>
 </p>
 <p>
 <label for=”Description”>Description:</label>
 <%= Html.TextArea(“Description”,
 Model.Description,7,50,null)%>
 <%= Html.ValidationMessage(“Description”, “*”) %>
 </p>
 <p>
 <input type=”submit” value=”Save” />
 </p>
 </fieldset>
 <% } %>
 <div>
 <%=Html.ActionLink(“Back to List”, “Index”) %>
 </div>
</asp:Content>

http://www.dzone.com
http://www.refcardz.com

Design Patterns

By Jason McDonald

CONTENTS INCLUDE:

n	 Chain of Responsibility

n	 Command

n	 Interpreter

n	 Iterator

n	 Mediator

n	 Observer

n	 Template Method and more...

DZone, Inc. | w
ww.dzone.com

D
es

ig
n

Pa
tt

er
ns

 w

w
w

.d
zo

ne
.c

om

 G
et

 M
o

re
 R

ef
ca

rz
!

V
is

it
 r

ef
ca

rd
z.

co
m

#8

Brought to you by...

Inspired

by the

GoF

Bestseller

This Design Patterns refcard provides a quick reference to the

original 23 Gang of Four (GoF) design patterns, as listed in

the book Design Patterns: Elements of Reusable Object-

Oriented Software. Each pattern includes class diagrams,

explanation, usage information, and a real world example.

Chain of Responsibility
, continued

Object Scope: Deals with object relationships that can

be changed at runtime.

Class S
cope: Deals with class relationships that can be

changed at compile time.

C Abstract Factory

S Adapter

S Bridge

C Builder

B Chain of

Responsibility

B Command

S Composite

S Decorator

S Facade

C Factory Method

S Flyweight

B Interpreter

B Iterator

B Mediator

B Memento

C Prototype

S Proxy

B Observer

C Singleton

B State

B Strategy

B Template Method

B Visito
r

ABOUT DESIGN PATTERNS

Creational Patterns: U
sed to construct objects such

that they can be decoupled from their im
plementing

system.

Structural Patterns: U
sed to form large object

structures between many disparate objects.

Behavioral Patterns: U
sed to manage algorithms,

relationships, and responsibilitie
s between objects.

CHAIN OF RESPONSIBILITY

 O
bject Behavioral

COMMAND

 O

bject Behavioral

successor

Client

<<interface>>

Handler

+handlerequest()

ConcreteHandler 1

+handlerequest()

ConcreteHandler 2

+handlerequest()

Purpose
Gives more than one object an opportunity to handle a request by linking

receiving objects together.

Use

When

n
	Multiple objects may handle a request and the handler doesn’t have to

 be a specific object.

n
	A set of objects should be able to handle a request with the handler

 determined at runtime.

n
	A request not being handled is an acceptable potential outcome.

Example
Exception handling in some languages implements this pattern. When an

exception is thrown in a method the runtime checks to see if th
e method

has a mechanism to handle the exception or if it
 should be passed up the

call stack. When passed up the call stack the process repeats until code to

handle the exception is encountered or until th
ere are no more parent

objects to hand the request to.

Receiver

Invoker

Command

+execute()

Client
ConcreteCommand

+execute()

Purpose
Encapsulates a request allowing it to

 be treated as an object. This allows

the request to be handled in traditionally object based relationships such

as queuing and callbacks.

Use

When

n
	You need callback functionality.

n
	Requests need to be handled at variant tim

es or in variant orders.

n
	A history of requests is needed.

n
	The invoker should be decoupled from the object handling the invocation.

Example
Job queues are widely used to facilitate the asynchronous processing

of algorithms. By utilizing the command pattern the functionality to be

executed can be given to a job queue for processing without any need

for the queue to have knowledge of the actual implementation it is

invoking. The command object that is enqueued implements its particular

algorithm within the confines of the interface the queue is expecting.

upcoming titles
RichFaces
Agile Software Development
BIRT
JSF 2.0
Adobe AIR
BPM&BPMN
Flex 3 Components

Most Popular
Spring Configuration
jQuery Selectors
Windows Powershell
Dependency Injection with EJB 3
Netbeans IDE JavaEditor
Getting Started with Eclipse
Very First Steps in Flex

“Exactly what busy developers need:
simple, short, and to the point.”

James Ward, Adobe Systems

Download Now

Refcardz.com

Professional Cheat Sheets You Can Trust

DZone, Inc.
1251 NW Maynard
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2009 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher. Reference:

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to

more than 3.3 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheatsheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

6
Getting Started with ASP.nEt MVc 1.0

rEcoMMEndEd BookABout thE AuthorS

ISBN-13: 978-1-934238-62-2
ISBN-10: 1-934238-62-7

9 781934 238622

50795

Simone chiaretta is a software architect and developer who enjoys sharing his
development experience and more than 10 years’ worth of knowledge on Web
development with ASP.NET and other Web technologies. He is currently working as a
senior solution developer for Avanade, an international consulting company. He is an
ASPInsider Microsoft MVP in ASP.NET, a core member of Subtext, a popular Open Source
blogging platform, an active member of the Italian .NET User Group, co-founder of the
Italian ALT.NET user group and a frequent speaker for community events throughout Italy.

keyvan nayyeri is a software architect and developer who has a bachelor of science
degree in applied mathematics. He was born in Kermanshah, Kurdistan, in 1984. Keyvan’s
main focus is on Microsoft development technologies and their related technologies.
Keyvan has a serious passion for community activities and open source software. He
is also a team leader and developer of some prominent .NET Open Source projects,
where he tries to learn many things through writing code for special purposes. Keyvan
also has received a number of awards and recognition from Microsoft, its partners, and
online communities. Some major highlights include Microsoft VSX Insider and Telligent
Community Server MVP.

If you have a background in .NET
and ASP.NET and are seeking
to learn ASP.NET MVC, then
this is the book for you. Relying
heavily on MVC concepts,
ASP.NET MVC principles, and
code to demonstrate the main
content, this valuable resource
walks you through the necessary
components to solve real-world
problems.

 <ul id=”types”>
 <% foreach (var item in Model) { %>
 <%= item.Name %>
 <% } %>

 <% using(Ajax.BeginForm(“Add”,”IssueTypes”,new AjaxOptions() {
 InsertionMode = InsertionMode.InsertAfter,
 UpdateTargetId = “types”,
 OnSuccess = “myJsFunc”
 })) { %>

 Type Name: <%= Html.TextBox(“Name”) %>
 <input type=”submit” value=”Add type” />
 <% } %>

The AJAX call will be sent to the Add action inside the
IssueType controller. Once the request is successful, the result
sent by the controller will be added after all the list items that
are inside the types element. And then the myJsFunc will be
executed.

But what the ASP.MVC library does is just enabling these two
methods: if you want more complex interactions you have to
use either the AJAX in ASP.NET library or you can use jQuery,
which ships as part of the ASP.NET MVC library.

If you want to use the AJAX in ASP.NET library, you don’t have
to do anything because you already referenced it in order to
use the BeginForm method, but if you want to use jQuery, you
have to reference it as well.

<script src=”/Scripts/jquery-1.3.2.js” type=”text/javascript”></script>

One benefit of having the jQuery library as part of the
ASP.NET MVC project template is that you gain full Intellisense
support. But there is an extra step to enable it: you have to
reference the jQuery script both with the absolute URL (as
above) needed by the application and with a relative URL,
which is needed by the Intellisense resolution engine. So, at
the end, if you want to use jQuery and enable Intellisense on
it, you have to add the following snippet:

 <script src=”/Scripts/jquery-1.3.2.js” type=”text/javascript”>
</script>
 <% if(false> { %>
 <script src=”../../Scripts/jquery-1.3.2.js” type=”text javascript”>
</script>
 <% } %>

Buy now
books.dzone.com/books/beginning-aspnet-mvc

http://refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.refcardz.com
http://books.dzone.com/books/beginning-aspnet-mvc

